Distributed Manufacturing: A New Digital Framework for Sustainable Modular Construction
Abstract
:1. Introduction
2. Relevant Research
3. Methodological Approach
4. Intelligent Asset Use in Construction
Digital Watermark for Materials
5. Adaptation of the Three-Phase Model for Intelligent Asset Use in Construction in the Context of Distributed Manufacturing
6. Concrete as a Modular Sensing Structure
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ogunbiyi, O.; Goulding, J.S.; Oladapo, A.A. An empirical study of the impact of lean construction techniques on sustainable construction in the UK. Constr. Innov. 2014, 14, 88–107. [Google Scholar] [CrossRef]
- Innella, F.; Arashpour, M.; Bai, Y. Lean Methodologies and Techniques for Modular Construction: Chronological and Critical Review. J. Constr. Eng. Manag. 2019, 145, 04019076. [Google Scholar] [CrossRef]
- Musa, M.F.; Yusof, M.R.; Mohammad, M.F.; Mahbub, R.; Alam, S.; Com, F. Characteristics of Modular Construction: Meeting the Needs of Sustainability and Innovation. In Colloquium on Humanities, Science and Engineering; IEEE: Penang, Malaysia, 2013. [Google Scholar]
- Srai, J.S.; Harrington, T.S.; Tiwari, M.K. Characteristics of Redistributed Manufacturing Systems: A comparative study of emerging industry supply networks. Int. J. Prod. Res. 2016, 54, 6936–6955. [Google Scholar] [CrossRef]
- Sonego, M.; Echeveste, M.E.S.; Debarba, H.G. The role of modularity in sustainable design: A systematic review. J. Clean. Prod. 2018, 176, 196–209. [Google Scholar] [CrossRef]
- Ferdous, W.; Bai, Y.; Ngo, T.D.; Manalo, A.; Mendis, P. New advancements, challenges and opportunities of multi-storey modular buildings—A state-of-the-art review. Eng. Struct. 2019, 183, 883–893. [Google Scholar] [CrossRef]
- Goulding, J.; Pour Rahimian, F.; Arif, M.; Sharp, M. New offsite production and business models in construction: Priorities for the future research agenda. Arch. Eng. Des. Manag. 2015, 11, 163–184. [Google Scholar] [CrossRef]
- Molavi, J.; Barral, D.L. A Construction Procurement Method to Achieve Sustainability in Modular Construction. Procedia Eng. 2016, 145, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Hyun, H.; Kim, H.; Lee, H.-S.; Park, M.; Lee, J.-H. Integrated Design Process for Modular Construction Projects to Reduce Rework. Sustainability 2020, 12, 530. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zayed, T.; Niu, Y. Comparative analysis of modular construction practices in mainland China, Hong Kong and Singapore. J. Clean. Prod. 2020, 245, 118861. [Google Scholar] [CrossRef]
- Lehmann, S. Low carbon construction systems using prefabricated engineered solid wood panels for urban infill to significantly reduce greenhouse gas emissions. Sustain. Cities Soc. 2013, 6, 57–67. [Google Scholar] [CrossRef]
- Boafo, F.E.; Kim, J.-H.; Kim, J.-T. Performance of Modular Prefabricated Architecture: Case Study-Based Review and Future Pathways. Sustainability 2016, 8, 558. [Google Scholar] [CrossRef] [Green Version]
- Bonamente, E.; Merico, M.; Rinaldi, S.; Pignatta, G.; Pisello, A.; Cotana, F.; Nicolini, A. Environmental Impact of Industrial Prefabricated Buildings: Carbon and Energy Footprint Analysis Based on an LCA Approach. Energy Procedia 2014, 61, 2841–2844. [Google Scholar] [CrossRef] [Green Version]
