Estimation of Spatial and Seasonal Variability of Soil Erosion in a Cold Arid River Basin in Hindu Kush Mountainous Region Using Remote Sensing
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Methodology
3.1. Rainfall Erosivity Factor
3.2. Soil Erodibility Factor
3.3. Slope Length and Steepness Factor
3.4. Land Cover Management Factor
3.5. Support Practice Factor
3.6. Validation of Soil Erosion Model
4. Result and Discussion
4.1. Spatial Pattern of the RUSLE Factors
4.2. Spatial Pattern of Soil Erosion
4.3. Validation of the RUSLE Model
4.4. Assessing the Soil Erosion over the Different Land Use and Land Cover
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balasubramani, K.; Veena, M.; Kumaraswamy, K.; Saravanabavan, V. Estimation of soil erosion in a semi-arid watershed of Tamil Nadu (India) using revised universal soil loss equation (rusle) model through GIS. Model. Earth Syst. Environ. 2015. [Google Scholar] [CrossRef]
- Bashagaluke, J.B.; Logah, V.; Opoku, A.; Sarkodie-Addo, J.; Quansah, C. Soil nutrient loss through erosion: Impact of different cropping systems and soil amendments in Ghana. PLoS ONE 2018. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Castillo, V.; Bovi, R.C.; Chartier, M.P.; Tomazello Filho, M.; Cooper, M. Using dendrogeomorphology to estimate soil erosion in mixed native species and pine forests on Ultisols in Piracicaba, Brazil. Geoderma Reg. 2020. [Google Scholar] [CrossRef]
- Issaka, S.; Ashraf, M.A. Impact of soil erosion and degradation on water quality: A review. Geol. Ecol. Landscapes 2017. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Burgess, M. Soil erosion threatens food production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef] [Green Version]
- Sthiannopkao, S.; Takizawa, S.; Wirojanagud, W. Effects of soil erosion on water quality and water uses in the upper Phong watershed. Water Sci. Technol. 2006, 53, 45–52. [Google Scholar] [CrossRef]
- Nyawade, S.O.; Gachene, C.K.K.; Karanja, N.N.; Gitari, H.I.; Schulte-Geldermann, E.; Parker, M.L. Controlling soil erosion in smallholder potato farming systems using legume intercrops. Geoderma Reg. 2019, 17, e00225. [Google Scholar] [CrossRef]
- Sharafati, A.; Pezeshki, E.; Shahid, S.; Motta, D. Quantification and uncertainty of the impact of climate change on river discharge and sediment yield in the Dehbar river basin in Iran. J. Soils Sediments 2020, 20, 2977–2996. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization (FAO) of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Canora, F.; D’Angella, A.; Aiello, A. Quantitative assessment of the sensitivity to desertification in the Bradano River basin (Basilicata, southern Italy). J. Maps 2015. [Google Scholar] [CrossRef]
- Rodrigo Comino, J.; Iserloh, T.; Lassu, T.; Cerdà, A.; Keesstra, S.D.; Prosdocimi, M.; Brings, C.; Marzen, M.; Ramos, M.C.; Senciales, J.M.; et al. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. Sci. Total Environ. 2016. [Google Scholar] [CrossRef]
- Lal, R. Climate Change and Soil Degradation Mitigation by Sustainable Management of Soils and Other Natural Resources. Agric. Res. 2012, 1, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Serpa, D.; Nunes, J.P.; Santos, J.; Sampaio, E.; Jacinto, R.; Veiga, S.; Lima, J.C.; Moreira, M.; Corte-Real, J.; Keizer, J.J.; et al. Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Sci. Total Environ. 2015. [Google Scholar] [CrossRef] [Green Version]
- Tashayo, B.; Honarbakhsh, A.; Akbari, M.; Ostovari, Y. Digital mapping of Philip model parameters for prediction of water infiltration at the watershed scale in a semi-arid region of Iran. Geoderma Reg. 2020. [Google Scholar] [CrossRef]
