Community Perception and Communication of Volcanic Risk from the Cotopaxi Volcano in Latacunga, Ecuador
Abstract
:1. Introduction
2. Framework and Objectives
2.1. Description of the Study Area
2.2. Objectives
- Presenting a comprehensive risk communication process, from scenario-based volcanic risk analysis along with active participation of the exposed communities, while also investigating the risk perception of the exposed communities.
- Providing a recent measurement of spatially distributed risk perception in the Cotopaxi area (results from the CIS questionnaire)
- Testing the applicability of the RIESGOS demonstrator, a decentralized web-service architecture that allows for integrating local expert knowledge and locally designed models in a scenario-based multi-risk analysis, for the purpose of interactive communication
- Merging the results of 2 and 3 to investigate how well the simulated quantitative risk matches the subjectively perceived risk in a common area.
3. Materials and Methods
3.1. The CIS Programme: The Creation of a Local Laboratory to Evaluate the Social Perception of Risk and Resilience
3.1.1. Comparative Analysis of the Social Risk Perception Factors to Natural Hazards and the Spatial Distribution of Volcanic-Related Risk Factors
3.2. The RIESGOS Project: Iterative Simulation Improvement and Enhanced Communication
3.2.1. The RIESGOS Demonstrator Tool for Quantitative Multi-Risk Analysis
4. Results
4.1. The Recognition of the Latacunga Local Laboratory by the Local Actors of the Community
Comparative Analysis of the Social Risk Perception Factors to Natural Hazards and the Spatial Distribution of Volcanic-Related Risk Factors
4.2. The Commnuication of the Scenario-Based Risk Assessment Concept with Local Stakeholders
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Questions | Answer Options | Quantitative Score | Answer | Value Transformation | Perception of Risk Factor | Pre-Index of Risk Perception (in the Scale 1–27) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Earthquake | Volcanoes | Drought | Frost | Landslides | Floods | Earthquake | Volcanoes | Drought | Frost | Landslides | Floods | ||||||
Perception of hazard recurrence | Certainly yes | 3 | x | x | x | x | x | 3 | 3 | 3 | 3 | 3 | 2.83 | 12.60 | |||
It might occur | 2 | x | 2 | ||||||||||||||
Impossible | 1 | ||||||||||||||||
Perception of their impacts | Very serious | 3 | x | x | x | 3 | 3 | 3 | 2.5 | ||||||||
Moderate | 2 | x | x | x | 2 | 2 | 2 | ||||||||||
No effects | 1 | ||||||||||||||||
Perception of their effects to your family | Direct | 3 | x | x | x | x | 3 | 3 | 3 | 3 | 2.67 | ||||||
Indirect | 2 | x | x | 2 | 2 | ||||||||||||
No effects | 1 | ||||||||||||||||
Perception of recovery from them | Impossible | 1 | x | x | x | 1 | 1 | 1 | 1.5 | ||||||||
Difficult | 2 | x | x | x | 2 | 2 | 2 | ||||||||||
Likely | 3 |
Questions | Possible Answer | Type of Survey (%) | ||
---|---|---|---|---|
Online | Field | Aggregated | ||
. Perception of volcanic hazards recurrence. Do you think a volcanic eruption (from the Cotopaxi) can occur? | Certainly yes | 54.43 | 63.61 | 62.04 |
It might occur | 44.30 | 34.29 | 36.01 | |
Impossible | 1.27 | 2.09 | 1.95 | |
. How do you consider the effects after a volcanic eruption would be? | Very serious | 91.36 | 85.56 | 86.56 |
Moderate | 8.64 | 12.86 | 12.12 | |
No effects | 0.00 | 1.57 | 1.30 | |
. How do you consider the effects after a volcanic eruption would impact your family and yourself? | Very serious | 81.48 | 75.39 | 76.46 |
Moderate | 17.28 | 22.51 | 21.60 | |
No effects | 1.23 | 2.09 | 1.94 | |
. How do you consider the recovery process from the effects after a volcanic eruption? | Impossible | 11.11 | 24.87 | 22.46 |
Difficult | 58.02 | 57.33 | 57.45 | |
Likely | 30.86 | 17.80 | 20.09 | |
Do you know if your home is in a volcanic hazard zone? | Yes | 69.70 | 45.80 | 49.70 |
No | 32.1 | 54.2 | 50.3 | |
Are there emergency plans in your neighbourhood? | Yes | 19.75 | 36.65 | 33.69 |
No | 38.27 | 39.27 | 39.09 | |
Do not know | 41.98 | 24.08 | 27.21 | |
Are there safe places in the vicinity where you live? (in case of a volcanic eruption) | Yes | 69.14 | 66.49 | 66.95 |
No | 16.05 | 18.85 | 18.36 | |
Do not know | 14.81 | 14.66 | 14.69 | |
