Phosphate Removal Using Polyethylenimine Functionalized Silica-Based Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Adsorbents
2.3. Phosphate Adsorption Experiments
2.4. Analytical Determinations
2.5. Isotherm Models and Phosphate Removal
3. Results and Discussion
3.1. Materials Characterization
3.2. Phosphates Adsorption Capacity
3.3. Adsorption Isotherms
3.4. Effect of the pH and the Initial Concentration of Phosphates
3.5. Effect of the Adsorbent Dose
3.6. Effect of Coexisting Anions
3.7. Removal of Chromate and Nitrate Ions in the Presence of Phosphate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Selman, M.; Greenhalgh, S. Eutrophication: Sources and drivers of nutrient pollution. Renew. Resour. J. 2010, 26, 19–26. [Google Scholar]
- USEPA. Quality Criteria for Water; EPA440/5-86-001; EPA: Washionton, DC, USA, 1986.
- Scherer, H.W.; Mengel, K.; Kluge, G.; Severin, K.; Fertilizers, L. General. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, DC, USA, 2009. [Google Scholar]
- Anirudhan, T.S.; Rauf, T.A.; Rejeena, S.R. Removal and recovery of phosphate ions from aqueous solutions by amine functionalized epichlorohydrin-grafted cellulose. Desalination 2012, 285, 277–284. [Google Scholar] [CrossRef]
- Snoeyink, V.L.; Jenkins, D. Water Chemistry; Wiley: Hoboken, DC, USA, 1980. [Google Scholar]
- Morse, G.K.; Brett, S.W.; Guy, J.A.; Lester, J.N. Review: Phosphorus removal and recovery technologies. Sci. Total Environ. 1998, 212, 69–81. [Google Scholar] [CrossRef]
- Gupta, V.K.; Suhas. Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef]
- Ramasahayam, S.K.; Guzman, L.; Gunawan, G.; Viswanathan, T. A comprehensive review of phosphorus removal technologies and processes. J. Macromol. Sci. Part A Pure Appl. Chem. 2014, 51, 538–545. [Google Scholar] [CrossRef]
- Peleka, E.N.; Deliyanni, E.A. Adsorptive removal of phosphates from aqueous solutions. Desalination 2009, 245, 357–371. [Google Scholar] [CrossRef]
- Köse, T.E.; Kivanç, B. Adsorption of phosphate from aqueous solutions using calcined waste eggshell. Chem. Eng. J. 2011, 178, 34–39. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.; Li, D. Adsorptive removal of phosphate from water using mesoporous materials: A review. J. Environ. Manag. 2017, 193, 470–482. [Google Scholar] [CrossRef]
- Aljbour, S.H.; Al-Harahsheh, A.M.; Aliedeh, M.A.; Al-Zboon, K.; Al-Harahseh, S. Phosphate removal from aqueous solutions by using natural Jordanian zeolitic tuff. Adsorpt. Sci. Technol. 2016, 35, 284–299. [Google Scholar] [CrossRef] [Green Version]
- Terry, P. Removal of Nitrates and Phosphates by Ion Exchange with Hydrotalcite. Environ. Eng. Sci. 2009, 26, 691–696. [Google Scholar] [CrossRef]
- Yan, L.-G.; Xu, Y.-Y.; Yu, H.-Q.; Xin, X.-D.; Wei, Q.; Du, B. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites. J. Hazard. Mater. 2010, 179, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.; Da Silva-Carballal, J.; Garcia-Rio, L.; Mejuto, J.; Nunez, A. Retention of phosphorus by iron and aluminum-oxides-coated quartz particles. J. Colloid Interface Sci. 2006, 295, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Laskaridis, A.; Sarakatsianos, J.; Tzollas, N.; Katsoyiannis, I.A. Simultaneous Removal of Arsenate and Chromate from Ground-and Surface-Waters by Iron-Based Redox Assisted Coagulation. Sustainability 2020, 12, 5394. [Google Scholar] [CrossRef]
- Goyne, K.W.; Zimmerman, A.R.; Newalkar, B.L.; Komarneni, S.; Brantley, S.L.; Chorover, J. Surface Charge of Variable Porosity Al2O3(s) and SiO2(s) Adsorbents. J. Porous Mater. 2002, 9, 243–256. [Google Scholar] [CrossRef]
- Choi, J.W.; Lee, S.Y.; Chung, S.G.; Hong, S.W.; Kim, D.J.; Lee, S.H. Removal of phosphate from aqueous solution by functionalized mesoporous materials. Water Air. Soil Pollut. 2011, 222, 243–254. [Google Scholar] [CrossRef]