- Pour, S.H.; Wahab, A.K.A.; Shahid, S. Spatiotemporal changes in aridity and the shift of drylands in Iran. Atmos. Res. 2020. [Google Scholar] [CrossRef]
- Thomas, J.; Joseph, S.; Thrivikramji, K.P. Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geosci. Front. 2018. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Wang, X.; Nawaz, N.; Khan, N. Spatiotemporal changes in aridity of Pakistan during 1901–2016. Hydrol. Earth Syst. Sci. 2019, 23, 3081–3096. [Google Scholar] [CrossRef] [Green Version]
- Abdul malik Dawlatzi, M.M. Estimation of Soil Erosion Based on USLE and GIS in Gardez Basin of Paktya Province, Afghanistan. Int. J. Environ. Rural Dev. 2017. [Google Scholar] [CrossRef]
- Crosson, P. Soil erosion estimates and costs. Science 1995, 80. [Google Scholar] [CrossRef]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 80. [Google Scholar] [CrossRef] [Green Version]
- Wantzen, K.M.; Mol, J.H. Soil erosion from agriculture and mining: A threat to tropical stream ecosystems. Agriculture 2013, 3, 660–683. [Google Scholar] [CrossRef] [Green Version]
- Saba, D.S. Afghanistan: Environmental degradation in a fragile ecological setting. Int. J. Sustain. Dev. World Ecol. 2001. [Google Scholar] [CrossRef]
- Shrestha, R. Land Degradation in Afghanistan A Chapter Prepared for the State of Environment of Afghanistan Asian Institute of Technology; Asian Institute of Technology: Bangkok, Thailand, 2007. [Google Scholar]
- Ehsan, M. Estimation of Soil Erosion Potential in Herat Province, Afghanistan. Ph.D. Thesis, Shimane University, Shimane, Japan, 2015. [Google Scholar]
- Sahaar, A.S. Erosion Mapping and Sediment Yield of the Kabul River Basin, Afghanistan. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2013. [Google Scholar]
- Ahmad, M.; Wasiq, M. Water Resource Development in Northern Afghanistan and Its Implications for Amu Darya Basin; World Bank: Washington, DC, USA, 2004. [Google Scholar]
- Qureshi, A.S. Water resources management in Afghanistan. Int. Water Manag. Inst. 2002, 49, 1–24. [Google Scholar]
- Qutbudin, I.; Shiru, M.S.; Sharafati, A.; Ahmed, K.; Al-Ansari, N.; Yaseen, Z.M.; Shahid, S.; Wang, X. Seasonal Drought Pattern Changes Due to Climate Variability: Case Study in Afghanistan. Water 2019, 11, 1096. [Google Scholar] [CrossRef] [Green Version]
- Aich, V.; Akhundzadah, N.A.; Knuerr, A.; Khoshbeen, A.J.; Hattermann, F.; Paeth, H.; Scanlon, A.; Paton, E.N. Climate change in Afghanistan deduced from reanalysis and coordinated regional climate downscaling experiment (CORDEX)-South Asia simulations. Climate 2017, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Sediqi, M.N.; Shiru, M.S.; Nashwan, M.S.; Ali, R.; Abubaker, S.; Wang, X.; Ahmed, K.; Shahid, S.; Asaduzzaman, M.; Manawi, S.M.A. Spatio-temporal pattern in the changes in availability and sustainability ofwater resources in Afghanistan. Sustainability 2019, 11, 5836. [Google Scholar] [CrossRef] [Green Version]
- Savage, M.; Dougherty, B.; Hamza, M.; Butterfield, R.; Bharwani, S. Socio-Economic Impacts of Climate Change in Afghanistan: A Report to the Department for International Development; Stockholm Environment Institute: Oxford, UK, 2009. [Google Scholar]
- Lucà, F.; Buttafuoco, G.; Terranova, O. GIS and Soil. In Comprehensive Geographic Information Systems; Elsevier: Oxford, UK, 2018; ISBN 9780128046609. [Google Scholar]
- Ostovari, Y.; Ghorbani-Dashtaki, S.; Bahrami, H.-A.; Naderi, M.; Dematte, J.A.M. Soil loss estimation using RUSLE model, GIS and remote sensing techniques: A case study from the Dembecha Watershed, Northwestern Ethiopia. Geoderma Reg. 2017. [Google Scholar] [CrossRef]
