Visualizing Spatial Economic Supply Chains to Enhance Sustainability and Resilience
Abstract
:1. Introduction
2. Materials and Methods
- —Total output of commodity s
- —Total intermediate input of industry t
- —Transactions (in $) from commodity s to industry t
- —Transactions (in $) from commodity s produced in local area i to industry t in local area j
- —Transactions (in $) of commodity s to the final demand of sector u
- —Transactions (in $) of commodity s produced in local area i to the final demand of sector u in local area j
- —Production (in $) of commodity s in local area i
- —Consumption (in $) of industry t in local area j
- —Final demand (in $) of sector u in local area j
- —Network impedance (unit free) between local area i and j
- —Exponential coefficient of the impact of network impedance
- —Employment in local area i in industry s.
3. Results
3.1. Grain Farming
3.2. Motor Vehicle Manufacturing
3.3. Data Processing
3.4. Additional Illustrations from the Food System
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laborde, D.; Martin, W.; Swinnen, J.; Vos, R. COVID-19 risks to global food security. Science 2020, 369, 500–502. [Google Scholar] [CrossRef] [PubMed]
- Pu, M.; Zhong, Y. Rising concerns over agricultural production as COVID-19 spreads: Lessons from China. Glob. Food Secur. 2020, 26, 100409. [Google Scholar] [CrossRef] [PubMed]
- Eadicicco, L. Apple’s Supply Chain Still Struggling to Return to Normal Even as China Recovers from the Pandemic, Report Says. Business Insider. Available online: https://www.businessinsider.com/coronavirus-apple-supply-chain-iphone-12-production-2020-3 (accessed on 20 March 2020).
- Ivanov, D. Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Transp. Res. Part E Logist. Transp. Rev. 2020, 136, 101922. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, D.; Dolgui, A. Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. Int. J. Prod. Res. 2020, 58, 2904–2915. [Google Scholar] [CrossRef] [Green Version]
- Ker, A.P.; Cardwell, R. Introduction to the special issue on COVID-19 and the Canadian agriculture and food sectors: Thoughts from the pandemic onset. Can. J. Agric. Econ. 2020. [Google Scholar] [CrossRef]
- Luckstead, J.; Nayga, R.M., Jr.; Snell, H.A. Labor Issues in the Food Supply Chain amid the COVID-19 Pandemic. Appl. Econ. Perspect. Policy 2020. [Google Scholar] [CrossRef]
- Nikolopoulos, K.; Punia, S.; Schäfers, A.; Tsinopoulos, C.; Vasilakis, C. Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions. Eur. J. Oper. Res. 2020. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R.; Panchal, R.; Tiwari, M.K. Impact of COVID-19 on logistics systems and disruptions in food supply chain. Int. J. Prod. Res. 2020, 1–16. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Wang, X. COVID-19, supply chain disruption and China’s hog market: A dynamic analysis. China Agric. Econ. Rev. 2020, 12, 427–443. [Google Scholar] [CrossRef]
- Telukdarie, A.; Munsamy, M.; Mohlala, P. Analysis of the Impact of COVID-19 on the Food and Beverages Manufacturing Sector. Sustainability 2020, 12, 9331. [Google Scholar] [CrossRef]
- Giannakis, E.; Hadjioannou, L.; Jimenez, C.; Papageorgiou, M.; Karonias, A.; Petrou, A. Economic Consequences of Coronavirus Disease (COVID-19) on Fisheries in the Eastern Mediterranean (Cyprus). Sustainability 2020, 12, 9406. [Google Scholar] [CrossRef]
- Taqi, H.; Ahmed, H.; Paul, S.; Garshasbi, M.; Ali, S.; Kabir, G.; Paul, S. Strategies to Manage the Impacts of the COVID-19 Pandemic in the Supply Chain: Implications for Improving Economic and Social Sustainability. Sustainability 2020, 12, 9483. [Google Scholar] [CrossRef]
- Arto, I.; Andreoni, V.; Rueda Cantuche, J.M. Global impacts of the automotive supply chain disruption following the Japanese earthquake of 2011. Econ. Syst. Res. 2015, 27, 306–323. [Google Scholar] [CrossRef]
- Okuyama, Y.; Santos, J.R. Disaster impact and input–output analysis. Econ. Syst. Res. 2014, 26, 1–12. [Google Scholar] [CrossRef]
- Nakamoto, Y. Spatial structural decomposition analysis with a focus on product lifetime. Econ. Syst. Res. 2020, 32, 239–261. [Google Scholar] [CrossRef]
- Kagawa, S.; Suh, S.; Kondo, Y.; Nansai, K. Identifying environmentally important supply chain clusters in the automobile industry. Econ. Syst. Res. 2013, 25, 265–286. [Google Scholar] [CrossRef]