- Mao, C.; Shen, Q.; Shen, L.; Tang, L. Comparative study of greenhouse gas emissions between off-site prefabrication and conventional construction methods: Two case studies of residential projects. Energy Build. 2013, 66, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Kamali, M.; Hewage, K. Life cycle performance of modular buildings: A critical review. Renew. Sustain. Energy Rev. 2016, 62, 1171–1183. [Google Scholar] [CrossRef]
- Lehmann, S. Optimizing Urban Material Flows and Waste Streams in Urban Development through Principles of Zero Waste and Sustainable Consumption. Sustainability 2011, 3, 155–183. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Zuo, J.; Zillante, G.; Wang, J.; Yuan, H. Status quo and future directions of construction and demolition waste research: A critical review. J. Clean. Prod. 2019, 240, 118163. [Google Scholar] [CrossRef]
- Leder, N.; Kumar, M.; Rodrigues, V.S. Influential factors for value creation within the Circular Economy: Framework for Waste Valorisation. Resour. Conserv. Recycl. 2020, 158, 104804. [Google Scholar] [CrossRef]
- Pan, W.; Gibb, A.G.; Dainty, A.R. Leading UK housebuilders’ utilization of offsite construction methods. Build. Res. Inf. 2008, 36, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Wuni, I.Y.; Shen, G.Q. Holistic Review and Conceptual Framework for the Drivers of Offsite Construction: A Total Interpretive Structural Modelling Approach. Buildings 2019, 9, 117. [Google Scholar] [CrossRef] [Green Version]
- Abbasnejad, B.; Moud, H.I. BIM and Basic Challenges Associated with its Definitions, Interpretations and Expectations. Int. J. Eng. Res. Appl. 2013, 3, 287–294. [Google Scholar]
- Alwan, Z.; Jones, P.D.; Holgate, P. Strategic sustainable development in the UK construction industry, through the framework for strategic sustainable development, using Building Information Modelling. J. Clean. Prod. 2017, 140, 349–358. [Google Scholar] [CrossRef]
- Robèrt, K.-H.; Schmidt-Bleek, B.; De Larderel, J.A.; Basile, G.; Jansen, J.; Kuehr, R.; Thomas, P.P.; Suzuki, M.; Hawken, P.; Wackernagel, M. Strategic sustainable development — selection, design and synergies of applied tools. J. Clean. Prod. 2002, 10, 197–214. [Google Scholar] [CrossRef]
- Gbadamosi, A.-Q.; Mahamadu, A.-M.; Oyedele, L.O.; Akinade, O.O.; Manu, P.; Mahdjoubi, L.; Aigbavboa, C. Offsite construction: Developing a BIM-Based optimizer for assembly. J. Clean. Prod. 2019, 215, 1180–1190. [Google Scholar] [CrossRef]
- Adams, K.T.; Osmani, M.; Thorpe, T.; Thornback, J. Circular economy in construction: Current awareness, challenges and enablers. Proc. Inst. Civ. Eng.-Waste Resour. Manag. 2017, 170, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Ginga, C.P.; Ongpeng, J.M.C.; Daly, M.K.M. Circular Economy on Construction and Demolition Waste: A Literature Review on Material Recovery and Production. Materials 2020, 13, 2970. [Google Scholar] [CrossRef]
- Eberhardt, L.C.M.; Birkved, M.; Birgisdottir, H. Building design and construction strategies for a circular economy. Arch. Eng. Des. Manag. 2020, 1–21. [Google Scholar] [CrossRef]
- MacArthur, E. Towards a Circular Economy: Business Rationale for an Accelerated Transition, The Ellen MacArthur Foundation. 2015. Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/publications/TCE_Ellen-MacArthur-Foundation_26-Nov-2015.pdf (accessed on 30 January 2021).
