Fail to Yield? An Analysis of Ambulance Crashes in Taiwan
Abstract
:1. Introduction
2. Methods and Data
2.1. OL Regression Model, MNL Regression Model, and PPO Model
2.2. Comparison of the Three Presented Models
2.3. Data
2.3.1. Data Source
2.3.2. Statistical Analysis
3. Results
3.1. OL Regression Model
3.2. MNL Regression Model
3.3. PPO Model
3.4. Model Comparison
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | χ2 | p |
---|---|---|
All | 7.36 | 0.392 |
Male ambulance driver | 2.12 | 0.145 |
Injured ambulance driver | 0.00 | 0.944 |
Sunny weather | 0.31 | 0.581 |
Dark but lighted | 0.44 | 0.508 |
Urban road | 0.19 | 0.662 |
Intersection | 0.42 | 0.519 |
Car | 4.02 | 0.045 |
References
- Amorim, M.; Ferreira, S.; Couto, A. Road safety and the urban emergency medical service (uEMS): Strategy station location. J. Transp. Health 2017, 6, 60–72. [Google Scholar] [CrossRef]
- Amorim, M.; Ferreira, S.; Couto, A. How do traffic and demand daily changes define urban emergency medical service (uEMS) strategic decisions? A multi-period survival approach. J. Trans. Health 2019, 12, 60–74. [Google Scholar] [CrossRef]
- Kahn, C.A.; Pirrallo, R.G.; Kuhn, E.M. Characteristics of fatal ambulance crashes in the United States: An 11-year retrospective analysis. Prehospital Emerg. Care 2001, 5, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Savolainen, P.T.; Dey, K.C.; Ghosh, I.; Karra, T.L.N.; Lamb, A. Investigation of Emergency Vehicle Crashes in the State of Michigan; Nextrans: Lafayette, IN, USA, 2009. [Google Scholar]
- Sethasathien, A.; Sirisamutr, T.; Wachiradilok, P.; Dairoop, S.; Nimma, S. 529 Ambulance crash in Thailand. Inj. Prev. 2016, 22, A191. [Google Scholar] [CrossRef] [Green Version]
- Slattery, D.E.; Silver, A. The Hazards of Providing Care in Emergency Vehicles: An Opportunity for Reform. Prehospital Emerg. Care 2019, 13, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Studnek, J.R.; Fernandez, A.R. Characteristics of emergency medical technicians involved in ambulance crashes. Prehospital Disaster Med. 2008, 23, 432–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanddal, N.D.; Albert, S.; Hansen, J.D.; Kupas, D.F.; Albert, S.M. Contributing factors and issues associated with rural ambulance crashes: Literature review and annotated bibliography. Prehospital Emerg. Care 2008, 12, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Custalow, C.B.; Gravitz, C.S. Emergency medical vehicle collisions and potential for preventive intervention. Prehospital Emerg. Care 2004, 8, 175–184. [Google Scholar] [CrossRef]
- Drucker, C.; Gerberich, S.G.; Manser, M.P.; Alexander, B.H.; Church, T.R.; Ryan, A.D.; Becic, E. Factors associated with civilian drivers involved in crashes with emergency vehicles. Accid. Anal. Prev. 2013, 55, 116–123. [Google Scholar] [CrossRef]
- Savolainen, P.T.; Mannering, F.L.; Lord, D.; Quddus, M.A. The statistical analysis of crash–injury severities: A review and assessment of methodological alternatives. Accid. Anal. Prev. 2011, 43, 1666–1676. [Google Scholar] [CrossRef]