- Obaid, H.A.; Shahid, S. Soil erosion susceptibility of Johor River basin. Water Environ. J. 2017. [Google Scholar] [CrossRef]
- Piacentini, T.; Galli, A.; Marsala, V.; Miccadei, E. Analysis of soil erosion induced by heavy rainfall: A case study from the NE Abruzzo Hills Area in Central Italy. Water (Switzerland) 2018, 10, 1314. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.; Joseph, S.; Thrivikramji, K.P. Estixmation of soil erosion in a rain shadow river basin in the southern Western Ghats, India using RUSLE and transport limited sediment delivery function. Int. Soil Water Conserv. Res. 2018. [Google Scholar] [CrossRef]
- Wei, W.; Chen, L.; Fu, B.; Chen, J. Water erosion response to rainfall and land use in different drought-level years in a loess hilly area of China. Catena 2010. [Google Scholar] [CrossRef]
- Zerihun, M.; Mohammedyasin, M.S.; Sewnet, D.; Adem, A.A.; Lakew, M. Assessment of soil erosion using RUSLE, GIS and remote sensing in NW Ethiopia. Geoderma Reg. 2018. [Google Scholar] [CrossRef]
- Vågen, T.G.; Winowiecki, L.A. Predicting the spatial distribution and severity of soil erosion in the global tropics using satellite remote sensing. Remote Sens. 2019, 11, 1800. [Google Scholar] [CrossRef] [Green Version]
- Ghozat, A.; Sharafati, A.; Hosseini, S.A. Long-term spatiotemporal evaluation of CHIRPS satellite precipitation product over different climatic regions of Iran. Theor. Appl. Climatol. 2021. [Google Scholar] [CrossRef]
- Mondal, A.; Khare, D.; Kundu, S. A comparative study of soil erosion modelling by MMF, USLE and RUSLE. Geocarto Int. 2018, 33, 89–103. [Google Scholar] [CrossRef]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018. [Google Scholar] [CrossRef] [Green Version]
- Koirala, P.; Thakuri, S.; Joshi, S.; Chauhan, R. Estimation of soil erosion in Nepal using a RUSLE modeling and geospatial tool. Geosciences 2019, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Bahrawi, J.A.; Elhag, M.; Aldhebiani, A.Y.; Galal, H.K.; Hegazy, A.K.; Alghailani, E. Soil Erosion Estimation Using Remote Sensing Techniques in Wadi Yalamlam Basin, Saudi Arabia. Adv. Mater. Sci. Eng. 2016. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Baulch, H.M.; Macrae, M.L.; Wilson, H.F.; Elliott, J.A.; Bergström, L.; Glenn, A.J.; Vadas, P.A. Agricultural Water Quality in Cold Climates: Processes, Drivers, Management Options, and Research Needs. J. Environ. Qual. 2019. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Ouyang, W.; Hao, Z.; Yang, B.; Wang, L. Snowmelt water drives higher soil erosion than rainfall water in a mid-high latitude upland watershed. J. Hydrol. 2018. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; MacQuarrie, K.T.B.; McKenzie, J.M. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools. Earth-Sci. Rev. 2014, 138, 313–334. [Google Scholar] [CrossRef]
- Starkloff, T. Winter Hydrology and Soil Erosion Processes in an Agricultural Catchment in Norway. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2017. [Google Scholar]
- Gafurov, A. Water Balance Modeling Using Remote Sensing Information: Focus on Central Asia. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2010. [Google Scholar]
- Renard, K.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agriculture Handbook No. 703; Department of Agriculture: Washington, DC, USA, 1997. [Google Scholar]
- Wischmeier, W.; Smith, D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Agriculture Handbook 537; Department of Agriculture, Science and Education Administration: Beltsville, MD, USA, 1978. [Google Scholar]