- Zou, H.; Wu, S.; Shen, J. Polymer/Silica Nanocomposites: Preparation, characterization, properties, and applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar] [CrossRef]
- Steuerle, U.; Feuerhake, R. Aziridines. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, DC, USA, 2006. [Google Scholar]
- Thakur, A.K.; Nisola, G.M.; Limjuco, L.A.; Parohinog, K.J.; Torrejos, R.E.C.; Shahi, V.K.; Chung, W.J. Polyethylenimine-modified mesoporous silica adsorbent for simultaneous removal of Cd(II) and Ni(II) from aqueous solution. Korean Soc. Ind. Eng. Chem. 2017, 49, 133–144. [Google Scholar] [CrossRef]
- Suzaimi, N.D.; Goh, P.S.; Malek, N.A.N.N.; Lim, J.W.; Ismail, A.F. Enhancing the performance of porous rice husk silica through branched polyethyleneimine grafting for phosphate adsorption. Arab. J. Chem. 2020, 13, 6682–6695. [Google Scholar] [CrossRef]
- Tang, Y.; Li, M.; Mu, C.; Zhou, J.; Shi, B. Ultrafast and efficient removal of anionic dyes from wastewater by polyethyleneimine-modified silica nanoparticles. Chemosphere 2019, 229, 570–579. [Google Scholar] [CrossRef]
- Agrawal, S.G.; King, K.W.; Fischer, E.N.; Woner, D.N. PO43- removal by and permeability of industrial byproducts and minerals: Granulated blast furnace slag, cement kiln dust, coconut shell activated carbon, silica sand, and zeolite. Water Air. Soil Pollut. 2011, 219, 91–101. [Google Scholar] [CrossRef]
- Han, B.; Chen, N.; Deng, D.; Deng, S.; Djerdj, I.; Wang, Y. Enhancing phosphate removal from water by using ordered mesoporous silica loaded with samarium oxide. Anal. Methods 2015, 7, 10052–10060. [Google Scholar] [CrossRef]
- Kang, J.K.; Kim, J.H.; Kim, S.B.; Lee, S.H.; Choi, J.W.; Lee, C.G. Ammonium-functionalized mesoporous silica MCM-41 for phosphate removal from aqueous solutions. Desalin. Water Treat. 2016, 57, 10839–10849. [Google Scholar] [CrossRef]
- Hamoudi, S.; Saad, R.; Belkacemi, K. Adsorptive removal of phosphate and nitrate anions from aqueous solutions using ammonium-functionalized mesoporous silica. Ind. Eng. Chem. Res. 2007, 46, 8806–8812. [Google Scholar] [CrossRef]
- Li, T.; Tong, Z.; Gao, B.; Li, Y.C.; Smyth, A.; Bayabil, H.K. Polyethyleneimine-modified biochar for enhanced phosphate adsorption. Environ. Sci. Pollut. Res. 2020, 27, 7420–7429. [Google Scholar] [CrossRef] [PubMed]
- Shraim, A.M. Rice is a potential dietary source of not only arsenic but also other toxic elements like lead and chromium. Arab. J. Chem. 2017, 10, S3434–S3443. [Google Scholar] [CrossRef] [Green Version]
- Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D. Standard Methods for the Examination of Water and Waste Water, 20th ed.; APHA: Washington, DC, USA, 1999. [Google Scholar]
- Langmuir, I. The Constitution and fundamental properties of solids and liquids. Part I Solids J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Parker, G.; Garth, R. Optimum isotherm equation and thermodynamic interpretation for aqueous 1,1,2-trichloroethene adsorption isotherms on three adsorbents. Adsorption 1995, 1, 113–132. [Google Scholar] [CrossRef]
- Adamson, A.; Gast, A. Physical Chemistry of Surfaces, 6th ed.; J. Wiley & Sons: New York, NY, USA, 1997; pp. 1–808. [Google Scholar]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. A 1906, 57, 385–471. [Google Scholar]
- Sips, R. On the structure of a catalyst surface R. Sips. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Arshad, F.; Munirasu, S.; Zain, J.H.; Banat, F.; Haija, M.A. Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions. Sep. Purif. Technol. 2018, 209, 870–880. [Google Scholar] [CrossRef]