- Mannering, F.L.; Bhat, C.R. Analytic methods in accident research: Methodological frontier and future directions. Anal. Methods Accid. Res. 2014, 1, 1–22. [Google Scholar] [CrossRef]
- Mooradian, J.; Ivan, J.N.; Ravishanker, N.; Hu, S. Analysis of driver and passenger crash injury severity using partial proportional odds models. Accid. Anal. Prev. 2013, 58, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, L.; Menéndez, M. Partial proportional odds model—An alternate choice for analyzing pedestrian crash injury severities. Accid. Anal. Prev. 2014, 72, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Bhat, C.; Born, K.; Sidharthan, R.; Bhat, P. A count data model with endogenous covariates: Formulation and application to roadway crash frequency at intersections. Anal. Methods Accid. Res. 2014, 1, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Abdel-Aty, M. Analysis of left-turn crash injury severity byconflicting pattern using partial proportional odds models. Accid. Anal. Prev. 2008, 40, 1674–1682. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis, 5th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2003. [Google Scholar]
- Tay, R.; Choi, J.; Kattan, L.; Khan, A. A Multinomial Logit Model of Pedestrian–Vehicle Crash Severity. Int. J. Sustain. Transp. 2011, 5, 233–249. [Google Scholar] [CrossRef]
- Hausman, J.; McFadden, D. Specification tests for the multinomial logit model. Econometrica 1984, 52, 219–1240. [Google Scholar] [CrossRef] [Green Version]
- Agresti, A. An Introduction to Categorical Data Analysis; John Wiley & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Agresti, A. Categorical Data Analysis, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Washington, S.P.; Karlaftis, M.G.; Mannering, F.L. Statistical and Econometric Methods for Transportation Data Analysis, 2nd ed.; Taylor & Francis; Chapman and Hall: London, England, 2010. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, UK, 2010. [Google Scholar]
- Posada, D.; Buckley, T.R. Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike information Criterion and Bayesian Approaches over Likelihood Ratio Tests. Syst. Biol. 2004, 53, 793–808. [Google Scholar] [CrossRef]
- Rehn, M.; Davies, G.; Smith, P.; Lockey, D. Emergency versus standard response: Time efficacy of London’s Air Ambulance rapid response vehicle. Emerg. Med. J. 2017, 34, 806–809. [Google Scholar] [CrossRef]
- Zwerling, C.; Peek-Asa, C.; Whitten, P.S.; Choi, S.-W.; Sprince, N.L.; Jones, M.P.; Zwerling, C.; Peek-Asa, C.; Whitten, P.S.; Choi, S.-W.; et al. Fatal motor vehicle crashes in rural and urban areas: Decomposing rates into contributing factors. Inj. Prev. 2005, 11, 24–28. [Google Scholar] [CrossRef]