- Yan, R.; Zhang, X.; Yan, S.; Chen, H. Estimating soil erosion response to land use/cover change in a catchment of the Loess Plateau, China. Int. Soil Water Conserv. Res. 2018. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Principles of Soil Conservation and Management; Springer: Heidelberg, Germany, 2010; ISBN 9789048185290. [Google Scholar]
- Williams, J.R.; Renard, K.G.; Dyke, P.T. EPIC: A new method for assessing erosion’s effect on soil productivity. J. Soil Water Conserv. 1983, 38, 381–383. [Google Scholar]
- Ashiagbor, G.; Forkuo, E.K.; Laari, P.; Aabeyir, R. Modeling soil erosion using rusle and gis tools. Int. J. Remote Sens. Geosci. 2012, 2, 1–17. [Google Scholar]
- Ferreira, V.; Panagopoulos, T. Seasonality of soil erosion under Mediterranean conditions at the Alqueva dam watershed. Environ. Manag. 2014, 54, 67–83. [Google Scholar] [CrossRef]
- Van der Knijff, J.M.; Jones, R.R.J.; Montanarella, L. Soil Erosion Risk Assessment in Italy; European Commission: Brussels, Belgium, 1999. [Google Scholar]
- Van der Knijff, J.M.; Jones, R.J.A.; Montanarella, L. Soil Erosion Risk Assessment in Europe; European Soil Bureau; European Commission: Brussels, Belgium, 2000. [Google Scholar]
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Ahmed, K.; Shahid, S.; bin Harun, S.; Ismail, T.; Nawaz, N.; Shamsudin, S. Assessment of groundwater potential zones in an arid region based on catastrophe theory. Earth Sci. Inform. 2015. [Google Scholar] [CrossRef]
Soil Loss (t∙ha−1∙y−1) | Risk Categories | Area (ha) | Area (%) |
---|---|---|---|
0–10 | Slight | 1,555,970.20 | 71.34 |
10–50 | Moderate | 555,345.51 | 25.46 |
50–150 | High | 53,096.23 | 2.43 |
150–500 | Severe | 16,521.36 | 0.76 |
>500 | Very Severe | 227.88 | 0.01 |
Total | 2,181,161.17 | 100.00 |
Date | G .H (m) | Mean Discharge m3/s | Suspended Sediment | |
---|---|---|---|---|
Conc ppm | Discharge (t/d) | |||
4 May 2014 | 2.72 | 149.1 | 7572.22 | 97,547.21 |
17 August 2014 | 3.06 | 223.7 | 79.99 | 1546.10 |
24 December 2014 | 2.08 | 48.06 | 156.98 | 651.82 |
27 January 2015 | 2.05 | 52.36 | 103.30 | 467.32 |
28 February 2015 | 2.16 | 76.42 | 347.00 | 2291.13 |
13 April 2015 | 2.36 | 124.2 | 1818.00 | 19,508.74 |
4 May 2015 | 2.42 | 150.4 | 3338.00 | 43,375.84 |
16 June 2015 | 3.48 | 451.85 | 2016.00 | 78,704.32 |
5 July 2015 | 4.1 | 796 | 5008.00 | 344,422.20 |
13 August 2015 | 2.63 | 412.3 | 2680.00 | 95,468.89 |
13 September 2015 | 2.63 | 186.2 | 186.90 | 3006.79 |
2 November 2015 | 2.23 | 128.3 | 86.27 | 956.31 |
26 January 2016 | 2.15 | 91.29 | 115.40 | 910.21 |
16 March 2016 | 2.02 | 79.68 | 270.90 | 1864.97 |
12 April 2016 | 2.44 | 180.9 | 1158.00 | 18,099.26 |
18 May 2016 | 2.95 | 259.2 | 4385.00 | 98,201.55 |
15 June 2016 | 3.8 | 517.8 | 6520.00 | 291,691.24 |
27 July 2016 | 3.3 | 326.9 | 2058.00 | 58,126.48 |
5 September 2016 | 2.72 | 164.4 | 124.00 | 1761.32 |
9 October 2016 | 2.42 | 127 | 659.00 | 7231.08 |
6 December 2016 | 2.14 | 95.7 | 302.00 | 2497.08 |
28 February 2017 | 2.68 | 77.23 | 679.54 | 4534.33 |
1 June 2017 | 2.68 | 166.25 | 8020.10 | 115,200.77 |
30 July 2017 | 3.58 | 329.78 | 2734.08 | 77,902.12 |
12 September 2017 | 2.99 | 185.31 | 1065.87 | 17,065.46 |
22 October 2017 | 2.6 | 108 | 359.45 | 3354.05 |
Daily mean | 43,611.3 | |||
Annual mean | 17,847,711.6 |
LULC | Area (ha) | Area (%) | Percentage of Erosion (%) |
---|---|---|---|
Barren land | 212,751.5 | 9.75 | 9.8 |
Barren land/Rangeland | 103,046.9 | 4.72 | 4.7 |
Built-up | 7005.24 | 0.32 | 0.3 |
Forest and shrubs | 17,885.57 | 0.82 | 0.8 |
Forest and shrubs/Rangeland | 623.43 | 0.03 | 0.0 |
Fruit Trees | 3451.92 | 0.16 | 0.2 |
Fruit Trees/Irrigated agriculture land | 1053.97 | 0.05 | 0.0 |
Irrigated agriculture land | 60,604.52 | 2.78 | 2.8 |