Are there evacuation routes to safe sites? | Yes | 70.37 | 60.47 | 62.20 |
No | 8.64 | 21.47 | 19.22 | |
Do not know | 20.99 | 18.06 | 18.57 | |
Is there an emergency committee in your neighbourhood? | Yes | 9.88 | 32.98 | 28.94 |
No | 46.91 | 35.34 | 37.37 | |
Do not know | 43.21 | 31.68 | 33.69 | |
Do you know if there are initiatives, actions, or works to reduce the risks from volcanic eruptions in Latacunga? | Yes | 66.70 | 56.30 | 58.10 |
No | 33.30 | 43.70 | 41.90 | |
Do you think you are capable of having a fast react during a volcanic eruptions? | Yes | 69.10 | 53.10 | 55.90 |
No | 30.90 | 46.90 | 44.10 | |
How often do you talk to your family about how to behave in the event of an emergency? | Never | 0.00 | 17.63 | 14.66 |
Rarely | 23.38 | 41.05 | 38.07 | |
Sometimes | 50.65 | 22.89 | 27.57 | |
Usually | 25.97 | 18.42 | 19.69 |
References
- Gill, J.C.; Malamud, B.D. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth Syst. Dyn. 2016, 7, 659–679. [Google Scholar] [CrossRef] [Green Version]
- Pescaroli, G.; Alexander, D. A definition of cascading disasters and cascading effects: Going beyond the “toppling dominos” metaphor. Planet Risk 2015, 3, 58–67. [Google Scholar]
- Ward, P.J.; Blauhut, V.; Bloemendaal, N.; Daniell, J.E.; de Ruiter, M.C.; Duncan, M.J.; Emberson, R.; Jenkins, S.F.; Kirschbaum, D.; Kunz, M.; et al. Review article: Natural hazard risk assessments at the global scale. Nat. Hazards Earth Syst. Sci. 2020, 20, 1069–1096. [Google Scholar] [CrossRef] [Green Version]
- Cando-Jácome, M.; Martínez-Graña, A. Determination of primary and secondary lahar flow paths of the Fuego volcano (Guatemala) using morphometric parameters. Remote Sens. 2019, 11, 727. [Google Scholar] [CrossRef] [Green Version]
- Mothes, P.A.; Vallance, J.W. Chapter 6—Lahars at Cotopaxi and Tungurahua Volcanoes, Ecuador: Highlights from stratigraphy and observational records and related downstream hazards. In Volcanic Hazards, Risks and Disasters; Shroder, J.F., Papale, P., Eds.; Elsevier: Boston, MA, USA, 2015; pp. 141–168. ISBN 978-0-12-396453-3. [Google Scholar]
- Merz, B.; Kuhlicke, C.; Kunz, M.; Pittore, M.; Babeyko, A.; Bresch, D.N.; Domeisen, D.I.V.; Feser, F.; Koszalka, I.; Kreibich, H.; et al. Impact forecasting to support emergency management of natural hazards. Rev. Geophys. 2020, 58, e2020RG000704. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Sun, X. Scenario-based risk framework selection and assessment model development for natural disasters: A case study of typhoon storm surges. Nat. Hazards 2016, 80, 2037–2054. [Google Scholar] [CrossRef]
- Lowe, D.R.; Williams, S.N.; Leigh, H.; Connort, C.B.; Gemmell, J.B.; Stoiber, R.E. Lahars initiated by the 13 November 1985 eruption of Nevado del Ruiz, Colombia. Nature 1986, 324, 51–53. [Google Scholar] [CrossRef]
- García, C.; Mendez-Fajury, R. If I understand, i am understood: Experiences of volcanic risk communication in Colombia. In Observing the Volcano World: Volcano Crisis Communication; Fearnley, C.J., Bird, D.K., Haynes, K., McGuire, W.J., Jolly, G., Eds.; Springer International Publishing: Cham, Swizterland, 2018; pp. 335–351. ISBN 978-3-319-44097-2. [Google Scholar]
- Pierson, T.C.; Janda, R.J.; Thouret, J.-C.; Borrero, C.A. Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. J. Volcanol. Geotherm. Res. 1990, 41, 17–66. [Google Scholar] [CrossRef]
- Pescaroli, G.; Alexander, D. Critical infrastructure, panarchies and the vulnerability paths of cascading disasters. Nat. Hazards 2016, 82, 175–192. [Google Scholar] [CrossRef] [Green Version]
- Bolić, T.; Sivčev, Ź. Eruption of Eyjafjallajökull in Iceland: Experience of European Air Traffic Management. Transp. Res. Rec. 2011, 2214, 136–143. [Google Scholar] [CrossRef]
- Walter, T.R.; Haghighi, M.H.; Schneider, F.M.; Coppola, D.; Motagh, M.; Saul, J.; Babeyko, A.; Dahm, T.; Troll, V.R.; Tilmann, F.; et al. Complex hazard cascade culminating in the Anak Krakatau sector collapse. Nat. Commun. 2019, 10, 4339. [Google Scholar] [CrossRef] [PubMed]
- Lauterjung, J.; Spahn, H. Tsunami Hazard and Its Challenges for Preparedness. Available online: https://www.thejakartapost.com/academia/2019/01/08/tsunami-hazard-and-its-challenges-for-preparedness.html (accessed on 16 December 2020).