- Sundström, A.; Albertsson, P. Self-and peer-assessments of ambulance drivers’ driving performance. IATSS Res. 2012, 36, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yau, K.K.W.; Chen, G. Risk factors associated with traffic violations and accident severity in China. Accid. Anal. Prev. 2013, 59, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.-J.; Colas, J.T.; Kanwisher, N. Pop-Out without Awareness: Unseen Feature Singletons Capture Attention Only When Top-Down Attention Is Available. Psychol. Sci. 2011, 22, 1220–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahalel, D.; Peled, A.; Livneh, M. Safety evaluation of flashing amber operation at signalized intersections. Accid. Anal. Prev. 1985, 17, 57–65. [Google Scholar] [CrossRef]
- Funk, J.R.; Cormier, J.M.; Bain, C.E. Analytical Model for Investigating Low-Speed Sideswipe Collisions. In Proceedings of the 2004 SAE World Congress, Detroit, MI, USA, 8–11 March 2004. [Google Scholar]
Variable | 1 Injured % (n) | 2 Injured % (n) | 3–8 Injured and Fatality % (n) |
---|---|---|---|
Severity (total N = 1488) | 70.2 (1045) | 17.3 (258) | 12.4 (185) |
Ambulance Driver Level | |||
Age (16–76, ave = 34.5) | |||
Gender | |||
Female (n = 44) | 75 (33) | 20.5 (9) | 4.5 (2) |
Male (n = 1444) | 70.1 (1012) | 17.2 (258) | 12.7 (185) |
Injured level | |||
Death (n = 1) | 0 (0) | 0 (0) | 100 (1) |
Injured (n = 240) | 25.8 (62) | 29.6 (71) | 44.6 (107) |
Not injured (n = 964) | 79.3 (764) | 14.8 (143) | 5.9 (57) |
Unknown (n = 283) | 77.4 (219) | 15.5 (44) | 7.1 (20) |
Injured area | |||
Multiple (n = 86) | 19.8 (17) | 34.9 (30) | 45.3 (39) |
Head (n = 58) | 32.8 (19) | 29.3 (17) | 37.9 (22) |
Hand (n = 39) | 20.5 (8) | 33.3 (13) | 46.2 (18) |
Drunken | |||
Yes (n = 17) | 58.8 (10) | 23.5 (4) | 17.6 (3) |
No (n = 1471) | 70.4 (1035) | 17.3 (254) | 12.4 (182) |
Environmental Level | |||
Weather | |||
Rainy (n = 145) | 75.9 (110) | 12.4 (18) | 11.7 (17) |
Cloudy (n = 132) | 72.0 (95) | 17.4 (23) | 10.6 (14) |
Sunny (n = 1211) | 69.4 (840) | 17.9 (217) | 12.7 (154) |
Lighting condition | |||
Daylight (n = 993) | 72.8 (723) | 15.8 (157) | 11.4 (113) |
Dawn (n = 37) | 59.5 (22) | 18.9 (7) | 21.6 (8) |
Dark but lighted (n = 434) | 65.4 (284) | 20.5 (89) | 14.1 (61) |
Dark (n = 24) | 66.7 (16) | 20.8 (5) | 12.5 (3) |
Traffic control | |||
Traffic lights (n = 857) | 67.0 (574) | 18.0 (154) | 15.1 (129) |
Pedestrian lights (n = 212) | 74.1 (157) | 15.6 (33) | 10.4 (22) |
Flashing yellow (n = 77) | 72.7 (56) | 13.0 (10) | 14.3 (11) |
No lights (n = 342) | 75.4 (258) | 17.8 (61) | 6.7 (23) |
Urban road | |||
Yes (n = 976) | 75.2 (734) | 15.6 (152) | 9.2 (90) |
No (n = 512) | 60.7 (311) | 20.7 (106) | 18.6 (95) |
Intersection | |||
Yes (n = 1225) | 68.6 (840) | 17.9 (219) | 13.6 (166) |
No (n = 263) | 77.9 (205) | 14.8 (39) | 7.2 (19) |
Sideswipe | |||
Yes (n = 447) | 70.7 (316) | 17.7 (79) | 11.6 (52) |
No (n = 1041) | 70.0 (729) | 17.2 (179) | 12.8 (133) |
Car | |||
Yes (n = 475) | 53.7 (255) | 21.3 (101) | 25.1 (119) |
No (n = 1013) | 78.0 (790) | 15.5 (157) | 6.5 (66) |
Motorcycle | |||
Yes (n = 898) | 80.2 (720) | 14.5 (130) | 5.3 (48) |
No (n = 590) | 55.1 (325) | 21.7 (128) | 23.2 (137) |
Rush hour (6–10 a.m. and 4–8 p.m.) | |||
Yes (n = 526) | 74.0 (389) | 15.6 (82) | 10.5 (55) |
No (n = 962) | 68.2 (656) | 18.3 (176) | 13.5 (130) |