- Thomas, D.S.; Kandaswamy, A.M. An examination of national supply-chain flow time. Econ. Syst. Res. 2018, 30, 359–379. [Google Scholar] [CrossRef]
- Bogataj, D.; Hudoklin, D.; Bogataj, M.; Dimovski, V.; Colnar, S. Risk Mitigation in a Meat Supply Chain with Options of Redirection. Sustainability 2020, 12, 8690. [Google Scholar] [CrossRef]
- Lejour, A.; Rojas-Romagosa, H.; Veenendaal, P. Identifying hubs and spokes in global supply chains using redirected trade in value added. Econ. Syst. Res. 2017, 29, 66–81. [Google Scholar] [CrossRef] [Green Version]
- Nagashima, F.; Kagawa, S.; Suh, S.; Nansai, K.; Moran, D. Identifying critical supply chain paths and key sectors for mitigating primary carbonaceous PM 2.5 mortality in Asia. Econ. Syst. Res. 2017, 29, 105–123. [Google Scholar] [CrossRef]
- Brown, R.; Liñares-Zegarra, J.; Wilson, J.O. The (potential) impact of Brexit on UK SMEs: Regional evidence and public policy implications. Reg. Stud. 2019, 53, 761–770. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Li, X. On social network analysis in a supply chain context. J. Supply Chain Manag. 2009, 45, 5–22. [Google Scholar] [CrossRef]
- Bellemare, M.F.; Çakir, M.; Peterson, H.H.; Novak, L.; Rudi, J. On the measurement of food waste. Am. J. Agric. Econ. 2017, 99, 1148–1158. [Google Scholar] [CrossRef]
- Havelaar, A.H.; Mangen, M.J.J.; De Koeijer, A.A.; Bogaardt, M.J.; Evers, E.G.; Jacobs-Reitsma, W.F.; Van Pelt, W.; Wagenaar, J.A.; De Wit, G.A.; Van Der Zee, H.; et al. Effectiveness and efficiency of controlling Campylobacter on broiler chicken meat. Risk Anal. Int. J. 2007, 27, 831–844. [Google Scholar] [CrossRef]
- Beske, P.; Land, A.; Seuring, S. Sustainable supply chain management practices and dynamic capabilities in the food industry: A critical analysis of the literature. Int. J. Prod. Econ. 2014, 152, 131–143. [Google Scholar] [CrossRef]
- Vachon, S.; Mao, Z. Linking supply chain strength to sustainable development: A country-level analysis. J. Clean. Prod. 2008, 16, 1552–1560. [Google Scholar] [CrossRef]
- Lin, X.; Dang, Q.; Konar, M. A network analysis of food flows within the United States of America. Environ. Sci. Technol. 2014, 48, 5439–5447. [Google Scholar] [CrossRef]
- Lin, X.; Ruess, P.J.; Marston, L.; Konar, M. Food flows between counties in the United States. Environ. Res. Lett. 2019, 14, 084011. [Google Scholar] [CrossRef]
- Smith, T.M.; Goodkind, A.L.; Kim, T.; Pelton, R.E.; Suh, K.; Schmitt, J. Subnational mobility and consumption-based environmental accounting of US corn in animal protein and ethanol supply chains. Proc. Natl. Acad. Sci. USA 2017, 114, E7891–E7899. [Google Scholar] [CrossRef] [Green Version]
- Konar, M.; Lin, X.; Ruddell, B.; Sivapalan, M. Scaling properties of food flow networks. PLoS ONE 2018, 13, e0199498. [Google Scholar] [CrossRef]
- Pinior, B.; Konschake, M.; Platz, U.; Thiele, H.D.; Petersen, B.; Conraths, F.J.; Selhorst, T. The trade network in the dairy industry and its implication for the spread of contamination. J. Dairy Sci. 2012, 95, 6351–6361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, S.; Kassahun, A.; Bouzembrak, Y.; Marvin, H. Identification of potential vulnerable points and paths of contamination in the Dutch broiler meat trade network. PLoS ONE 2020, 15, e0233376. [Google Scholar] [CrossRef] [PubMed]
- Førsund, F.R. Multi-equation modelling of desirable and undesirable outputs satisfying the materials balance. Empir. Econ. 2018, 54, 67–99. [Google Scholar] [CrossRef]
- Xiao, H.; Meng, B.; Ye, J.; Li, S. Are global value chains truly global? Econ. Syst. Res. 2020, 32, 540–564. [Google Scholar] [CrossRef]
- Park, H.; Bellamy, M.A.; Basole, R.C. Visual analytics for supply network management: System design and evaluation. Decis. Support Syst. 2016, 91, 89–102. [Google Scholar] [CrossRef]
- Basole, R.C.; Bellamy, M.A.; Park, H. Visualization of innovation in global supply chain networks. Decis. Sci. 2017, 48, 288–306. [Google Scholar] [CrossRef]
- Goetz, S.J.; Han, Y. Latent innovation in local economies. Res. Policy 2020, 49, 103909. [Google Scholar] [CrossRef]
- Park, J.; Gordon, P.; Moore, J.E.; Richardson, H.W. A two-step approach to estimating state-to-state commodity trade flows. Ann. Reg. Sci. 2009, 43, 1033. [Google Scholar] [CrossRef]