- Poland, M.P.; Anderson, K.R. Partly cloudy with a chance of lava flows: Forecasting volcanic eruptions in the twenty-first century. J. Geophys. Res. Solid Earth 2020, 125, e2018JB016974. [Google Scholar] [CrossRef]
- Biass, S.; Scaini, C.; Bonadonna, C.; Folch, A.; Smith, K.; Höskuldsson, A. A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes—Part 1: Hazard assessment. Nat. Hazards Earth Syst. Sci. 2014, 14, 2265–2287. [Google Scholar] [CrossRef] [Green Version]
- Zuccaro, G.; Cacace, F.; Spence, R.J.S.; Baxter, P.J. Impact of explosive eruption scenarios at Vesuvius. J. Volcanol. Geotherm. Res. 2008, 178, 416–453. [Google Scholar] [CrossRef]
- Marzocchi, W.; Garcia-Aristizabal, A.; Gasparini, P.; Mastellone, M.L.; Di Ruocco, A. Basic principles of multi-risk assessment: A case study in Italy. Nat. Hazards 2012, 62, 551–573. [Google Scholar] [CrossRef]
- Pittore, M.; Wieland, M.; Fleming, K. Perspectives on global dynamic exposure modelling for geo-risk assessment. Nat Hazards 2017, 86, 7–30. [Google Scholar] [CrossRef]
- Gallina, V.; Torresan, S.; Critto, A.; Sperotto, A.; Glade, T.; Marcomini, A. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. J. Environ. Manag. 2016, 168, 123–132. [Google Scholar] [CrossRef]
- Zuccaro, G.; De Gregorio, D. Time and space dependency in impact damage evaluation of a sub-Plinian eruption at Mount Vesuvius. Nat. Hazards 2013, 68, 1399–1423. [Google Scholar] [CrossRef]
- Gehl, P.; Quinet, C.; Le Cozannet, G.; Kouokam, E.; Thierry, P. Potential and limitations of risk scenario tools in volcanic areas through an example at Mount Cameroon. Nat. Hazards Earth Syst. Sci. 2013, 13, 2409–2424. [Google Scholar] [CrossRef] [Green Version]
- Doyle, E.E.H.; McClure, J.; Paton, D.; Johnston, D.M. Uncertainty and decision making: Volcanic crisis scenarios. Int. J. Disaster Risk Reduct. 2014, 10, 75–101. [Google Scholar] [CrossRef] [Green Version]
- Ran, J.; MacGillivray, B.H.; Gong, Y.; Hales, T.C. The application of frameworks for measuring social vulnerability and resilience to geophysical hazards within developing countries: A systematic review and narrative synthesis. Sci. Total Environ. 2020, 711, 134486. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Z.; Yang, J.; Li, H.; Liu, Y.; Fu, B.; Yang, F. Seismic vulnerability comparison between rural Weinan and other rural areas in Western China. Int. J. Disaster Risk Reduct. 2020, 48, 101576. [Google Scholar] [CrossRef]
- Papathoma-Koehle, M.; Maris, F.; Fuchs, S. Remoteness and austerity: A major driver of vulnerabilities to natural hazards. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 4–8 May 2020; p. 1577. [Google Scholar]
- Parham, M.; Teeuw, R.; Solana, C.; Day, S. Quantifying the impact of educational methods for disaster risk reduction: A longitudinal study assessing the impact of teaching methods on student hazard perceptions. Int. J. Disaster Risk Reduct. 2020. [Google Scholar] [CrossRef]
- Papathoma-Köhle, M.; Schlögl, M.; Fuchs, S. Vulnerability indicators for natural hazards: An innovative selection and weighting approach. Sci. Rep. 2019, 9, 15026. [Google Scholar] [CrossRef]
- National Geophysical Data Center; World Data Service (NGDC/WDS) NCEI/WDS Global Significant Volcanic Eruptions Database. NOAA National Centers for Environmental Information. Available online: https://www.ngdc.noaa.gov/hazard/volcano.shtml (accessed on 8 May 2020).