Irrigated agriculture land/ Fruit Trees | 3887.35 | 0.18 | 0.2 |
Rainfed agriculture land | 329,655.3 | 15.11 | 15.1 |
Rainfed agriculture land/Forest and shrubs | 949.65 | 0.04 | 0.0 |
Rainfed agriculture land/Rangeland | 16,992.78 | 0.78 | 0.8 |
Rangeland | 1,139,352 | 52.24 | 52.2 |
Rangeland/Barren land | 164,595 | 7.55 | 7.5 |
Rangeland/Rainfed agriculture land | 210,07.04 | 0.96 | 1.0 |
Snow-covered | 74,825.5 | 3.43 | 3.4 |
Water Bodies | 23,473.47 | 1.08 | 1.1 |
LULC | Area (ha) | Soil Erosion (t ha−1 y−1) | ||||
---|---|---|---|---|---|---|
Slight 0–10 | Moderate 10–50 | High 50–100 | Severe 100–500 | Very Severe >500 | ||
Barren land | 212,751.54 | 151,770.10 | 54,168.68 | 5179.03 | 1611.50 | 22.23 |
Barren land/Rangeland | 103,046.92 | 73,510.35 | 26,236.78 | 2508.48 | 780.54 | 10.77 |
Built-up | 7005.24 | 4997.31 | 1783.61 | 170.53 | 53.06 | 0.73 |
Forest and shrubs | 17,885.57 | 12,758.99 | 4553.85 | 435.39 | 135.48 | 1.87 |
Forest and shrubs/Rangeland | 623.43 | 444.73 | 158.73 | 15.18 | 4.72 | 0.07 |
Fruit Trees | 3451.92 | 2462.49 | 878.89 | 84.03 | 26.15 | 0.36 |
Fruit Trees/Irrigated agriculture land | 1053.97 | 751.87 | 268.35 | 25.66 | 7.98 | 0.11 |
Irrigated agriculture land | 60,604.52 | 43,233.31 | 15,430.52 | 1475.30 | 459.05 | 6.33 |
Irrigated agriculture land/Fruit Trees | 3887.35 | 2773.11 | 989.76 | 94.63 | 29.45 | 0.41 |
Rainfed agriculture land | 329,655.34 | 235,165.51 | 83,933.56 | 8024.83 | 2497.00 | 34.44 |
Rainfed agriculture land/Forest and shrubs | 949.65 | 677.45 | 241.79 | 23.12 | 7.19 | 0.10 |
Rainfed agriculture land/Rangeland | 16,992.78 | 12,122.10 | 4326.53 | 413.66 | 128.71 | 1.78 |
Rangeland | 1,139,351.95 | 812,777.02 | 290,090.4 | 27,735.4 | 8630.10 | 119.04 |
Rangeland/Barren land | 164,594.97 | 117,416.76 | 41,907.53 | 4006.75 | 1246.74 | 17.20 |
Rangeland/Rainfed agriculture land | 21,007.04 | 14,985.75 | 5348.60 | 511.38 | 159.12 | 2.19 |
Snow | 74,825.50 | 53,378.10 | 19,051.32 | 1821.48 | 566.77 | 7.82 |
Water Bodies | 23,473.47 | 16,745.22 | 5976.58 | 571.42 | 177.80 | 2.45 |
Total Area (ha) | 2,181,161.17 | 1,555,970 | 555,346 | 53,096 | 16,521 | 228 |
Percentage | 71.34 | 25.46 | 2.43 | 0.76 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safari, Z.; Rahimi, S.T.; Ahmed, K.; Sharafati, A.; Ziarh, G.F.; Shahid, S.; Ismail, T.; Al-Ansari, N.; Chung, E.-S.; Wang, X. Estimation of Spatial and Seasonal Variability of Soil Erosion in a Cold Arid River Basin in Hindu Kush Mountainous Region Using Remote Sensing. Sustainability 2021, 13, 1549. https://doi.org/10.3390/su13031549
Safari Z, Rahimi ST, Ahmed K, Sharafati A, Ziarh GF, Shahid S, Ismail T, Al-Ansari N, Chung E-S, Wang X. Estimation of Spatial and Seasonal Variability of Soil Erosion in a Cold Arid River Basin in Hindu Kush Mountainous Region Using Remote Sensing. Sustainability. 2021; 13(3):1549. https://doi.org/10.3390/su13031549
Chicago/Turabian StyleSafari, Ziauddin, Sayed Tamim Rahimi, Kamal Ahmed, Ahmad Sharafati, Ghaith Falah Ziarh, Shamsuddin Shahid, Tarmizi Ismail, Nadhir Al-Ansari, Eun-Sung Chung, and Xiaojun Wang. 2021. "Estimation of Spatial and Seasonal Variability of Soil Erosion in a Cold Arid River Basin in Hindu Kush Mountainous Region Using Remote Sensing" Sustainability 13, no. 3: 1549. https://doi.org/10.3390/su13031549
APA StyleSafari, Z., Rahimi, S. T., Ahmed, K., Sharafati, A., Ziarh, G. F., Shahid, S., Ismail, T., Al-Ansari, N., Chung, E. -S., & Wang, X. (2021). Estimation of Spatial and Seasonal Variability of Soil Erosion in a Cold Arid River Basin in Hindu Kush Mountainous Region Using Remote Sensing. Sustainability, 13(3), 1549. https://doi.org/10.3390/su13031549