- Osobajo, O.A.; Oke, A.; Omotayo, T.; Obi, L.I. A systematic review of circular economy research in the construction industry. Smart Sustain. Built Environ. 2020. [Google Scholar] [CrossRef]
- Jones, P.; Comfort, D. The construction industry and the circular economy. Int. J. Manag. Cases 2018, 20, 4–15. [Google Scholar]
- Stephan, A.; Athanassiadis, A. Towards a more circular construction sector: Estimating and spatialising current and future non-structural material replacement flows to maintain urban building stocks. Resour. Conserv. Recycl. 2018, 129, 248–262. [Google Scholar] [CrossRef]
- Nasir, M.H.A.; Genovese, A.; Acquaye, A.A.; Koh, S.; Yamoah, F. Comparing linear and circular supply chains: A case study from the construction industry. Int. J. Prod. Econ. 2017, 183, 443–457. [Google Scholar] [CrossRef]
- Rios, F.C.; Grau, D.; Chong, W.K. Reusing exterior wall framing systems: A cradle-to-cradle comparative life cycle assessment. Waste Manag. 2019, 94, 120–135. [Google Scholar] [CrossRef] [PubMed]
- Tingley, D.D.; Cooper, S.; Cullen, J. Understanding and overcoming the barriers to structural steel reuse, a UK perspective. J. Clean. Prod. 2017, 148, 642–652. [Google Scholar] [CrossRef]
- Ruiz, L.A.L.; Ramón, X.R.; Domingo, S.G. The circular economy in the construction and demolition waste sector–A review and an integrative model approach. J. Clean. Prod. 2020, 248, 119238. [Google Scholar] [CrossRef]
- Ghisellini, P.; Ji, X.; Liu, G.; Ulgiati, S. Evaluating the transition towards cleaner production in the construction and demolition sector of China: A review. J. Clean. Prod. 2018, 195, 418–434. [Google Scholar] [CrossRef]
- Ghisellini, P.; Ripa, M.; Ulgiati, S. Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. J. Clean. Prod. 2018, 178, 618–643. [Google Scholar] [CrossRef]
- Tingley, D.D.; Davison, J. Developing an LCA methodology to account for the environmental benefits of design for deconstruction. Build. Environ. 2012, 57, 387–395. [Google Scholar] [CrossRef]
- Akinade, O.O.; Oyedele, L.O.; Ajayi, S.O.; Bilal, M.; Alaka, H.A.; Owolabi, H.A.; Bello, S.A.; Jaiyeoba, B.E.; Kadiri, K.O. Design for Deconstruction (DfD): Critical success factors for diverting end-of-life waste from landfills. Waste Manag. 2017, 60, 3–13. [Google Scholar] [CrossRef]
- Akanbi, L.A.; Oyedele, L.O.; Omoteso, K.; Bilal, M.; Akinade, O.O.; Ajayi, A.O.; Delgado, J.M.D.; Owolabi, H.A. Disassembly and deconstruction analytics system (D-DAS) for construction in a circular economy. J. Clean. Prod. 2019, 223, 386–396. [Google Scholar] [CrossRef]
- Nußholz, J.; Rasmussen, F.N.; Milios, L. Circular building materials: Carbon saving potential and the role of business model innovation and public policy. Resour. Conserv. Recycl. 2019, 141, 308–316. [Google Scholar] [CrossRef]
- Pan, X.; Xie, Q.; Feng, Y. Designing recycling networks for construction and demolition waste based on reserve logistics research field. J. Clean. Prod. 2020, 260, 120841. [Google Scholar] [CrossRef]
- Buyle, M.; Galle, W.; Debacker, W.; Audenaert, A. Sustainability assessment of circular building alternatives: Consequential LCA and LCC for internal wall assemblies as a case study in a Belgian context. J. Clean. Prod. 2019, 218, 141–156. [Google Scholar] [CrossRef]
- Prins, M.; Mohammadi, S.; Slob, N. Radical circular economy. In Proceedings of the CIB Joint International Symposium-Going North for Sustainability: Leveraging Knowledge and Innovation for Sustainable Construction and Development, London, UK, 23–25 November 2015; IBEA Publications Ltd.: London, UK, 2015. [Google Scholar]
- Schut, E.; Crielaard, M.; Mesman, M. Circular economy in the Dutch construction sector: A perspective for the market and government. Natl. Inst. Public Heal. Environ. 2015, pp. 1–58. Available online: https://www.rivm.nl/bibliotheek/rapporten/2016-0024.pdf (accessed on 29 January 2021).