- Pesaresi, M.; Ehrilich, D.; Kemper, T.; Siragusa, A.; Florcyk, A.; Freire, S.; Corbane, C. Atlas of the Human Planet 2017. Global Exposure to Natural Hazards; EUR 28556 EN; European Comission: Luxembourg, 2017. [Google Scholar]
- Jenkins, S.F.; Spence, R.J.S.; Fonseca, J.F.B.D.; Solidum, R.U.; Wilson, T.M. Volcanic risk assessment: Quantifying physical vulnerability in the built environment. J. Volcanol. Geotherm. Res. 2014, 276, 105–120. [Google Scholar] [CrossRef]
- Craig, H.; Wilson, T.; Stewart, C.; Villarosa, G.; Outes, V.; Cronin, S.; Jenkins, S. Agricultural impact assessment and management after three widespread tephra falls in Patagonia, South America. Nat. Hazards 2016, 82, 1167–1229. [Google Scholar] [CrossRef]
- Wilson, G.; Wilson, T.M.; Deligne, N.I.; Blake, D.M.; Cole, J.W. Framework for developing volcanic fragility and vulnerability functions for critical infrastructure. J. Appl. Volcanol. 2017, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Wilson, T.M.; Stewart, C.; Wardman, J.B.; Wilson, G.; Johnston, D.M.; Hill, D.; Hampton, S.J.; Villemure, M.; McBride, S.; Leonard, G.; et al. Volcanic ashfall preparedness poster series: A collaborative process for reducing the vulnerability of critical infrastructure. J. Appl. Volcanol. 2014, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Terzi, S.; Torresan, S.; Schneiderbauer, S.; Critto, A.; Zebisch, M.; Marcomini, A. Multi-risk assessment in mountain regions: A review of modelling approaches for climate change adaptation. J. Environ. Manag. 2019, 232, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.A.; Lindsay, J.M.; Wilson, T.M.; Biass, S.; Sandri, L. Quantifying risk to agriculture from volcanic ashfall: A case study from the Bay of Plenty, New Zealand. Nat. Hazards 2017, 86, 31–56. [Google Scholar] [CrossRef]
- Deligne, N.I.; Horspool, N.; Canessa, S.; Matcham, I.; Williams, G.T.; Wilson, G.; Wilson, T.M. Evaluating the impacts of volcanic eruptions using RiskScape. J. Appl. Volcanol. 2017, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Scaini, C.; Biass, S.; Galderisi, A.; Bonadonna, C.; Folch, A.; Smith, K.; Höskuldsson, A. A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes—Part 2: Vulnerability and impact. Nat. Hazards Earth Syst. Sci. 2014, 14, 2289–2312. [Google Scholar] [CrossRef] [Green Version]
- Doyle, E.E.H.; McClure, J.; Johnston, D.M.; Paton, D. Communicating likelihoods and probabilities in forecasts of volcanic eruptions. J. Volcanol. Geotherm. Res. 2014, 272, 1–15. [Google Scholar] [CrossRef]
- Thomalla, F.; Boyland, M.; Johnson, K.; Ensor, J.; Tuhkanen, H.; Gerger Swartling, Å.; Han, G.; Forrester, J.; Wahl, D. Transforming development and disaster risk. Sustainability 2018, 10, 1458. [Google Scholar] [CrossRef] [Green Version]
- Horney, J.; Nguyen, M.; Salvesen, D.; Tomasco, O.; Berke, P. Engaging the public in planning for disaster recovery. Int. J. Disaster Risk Reduct. 2016, 17, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Kwok, A.H.; Paton, D.; Becker, J.; Hudson-Doyle, E.E.; Johnston, D. A bottom-up approach to developing a neighbourhood-based resilience measurement framework. Disaster Prev. Manag. Int. J. 2018, 27, 255–270. [Google Scholar] [CrossRef] [Green Version]
- Lévy, J. Science + Space + Society: Urbanity and the risk of methodological communalism in social sciences of space. Geogr. Helv. 2014, 69, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Pescaroli, G. Perceptions of cascading risk and interconnected failures in emergency planning: Implications for operational resilience and policy making. Int. J. Disaster Risk Reduct. 2018, 30, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Heinzlef, C.; Robert, B.; Hémond, Y.; Serre, D. Operating urban resilience strategies to face climate change and associated risks: Some advances from theory to application in Canada and France. Cities 2020, 104, 102762. [Google Scholar] [CrossRef]
- Gill, J.C.; Malamud, B.D.; Barillas, E.M.; Guerra Noriega, A. Construction of regional multi-hazard interaction frameworks, with an application to Guatemala. Nat. Hazards Earth Syst. Sci. 2020, 20, 149–180. [Google Scholar] [CrossRef] [Green Version]