- Canning, P.; Wang, Z. A flexible mathematical programming model to estimate interregional input–output accounts. J. Reg. Sci. 2005, 45, 539–563. [Google Scholar] [CrossRef]
- Duarte, R.; Pinilla, V.; Serrano, A. Factors driving embodied carbon in international trade: A multiregional input–output gravity model. Econ. Syst. Res. 2018, 30, 545–566. [Google Scholar] [CrossRef]
- Boero, R.; Edwards, B.K.; Rivera, M.K. Regional input–output tables and trade flows: An integrated and interregional non-survey approach. Reg. Stud. 2018, 52, 225–238. [Google Scholar] [CrossRef]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yook, S.H.; Jeong, H.; Barabási, A.L.; Tu, Y. Weighted evolving networks. Phys. Rev. Lett. 2001, 86, 5835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrat, A.; Barthélemy, M.; Vespignani, A. Weighted evolving networks: Coupling topology and weight dynamics. Phys. Rev. Lett. 2004, 92, 228701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Chen, G. A comprehensive weighted evolving network model. Phys. A Stat. Mech. Appl. 2004, 343, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Balcan, D.; Colizza, V.; Gonçalves, B.; Hu, H.; Ramasco, J.J.; Vespignani, A. Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. USA 2009, 106, 21484–21489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leontief, W.; Strout, A. Multiregional input-output analysis. In Structural Interdependence and Economic Development; Palgrave Macmillan: London, UK, 1963; pp. 119–150. [Google Scholar]
- Riddington, G.; Gibson, H.; Anderson, J. Comparison of gravity model, survey and location quotient-based local area tables and multipliers. Reg. Stud. 2006, 40, 1069–1081. [Google Scholar] [CrossRef]
- Fournier Gabela, J.G. On the accuracy of gravity-RAS approaches used for inter-regional trade estimation: Evidence using the 2005 inter-regional input–output table of Japan. Econ. Syst. Res. 2020, 32, 521–539. [Google Scholar] [CrossRef]
- Andersson, C.; Hellervik, A.; Lindgren, K. A spatial network explanation for a hierarchy of urban power laws. Phys. A Stat. Mech. Appl. 2005, 345, 227–244. [Google Scholar] [CrossRef]
- Daraganova, G.; Pattison, P.; Koskinen, J.; Mitchell, B.; Bill, A.; Watts, M.; Baum, S. Networks and geography: Modelling community network structures as the outcome of both spatial and network processes. Soc. Netw. 2012, 34, 6–17. [Google Scholar] [CrossRef]
- Beddow, J.M.; Pardey, P.G. Moving matters: The effect of location on crop production. J. Econ. Hist. 2015, 75, 219–249. [Google Scholar] [CrossRef]
- Janssen, M.A.; Bodin, Ö.; Anderies, J.M.; Elmqvist, T.; Ernstson, H.; McAllister, R.R.J.; Olsson, P.; Ryan, P. Toward a network perspective of the study of resilience in social-ecological systems. Ecol. Soc. 2006, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Goetz, S.J. Predicting US county economic resilience from industry input-output accounts. Appl. Econ. 2019, 51, 2019–2028. [Google Scholar] [CrossRef]
- Flores, H.; Villalobos, J.R. A modeling framework for the strategic design of local fresh-food systems. Agric. Syst. 2018, 161, 1–15. [Google Scholar] [CrossRef]
Production → Consumption ↓ | Rural | Suburban | Urban | Total |
---|---|---|---|---|
Rural | 11.6 | 7.4 | 15.8 | 34.8 |
Suburban | 5.8 | 9.6 | 20.3 | 35.6 |
Urban | 3.5 | 6.0 | 20.2 | 29.6 |
Total | 20.8 | 23.0 | 56.2 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Goetz, S.J.; Schmidt, C. Visualizing Spatial Economic Supply Chains to Enhance Sustainability and Resilience. Sustainability 2021, 13, 1512. https://doi.org/10.3390/su13031512
Han Y, Goetz SJ, Schmidt C. Visualizing Spatial Economic Supply Chains to Enhance Sustainability and Resilience. Sustainability. 2021; 13(3):1512. https://doi.org/10.3390/su13031512
Chicago/Turabian StyleHan, Yicheol, Stephan J. Goetz, and Claudia Schmidt. 2021. "Visualizing Spatial Economic Supply Chains to Enhance Sustainability and Resilience" Sustainability 13, no. 3: 1512. https://doi.org/10.3390/su13031512
APA StyleHan, Y., Goetz, S. J., & Schmidt, C. (2021). Visualizing Spatial Economic Supply Chains to Enhance Sustainability and Resilience. Sustainability, 13(3), 1512. https://doi.org/10.3390/su13031512