- Ghaffar, S.H.; Burman, M.; Braimah, N. Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery. J. Clean. Prod. 2020, 244. [Google Scholar] [CrossRef]
- Benachio, G.L.F.; Freitas, M.D.C.D.; Tavares, S.F. Circular economy in the construction industry: A systematic literature review. J. Clean. Prod. 2020, 260, 121046. [Google Scholar] [CrossRef]
- Munaro, M.R.; Tavares, S.F.; Bragança, L. Towards circular and more sustainable buildings: A systematic literature review on the circular economy in the built environment. J. Clean. Prod. 2020, 260, 121134. [Google Scholar] [CrossRef]
- Turner, C.J.; Moreno, M.; Mondini, L.; Salonitis, K.; Charnley, F.; Tiwari, A.; Hutabarat, W. Sustainable Production in a Circular Economy: A Business Model for Re-Distributed Manufacturing. Sustainability 2019, 11, 4291. [Google Scholar] [CrossRef] [Green Version]
- Turner, C.; Oyekan, J.; Stergioulas, L.; Griffin, D. Utilizing Industry 4.0 on the Construction Site: Challenges and Opportunities. IEEE Trans. Ind. Inform. 2021, 17, 746–756. [Google Scholar] [CrossRef]
- Honic, M.; Kovacic, I.; Rechberger, H. Improving the recycling potential of buildings through Material Passports (MP): An Austrian case study. J. Clean. Prod. 2019, 217, 787–797. [Google Scholar] [CrossRef]
- Merrild, H.; Jensen, K.G.; Sommer, J. Building a Circular Future; GXN: Copenhagen, Denmark, 2016. [Google Scholar]
- Heisel, F.; Rau-Oberhuber, S. Calculation and evaluation of circularity indicators for the built environment using the case studies of UMAR and Madaster. J. Clean. Prod. 2020, 243, 118482. [Google Scholar] [CrossRef]
- Ellen Macarthur Foundation. Intelligent Assets | Ellen Macarthur Foundation 1. 2016. Available online: http://www.ellenmacarthurfoundation.org/publications/intelligent-assets (accessed on 29 January 2021).
- Ellen MacArthur Foundation. Artificial Intelligence and the Circular Economy—AI as a Tool to Accelerate the Transition. 2019. Available online: http://www.ellenmacarthurfoundation.org/publications (accessed on 29 January 2021).
- Taheri, S. A review on five key sensors for monitoring of concrete structures. Constr. Build. Mater. 2019, 204, 492–509. [Google Scholar] [CrossRef]
- Zhang, F.; Xiong, H.B.; Shi, W.X.; Ou, X. Structural health monitoring of Shanghai Tower during different stages using a Bayesian approach. Struct. Control. Heal. Monit. 2016, 23, 1366–1384. [Google Scholar] [CrossRef]
- Bao, X.; Chen, L. Recent Progress in Distributed Fiber Optic Sensors. Sensors 2012, 12, 8601–8639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobbs, D. Concrete deterioration: Causes, diagnosis, and minimising risk. Int. Mater. Rev. 2001, 46, 117–144. [Google Scholar] [CrossRef]
- Taheri, S.; Ams, M.; Bustamante, H.; Vorreiter, L.; Bevitt, J.J.; Withford, M.; Clark, S.M. Characterizing concrete corrosion below sewer tidal levels at chemically dosed locations. Water Res. 2020, 185, 116245. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Du, Y.; Liao, W.; Ma, H.; Huang, J. Measuring the heterogeneity of cement paste by truly distributed optical fiber sensors. Constr. Build. Mater. 2019, 225, 765–771. [Google Scholar] [CrossRef]
- Güemes, A.; Fernandez, A.; Díaz-Maroto, P.F.; Lozano, A.; Sierra-Pérez, J. Structural Health Monitoring in Composite Structures by Fiber-Optic Sensors. Sensors 2018, 18, 1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Pyl, L. Informetric analysis and review of literature on the role of BIM in sustainable construction. Autom. Constr. 2019, 103, 221–234. [Google Scholar] [CrossRef]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X. A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
- Rezaei, F.; Bulle, C.; Lesage, P. Integrating building information modeling and life cycle assessment in the early and detailed building design stages. Build. Environ. 2019, 153, 158–167. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Pyl, L. Integration of LCA and LCC analysis within a BIM-based environment. Autom. Constr. 2019, 103, 127–149. [Google Scholar] [CrossRef]