- Fleming, K.; Abad, J.; Booth, L.; Schueller, L.; Baills, A.; Scolobig, A.; Petrovic, B.; Zuccaro, G.; Leone, M.F. The use of serious games in engaging stakeholders for disaster risk reduction, management and climate change adaption information elicitation. Int. J. Disaster Risk Reduct. 2020, 49, 101669. [Google Scholar] [CrossRef]
- Jóhannesdóttir, G.; Gísladóttir, G. People living under threat of volcanic hazard in southern Iceland: Vulnerability and risk perception. Nat. Hazards Earth Syst. Sci. 2010, 10, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Paton, D.; Smith, L.; Daly, M.; Johnston, D. Risk perception and volcanic hazard mitigation: Individual and social perspectives. J. Volcanol. Geotherm. Res. 2008, 172, 179–188. [Google Scholar] [CrossRef]
- Bronfman, N.C.; Cisternas, P.C.; López-Vázquez, E.; Cifuentes, L.A. Trust and risk perception of natural hazards: Implications for risk preparedness in Chile. Nat. Hazards 2016, 81, 307–327. [Google Scholar] [CrossRef]
- Leonard, G.S.; Stewart, C.; Wilson, T.M.; Procter, J.N.; Scott, B.J.; Keys, H.J.; Jolly, G.E.; Wardman, J.B.; Cronin, S.J.; McBride, S.K. Integrating multidisciplinary science, modelling and impact data into evolving, syn-event volcanic hazard mapping and communication: A case study from the 2012 Tongariro eruption crisis, New Zealand. J. Volcanol. Geotherm. Res. 2014, 286, 208–232. [Google Scholar] [CrossRef]
- Pierson, T.C.; Wood, N.J.; Driedger, C.L. Reducing risk from lahar hazards: Concepts, case studies, and roles for scientists. J. Appl. Volcanol. 2014, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Hicks, A.; Armijos, M.T.; Barclay, J.; Stone, J.; Robertson, R.; Cortés, G.P. Risk communication films: Process, product and potential for improving preparedness and behaviour change. Int. J. Disaster Risk Reduct. 2017, 23, 138–151. [Google Scholar] [CrossRef]
- Armijos, M.T.; Phillips, J.; Wilkinson, E.; Barclay, J.; Hicks, A.; Palacios, P.; Mothes, P.; Stone, J. Adapting to changes in volcanic behaviour: Formal and informal interactions for enhanced risk management at Tungurahua Volcano, Ecuador. Glob. Environ. Chang. 2017, 45, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Lupiano, V.; Chidichimo, F.; Machado, G.; Catelan, P.; Molina, L.; Calidonna, C.R.; Straface, S.; Crisci, G.M.; Di Gregorio, S. From examination of natural events to a proposal for risk mitigation of lahars by a cellular-automata methodology: A case study for Vascún valley, Ecuador. Nat. Hazards Earth Syst. Sci. 2020, 20, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Bernard, B.; Battaglia, J.; Proaño, A.; Hidalgo, S.; Vásconez, F.; Hernandez, S.; Ruiz, M. Relationship between volcanic ash fallouts and seismic tremor: Quantitative assessment of the 2015 eruptive period at Cotopaxi volcano, Ecuador. Bull. Volcanol. 2016, 78, 80. [Google Scholar] [CrossRef]
- Frontuto, V.; Dalmazzone, S.; Salcuni, F.; Pezzoli, A. Risk Aversion, Inequality and Economic Evaluation of Flood Damages: A Case Study in Ecuador. Sustainability 2020, 12, 68. [Google Scholar] [CrossRef]
- Rodriguez, F.; Toulkeridis, T.; Sandoval, W.; Padilla, O.; Mato, F. Economic risk assessment of Cotopaxi volcano, Ecuador, in case of a future lahar emplacement. Nat. Hazards 2017, 85, 605–618. [Google Scholar] [CrossRef]
- Barberi, F.; Coltelli, M.; Frullani, A.; Rosi, M.; Almeida, E. Chronology and dispersal characteristics of recently (last 5000 years) erupted tephra of Cotopaxi (Ecuador): Implications for long-term eruptive forecasting. J. Volcanol. Geotherm. Res. 1995, 69, 217–239. [Google Scholar] [CrossRef]
- Hall, M.; Mothes, P. The rhyolitic–andesitic eruptive history of Cotopaxi volcano, Ecuador. Bull. Volcanol. 2008, 70, 675–702. [Google Scholar] [CrossRef]
- Sierra, D.; Vasconez, F.; Andrade, S.D.; Almeida, M.; Mothes, P. Historical distal lahar deposits on the remote eastern-drainage of cotopaxi volcano, Ecuador. J. South Am. Earth Sci. 2019, 95, 102251. [Google Scholar] [CrossRef]
- Aguilera, E.; Pareschi, M.T.; Rosi, M.; Zanchetta, G. Risk from Lahars in the Northern Valleys of Cotopaxi Volcano (Ecuador). Nat. Hazards 2004, 33, 161–189. [Google Scholar] [CrossRef]