Variables | Odds Ratio | |
---|---|---|
Mild/(Moderate + Severe) | Severe/(Mild + Moderate) | |
Male ambulance driver | 0.78 | 3.05 |
Injured ambulance driver | 0.09 ** | 12.07 ** |
Multiple injured areas | 0.09 ** | 7.14 ** |
Head injury | 0.19 ** | 4.75 ** |
Hand injury | 0.10 ** | 6.58 ** |
Drunken | 0.60 | 1.52 |
Rainy weather | 1.17 | 1.07 |
Sunny weather | 0.86 | 1.11 |
Dawn | 0.61 | 1.99 |
Dark but lighted | 0.73 ** | 1.23 |
Dark | 0.85 | 1.01 |
Traffic lights | 0.69 * | 1.82 ** |
Pedestrian lights | 1.25 | 0.79 |
Flashing yellow | 1.14 | 1.18 |
Urban road | 1.96 ** | 0.45 ** |
Intersection | 0.62 ** | 2.01 ** |
Sideswipe | 1.03 | 0.90 |
Car | 0.33 ** | 4.80 ** |
Motorcycle | 3.30 ** | 0.19 ** |
Rush hour | 1.32 * | 0.75 |
Variables | OL Model | |
---|---|---|
Coefficient | SE | |
Male ambulance driver | 1.12 | 0.418 ** |
Injured ambulance driver | 2.32 | 0.161 ** |
Sunny | 0.37 | 0.163 * |
Dark but lighted | 0.39 | 0.132 ** |
Urban road | −0.40 | 0.128 ** |
Intersection | 0.80 | 0.181 ** |
Car | 0.70 | 0.129 ** |
Cut1 | 3.47 | 0.486 |
Cut2 | 4.90 | 0.499 |
Pseudo R2 | 0.156 |
Variables | Moderate Injury | Severe Injury | ||
---|---|---|---|---|
Coefficient | SE | Coefficient | SE | |
Male ambulance driver | 0.38 | 0.432 | 2.17 | 0.804 ** |
Injured ambulance driver | 1.79 | 0.209 ** | 2.93 | 0.223 ** |
Sunny | 0.41 | 0.197 * | 0.50 | 0.250 * |
Dark but lighted | 0.43 | 0.156 ** | 0.46 | 0.202 * |
Urban road | −0.35 | 0.153 * | −0.63 | 0.192 ** |
Intersection | 0.51 | 0.205 * | 1.05 | 0.295 ** |
Car | 0.37 | 0.157 * | 1.08 | 0.195 ** |
Constant | −2.80 | 0.517 ** | −6.15 | 0.901 ** |
Pseudo R2 | 0.158 |
Variables | Panel I | Panel II | ||
---|---|---|---|---|
Coefficient | SE | Coefficient | SE | |
Male ambulance driver | 1.09 | 0.415 ** | 1.09 | 0.415 ** |
Injured ambulance driver | 2.30 | 0.161 ** | 2.30 | 0.161 ** |
Sunny | 0.37 | 0.163 * | 0.37 | 0.163 * |
Dark but lighted | 0.39 | 0.132 ** | 0.39 | 0.132 ** |
Urban road | −0.40 | 0.128 ** | −0.40 | 0.128 ** |
Intersection | 0.79 | 0.181 ** | 0.79 | 0.181 ** |
Car | 0.62 | 0.135 ** | 0.96 | 0.183 ** |
Constant | −3.41 | 0.485 ** | −5.00 | 0.500 ** |
Pseudo R2 | 0.157 |
Model | AIC | BIC | Pseudo R2 |
---|---|---|---|
OL | 2056.664 | 2104.411 | 0.156 |
MNL | 2064.347 | 2149.23 | 0.158 |
PPO | 2054.453 | 2107.505 | 0.157 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jou, R.-C.; Chao, M.-C. Fail to Yield? An Analysis of Ambulance Crashes in Taiwan. Sustainability 2021, 13, 1566. https://doi.org/10.3390/su13031566
Jou R-C, Chao M-C. Fail to Yield? An Analysis of Ambulance Crashes in Taiwan. Sustainability. 2021; 13(3):1566. https://doi.org/10.3390/su13031566
Chicago/Turabian StyleJou, Rong-Chang, and Ming-Che Chao. 2021. "Fail to Yield? An Analysis of Ambulance Crashes in Taiwan" Sustainability 13, no. 3: 1566. https://doi.org/10.3390/su13031566
APA StyleJou, R. -C., & Chao, M. -C. (2021). Fail to Yield? An Analysis of Ambulance Crashes in Taiwan. Sustainability, 13(3), 1566. https://doi.org/10.3390/su13031566