- Seyis, S. Mixed method review for integrating building information modeling and life-cycle assessments. Build. Environ. 2020, 173, 106703. [Google Scholar] [CrossRef]
- Nwodo, M.N.; Anumba, C.J. A review of life cycle assessment of buildings using a systematic approach. Build. Environ. 2019, 162, 106290. [Google Scholar] [CrossRef]
- Muller, M.F.; Esmanioto, F.; Huber, N.; Loures, E.R.; Canciglieri, O. A systematic literature review of interoperability in the green Building Information Modeling lifecycle. J. Clean. Prod. 2019, 223, 397–412. [Google Scholar] [CrossRef]
- Zoghi, M.; Kim, S. Dynamic Modeling for Life Cycle Cost Analysis of BIM-Based Construction Waste Management. Sustainability 2020, 12, 2483. [Google Scholar] [CrossRef] [Green Version]
- Oyekan, J.; Huosheng, H. Toward bacterial swarm for environmental monitoring. In Proceedings of the 2009 IEEE International Conference on Automation and Logistics, Shenyang, China, 5–7 August 2009; pp. 399–404. [Google Scholar]
- Oyekan, J.; Hu, H. Ant robotic swarm for visualizing invisible hazardous substances. Robotics 2013, 2, 1–18. [Google Scholar] [CrossRef] [Green Version]
Intelligent Asset | Manufacture | On-Site Assembly | In Use |
---|---|---|---|
Scenario/Application | An intelligent modular wall section being manufactured is able to share data with the manufacturing process to ensure in time delivery of sub-components and assist with their insertion. | A modular wall section being incorporated into a building is able to assist a builder by providing information regarding its fine positioning and attachment in relation to other already assembled building sections. |
|
Potential Sensors to apply at each phase. | Typical embedded sensors could include orientation, vibration, and temperature sensors. | Typical embedded sensors could include orientation, RFID, and IR sensors to ensure correct positioning and alignment between panels. | Typical embedded sensors could include temperature, humidity, lighting, and chemical sensors to measure pollutants and carbon monoxide levels. |
Communication types and properties required at each phase. | Short-range communication protocols such as Bluetooth or ZigBee will ensure that communication stays local but also allow a mesh type network to be constructed for easy transferring and sharing of data. | Depending on the size of the construction site medium to large range communication protocols such as Zigbee, WiFi, or LoRaWAN could be useful in ensuring site wide communications between assets and workers. |
|
Potential data use in digital twins at each phase |
|
|
|
Communication Type | Standard | Frequency | Range | Data Rates |
---|---|---|---|---|
Bluetooth | Bluetooth 4.2 | 2.4 GHz | 50–150 nm | 1 Mbps |
ZigBee 3.0 | Based on IEEE802.15.4 | 2.4 GHz | 10–150 m | 250 Kbps |
WiFi | Based on IEEE802.11 | 2.4 Ghz and 5 GHz bands | Approximately 50 m | 150–200 Mbps, 600 Mbps maximum |
LoRaWAN | LoRaWAN | Various | 2–5 km (urban area), 15 km (suburban area) | 0.3–50 kbps |
Cellular | GSM/GPRS/EDGE (2G), UMTS/HSPA (3G), LTE (4G) | 900/1800/1900/2100 MHz | 85 km(GSM); 200 km (HSPA) | 35–170 kps (GPRS), 120–384 kbps (EDGE), 384 Kbps–2 Mbps (UMTS), 600 kbps–10 Mbps (HSPA) 3–10 Mbps (LTE) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turner, C.; Oyekan, J.; Stergioulas, L.K. Distributed Manufacturing: A New Digital Framework for Sustainable Modular Construction. Sustainability 2021, 13, 1515. https://doi.org/10.3390/su13031515
Turner C, Oyekan J, Stergioulas LK. Distributed Manufacturing: A New Digital Framework for Sustainable Modular Construction. Sustainability. 2021; 13(3):1515. https://doi.org/10.3390/su13031515
Chicago/Turabian StyleTurner, Chris, John Oyekan, and Lampros K. Stergioulas. 2021. "Distributed Manufacturing: A New Digital Framework for Sustainable Modular Construction" Sustainability 13, no. 3: 1515. https://doi.org/10.3390/su13031515
APA StyleTurner, C., Oyekan, J., & Stergioulas, L. K. (2021). Distributed Manufacturing: A New Digital Framework for Sustainable Modular Construction. Sustainability, 13(3), 1515. https://doi.org/10.3390/su13031515