- Doocy, S.; Daniels, A.; Dooling, S.; Gorokhovich, Y. The human impact of volcanoes: A historical review of events 1900–2009 and systematic literature review. PLoS Curr. 2013, 5. [Google Scholar] [CrossRef] [PubMed]
- Andrade, D.; Hall, M.; Mothes, P.; Troncosco, L.; Eissen, J.-P.; Samaniego, P.; Efred, J.; Ramon, P.; Rivero, D.; Yepes, H. Los Peligros Volcánicos Asociados con el Cotopaxi; Los peligros volcánicos en el Ecuador; IG-EPN: Quito, Ecuador, 2005. [Google Scholar]
- INEC. Censo de Poblacion y Vivienda. Estadisticas de Vivienda y Hogares; Estadisticas de Vivienda y Hogares: Quito, Ecuador, 2010. [Google Scholar]
- Czerny, M.; Czerny, A. Urbanisation processes in zones threatened by volcanic activity: The case of Latacunga at the foot of Cotopaxi in Ecuador. Misc. Geogr. 2020, 24, 183–192. [Google Scholar]
- Christie, R.; Cooke, O.; Gottsmann, J. Fearing the knock on the door: Critical security studies insights into limited cooperation with disaster management regimes. J. Appl. Volcanol. 2015, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Mothes, P.A.; Ruiz, M.C.; Viracucha, E.G.; Ramón, P.A.; Hernández, S.; Hidalgo, S.; Bernard, B.; Gaunt, E.H.; Jarrín, P.; Yépez, M.A.; et al. Geophysical footprints of Cotopaxi’s unrest and minor eruptions in 2015: An opportunity to test scientific and community preparedness. In Volcanic Unrest: From Science to Society; Gottsmann, J., Neuberg, J., Scheu, B., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 241–270. ISBN 978-3-319-58412-6. [Google Scholar]
- Frimberger, T.; Andrade, D.; Weber, D.; Krautblatter, M. Modelling future lahars controlled by different volcanic eruption scenarios at Cotopaxi (Ecuador) calibrated with the massively destructive 1877 lahar. Print Earth Surf. Process. Landf. 2020. [Google Scholar] [CrossRef]
- Pistolesi, M.; Cioni, R.; Rosi, M.; Cashman, K.V.; Rossotti, A.; Aguilera, E. Evidence for lahar-triggering mechanisms in complex stratigraphic sequences: The post-twelfth century eruptive activity of Cotopaxi Volcano, Ecuador. Bull. Volcanol. 2013, 75, 698. [Google Scholar] [CrossRef]
- Mothes, P.; Espin, P.; Hall, M.; Vasconez, F.; Sierra, D.; Andrade, D. Mapa Regional De Amenazas Volcánicas Potenciales del Volcán Cotopaxi, Zona Sur. Mapa de Peligros; Instituto Geofisico de la Escuela Politenica Nacional y el Instituto Geografico Militar: Quito, Ecuador, 2016. [Google Scholar]
- Heifer Fundation. Páramos de Cotopaxi y Cambio Climático. Experiencias Campesinas de Adaptación al Cambio Climático; Fundación Heifer: Quito, Ecuador, 2018. [Google Scholar]
- UNISDR. Sendai Frameworkfor Disaster Risk Reduction2015–2030; United Nations International Strategy for Disaster Reduction: Sendai, Japan, 2015. [Google Scholar]
- Heinzlef, C.; Barocca, B.; Leone, M.; Glade, T.; Serre, D. Resilience issues and challenges into built environments: A review. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 2020, 1–35. [Google Scholar]
- Grupo FARO; Asociación de Profesionales de Gestión de Riesgos de Ecuador, and Instituto Superior Tecnológico Cotopaxi. Percepción social del riesgo en la ciudad de Latacunga; Grupo FARO: Quito, Ecuador, 2020; Available online: https://grupofaro.org/portfolio/estudio-de-percepcion-social-del-riesgo-en-la-ciudad-de-latacunga/ (accessed on 26 November 2020).
- Bird, D.K. The use of questionnaires for acquiring information on public perception of natural hazards and risk mitigation—A review of current knowledge and practice. Nat. Hazards Earth Syst. Sci. 2009, 9, 1307–1325. [Google Scholar] [CrossRef]
- Carreño, M.L.; Cardona, O.D.; Barbat, A.H. Sistema de Indicadores Para la Evaluación de Riesgos; Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE): Barcelona, Spain, 2005; ISBN 84-95999-70-6. [Google Scholar]
- Kelman, I. Lost for words amongst disaster risk science vocabulary? Int. J. Disaster Risk Sci. 2018, 9, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Shaw, K. “Reframing” Resilience: Challenges for planning theory and practice. Plan. Theory Pract. 2012, 13, 299–333. [Google Scholar]
- Weichselgartner, J.; Kelman, I. Geographies of resilience: Challenges and opportunities of a descriptive concept. Prog. Hum. Geogr. 2014, 39, 249–267. [Google Scholar] [CrossRef] [Green Version]