- Ziebarth, J.D.; Wang, Y. Understanding the Protonation Behavior of Linear Polyethylenimine in Solutions through Monte Carlo Simulations. Biomacromolecules 2010, 11, 29–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsoyiannis, I.A.; Xanthopoulou, M.; Zouboulis, A.I. Cr(VI) Femoval from Ground Waters by Ferrous Iron Redox-Assisted Coagulation in a Continuous Treatment Unit Comprising a Plug Flow Pipe Reactor and Downflow Sand Filtration. Appl. Sci. 2020, 10, 802. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, J.; Wu, Z.; Deng, Q.; Tu, W.; Dai, G.; Zeng, Z.; Deng, S. Enhanced Cr(VI) removal by polyethylenimine- and phosphorus-codoped hierarchical porous carbons. J. Colloid Interface Sci. 2018, 523, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulou, M.; Katsoyiannis, I. Chromium Ions Removal from Groundwaters by Functionalized Ultra-Filtration Membranes. New Mater. Compd. Appl. 2019, 3, 38–46. [Google Scholar]
- Sowmya, A.; Meenakshi, S. Effective removal of nitrate and phosphate anions from aqueous solutions using functionalized chitosan beads. Desalin. Water Treat. 2014, 52, 2583–2593. [Google Scholar] [CrossRef]
Sample | Surface Area | Total Pore Volume | Micropore Volume | Micropore Area | Meso/Macro-Pore and External Surface Area | Average Mesopore Size (BJH, Adsorption Data) |
---|---|---|---|---|---|---|
(m2/g) | (cc/g) | (cc/g) | (m2/g) | (m2/g) | (nm) | |
H-800 | 4 | 0.025 | 0 | 0 | 4 | - |
C-800 | 446 | 0.304 | 0.134 | 280 | 166 | - |
H-25000 | 185 | 1.194 | 0 | 18 | 167 | 34.6 |
C-25000 | 590 | 1.461 | 0.157 | 342 | 248 | 28.7 |
pH | qmax (mg/g) | KL (L/mg) | R2 |
---|---|---|---|
5 | 41.1 | 0.89 | 0.985 |
6 | 40.8 | 0.71 | 0.977 |
7 | 26.9 | 0.74 | 0.987 |
8 | 23.5 | 1.5 | 0.979 |
pH | KF (L/g) | n | R2 |
---|---|---|---|
5 | 16.4 | 2.7 | 0.942 |
6 | 14.6 | 2.4 | 0.946 |
7 | 9.5 | 2.37 | 0.960 |
8 | 11.2 | 3.16 | 0.882 |
pH | KS | b | n | R2 |
---|---|---|---|---|
5 | 47 | 0.6 | 1.2 | 0.987 |
6 | 44.9 | 0.58 | 1.15 | 0.979 |
7 | 28.8 | 0.63 | 1.12 | 0.988 |
8 | 23 | 1.72 | 0.93 | 0.979 |
Adsorbent (dose g/L) | C0 of Phosphate Ions (mg/L) | Removal % | Adsorption Capacity (mg P/g) | pH | Reference |
---|---|---|---|---|---|
Silica sand (40) | 5–100 | 21–58 | 0.9 | 7–8 | [24] |
MCM-48-NH3+ (10) | 100–700 | 88 | 35 | 4–6 | [27] |
SmxMCM-41 (1,5) | 30 | 100 | 20 | 7 | [25] |
Ammonium-MCM-41 (1) | 0–100 | 94.7–97.6 | 14.97 | 3.5–7.4 | [26] |
Cell-g-E/PEI (1) | 0–250 | 99.6 | 232.8 | 4.5 | [4] |
Biochar-PEI25000 (1) | 5–100 | - | 9.2 | 6.5 | [28] |
RSi-bPEI (0,5) | 5–200 | 99 | 123.46 | 4 | [22] |
SiO2-PEI25000 (0,1) | 1.5–15 | 40 | 26.9 | 7 | Present work |
SiO2-PEI25000 (0,1) | 1.5–15 | 82 | 41.1 | 5 | Present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xanthopoulou, M.; Giliopoulos, D.; Tzollas, N.; Triantafyllidis, K.S.; Kostoglou, M.; Katsoyiannis, I.A. Phosphate Removal Using Polyethylenimine Functionalized Silica-Based Materials. Sustainability 2021, 13, 1502. https://doi.org/10.3390/su13031502
Xanthopoulou M, Giliopoulos D, Tzollas N, Triantafyllidis KS, Kostoglou M, Katsoyiannis IA. Phosphate Removal Using Polyethylenimine Functionalized Silica-Based Materials. Sustainability. 2021; 13(3):1502. https://doi.org/10.3390/su13031502
Chicago/Turabian StyleXanthopoulou, Maria, Dimitrios Giliopoulos, Nikolaos Tzollas, Konstantinos S. Triantafyllidis, Margaritis Kostoglou, and Ioannis A. Katsoyiannis. 2021. "Phosphate Removal Using Polyethylenimine Functionalized Silica-Based Materials" Sustainability 13, no. 3: 1502. https://doi.org/10.3390/su13031502
APA StyleXanthopoulou, M., Giliopoulos, D., Tzollas, N., Triantafyllidis, K. S., Kostoglou, M., & Katsoyiannis, I. A. (2021). Phosphate Removal Using Polyethylenimine Functionalized Silica-Based Materials. Sustainability, 13(3), 1502. https://doi.org/10.3390/su13031502