- Sajjad, M.; Chan, J.C.L.; Kanwal, S. Integrating spatial statistics tools for coastal risk management: A case-study of typhoon risk in mainland China. Ocean Coast. Manag. 2020, 184, 105018. [Google Scholar] [CrossRef]
- Oláh, J.; Virglerova, Z.; Popp, J.; Kliestikova, J.; Kovács, S. The assessment of non-financial risk sources of SMES in the V4 countries and Serbia. Sustainability 2019, 11, 4806. [Google Scholar] [CrossRef] [Green Version]
- Frazier, T.G.; Wood, E.X.; Peterson, A.G. Residual risk in public health and disaster management. Appl. Geogr. 2020, 125, 102365. [Google Scholar] [CrossRef]
- Wuni, I.Y.; Shen, G.Q.; Osei-Kyei, R.; Agyeman-Yeboah, S. Modelling the critical risk factors for modular integrated construction projects. Int. J. Constr. Manag. 2020, 1–14. [Google Scholar] [CrossRef]
- Marín-Monroy, E.A.; Trejo, V.H.; de la Pena, M.A.O.R.; Polanco, G.A.; Barbara, N.L. Assessment of socio-environmental vulnerability due to tropical cyclones in La Paz, Baja California Sur, Mexico. Sustainability 2020, 12, 1575. [Google Scholar] [CrossRef] [Green Version]
- Cano, A.M.; Sagredo, R.R.; García-Carrión, R.; Garcia-Zapirain, B. Social impact assessment of HealthyAIR tool for real-time detection of pollution risk. Sustainability 2020, 12, 9856. [Google Scholar] [CrossRef]
- Pescaroli, G.; Velazquez, O.; Alcántara-Ayala, I.; Galasso, C.; Kostkova, P.; Alexander, D. A likert scale-based model for benchmarking operational capacity, organizational resilience, and disaster risk reduction. Int. J. Disaster Risk Sci. 2020, 11, 404–409. [Google Scholar] [CrossRef]
- Issaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics; University Press: Oxford, NY, USA, 1989. [Google Scholar]
- Rosero-Velásquez, H.; Straub, D. Representative Natural Hazard Scenarios for Risk Assessment of Spatially Distributed Infrastructure Systems. In Proceedings of the 29th European Safety and Reliability Conference (ESREL 2019), Hannover, Germany, 22–26 September 2019. [Google Scholar]
- Langbein, M.; Gomez-Zapata, J.C.; Frimberger, T.; Brinckmann, N.; Torres-Corredor, R.; Andrade, D.; Zapata-Tapia, C.; Pittore, M.; Schoepfer, E. Scenario- based multi- risk assessment on exposed buildings to volcanic cascading hazards. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 4–8 May 2020; p. 19861. [Google Scholar]
- Brill, F.; Pineda, S.P.; Cuya, B.E.; Kreibich, H. A data-mining approach towards damage modelling for El Niño events in Peru. Geomat. Natural Hazards Risk 2020, 11, 1966–1990. [Google Scholar] [CrossRef]
- Gomez-Zapata, J.C.; Pittore, M.; Brinckmann, N.; Shinde, S. Dynamic physical vulnerability: A Multi-risk Scenario approach from building- single- hazard fragility- models. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 4–8 May 2020; p. 18379. [Google Scholar]
- Pittore, M.; Zapata, J.C.G.; Brinckmann, N.; Weatherill, G.; Babeyko, A.; Harig, S.; Mahdavi, A.; Proß, B.; Velasquez, H.F.R.; Straub, D.; et al. Towards an integrated framework for distributed, modular multi-risk scenario assessment. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 4–8 May 2020; p. 19097. [Google Scholar]
- Brinckmann, N.; Pittore, M.; Rüster, M.; Proß, B.; Gomez-Zapata, J.C. Put your models in the web—less painful. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 4–8 May 2020; p. 8671. [Google Scholar]
- Tadini, A.; Roche, O.; Samaniego, P.; Guillin, A.; Azzaoui, N.; Gouhier, M.; de’ Michieli Vitturi, M.; Pardini, F.; Eychenne, J.; Bernard, B.; et al. Quantifying the Uncertainty of a coupled plume and tephra dispersal model: PLUME-MOM/HYSPLIT simulations applied to andean volcanoes. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018390. [Google Scholar] [CrossRef]
- Yepes-Estrada, C.; Silva, V.; Valcárcel, J.; Acevedo, A.B.; Tarque, N.; Hube, M.A.; Coronel, G.; María, H.S. Modeling the residential building inventory in South America for seismic risk assessment. Earthq. Spectra 2017, 33, 299–322. [Google Scholar] [CrossRef]
- Cornell, C.A.; Krawinkler, H. Progress and challenges in seismic performance assessment. Peer Cent. News 2000, 3, 1–3. [Google Scholar]
- Mavrouli, O.; Fotopoulou, S.; Pitilakis, K.; Zuccaro, G.; Corominas, J.; Santo, A.; Cacace, F.; De Gregorio, D.; Di Crescenzo, G.; Foerster, E.; et al. Vulnerability assessment for reinforced concrete buildings exposed to landslides. Bull. Eng. Geol. Environ. 2014. [Google Scholar] [CrossRef]
- Torres-Corredor, R.A.; Ponde-Villarreal, P.; Gomez-Martinez, D.M. Vulnerabilidad física de cubiertas de edificaciones de uso de ocupación normal ante caídas de ceniza en la zona de influencia del Volcán Galeras. Bol. Geol. 2017, 39, 2. [Google Scholar]
- Crucitti, P.; Latora, V.; Marchiori, M. Model for cascading failures in complex networks. Phys. Rev. E 2004, 69, 045104. [Google Scholar] [CrossRef] [Green Version]
- Poljanšek, K.; Bono, F.; Gutiérrez, E. Seismic risk assessment of interdependent critical infrastructure systems: The case of European gas and electricity networks. Earthq. Eng. Struct. Dyn. 2012, 41, 61–79. [Google Scholar] [CrossRef]
- Thouret, J.-C.; Antoine, S.; Magill, C.; Ollier, C. Lahars and debris flows: Characteristics and impacts. Earth-Sci. Rev. 2020, 201, 103003. [Google Scholar] [CrossRef]
- Jenkins, S.F.; Phillips, J.C.; Price, R.; Feloy, K.; Baxter, P.J.; Hadmoko, D.S.; de Bélizal, E. Developing building-damage scales for lahars: Application to Merapi volcano, Indonesia. Bull. Volcanol. 2015, 77, 75. [Google Scholar] [CrossRef]
- Croasmun, J.; Ostrom, L. Using likert-type scales in the social sciences. J. Adult Educ. 2011, 40, 19–22. [Google Scholar]
- Beven, K.J.; Aspinall, W.P.; Bates, P.D.; Borgomeo, E.; Goda, K.; Hall, J.W.; Page, T.; Phillips, J.C.; Simpson, M.; Smith, P.J.; et al. Epistemic uncertainties and natural hazard risk assessment—Part 2: What should constitute good practice? Nat. Hazards Earth Syst. Sci. 2018, 18, 2769–2783. [Google Scholar] [CrossRef] [Green Version]
- Armaș, I.; Gavriș, A. Social vulnerability assessment using spatial multi-criteria analysis (SEVI model) and the Social Vulnerability Index (SoVI model)—A case study for Bucharest, Romania. Nat. Hazards Earth Syst. Sci. 2013, 13, 1481–1499. [Google Scholar] [CrossRef] [Green Version]
- Moscato, V.; Picariello, A.; Sperli, G. An emotional recommender system for music. IEEE Intell. Syst. 2020. [Google Scholar] [CrossRef]
- Zuccaro, G.; De Gregorio, D.; Leone, M.F. Theoretical model for cascading effects analyses. Int. J. Disaster Risk Reduct. 2018, 30, 199–215. [Google Scholar] [CrossRef]
- Mercorio, F.; Mezzanzanica, M.; Moscato, V.; Picariello, A.; Sperli, G. DICO: A Graph-DB framework for community detection on big scholarly data. IEEE Trans. Emerg. Top. Comput. 2019. [Google Scholar] [CrossRef]
Risk Factors | Perception of Hazard Recurrence | Perception of Exposure | Perception of Vulnerability | Perception of Resilience | Perception of Risk | |
---|---|---|---|---|---|---|
Scale: 0–3 | Scale: 1–27 | |||||
Natural Hazard | Volcanoes | 2.61 | 2.73 | 2.83 | 1.93 | 10.45 |
Earthquakes | 2.58 | 2.75 | 2.77 | 1.98 | 9.93 | |
Frost | 2.62 | 2.27 | 2.14 | 2.38 | 5.35 | |
Drought | 2.33 | 2.27 | 2.23 | 2.32 | 5.08 | |
Floods | 2.00 | 2.05 | 2.04 | 2.27 | 3.68 | |
Landslides | 1.99 | 2.05 | 2.08 | 2.29 | 3.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez-Zapata, J.C.; Parrado, C.; Frimberger, T.; Barragán-Ochoa, F.; Brill, F.; Büche, K.; Krautblatter, M.; Langbein, M.; Pittore, M.; Rosero-Velásquez, H.; et al. Community Perception and Communication of Volcanic Risk from the Cotopaxi Volcano in Latacunga, Ecuador. Sustainability 2021, 13, 1714. https://doi.org/10.3390/su13041714
Gomez-Zapata JC, Parrado C, Frimberger T, Barragán-Ochoa F, Brill F, Büche K, Krautblatter M, Langbein M, Pittore M, Rosero-Velásquez H, et al. Community Perception and Communication of Volcanic Risk from the Cotopaxi Volcano in Latacunga, Ecuador. Sustainability. 2021; 13(4):1714. https://doi.org/10.3390/su13041714
Chicago/Turabian StyleGomez-Zapata, Juan Camilo, Cristhian Parrado, Theresa Frimberger, Fernando Barragán-Ochoa, Fabio Brill, Kerstin Büche, Michael Krautblatter, Michael Langbein, Massimiliano Pittore, Hugo Rosero-Velásquez, and et al. 2021. "Community Perception and Communication of Volcanic Risk from the Cotopaxi Volcano in Latacunga, Ecuador" Sustainability 13, no. 4: 1714. https://doi.org/10.3390/su13041714
APA StyleGomez-Zapata, J. C., Parrado, C., Frimberger, T., Barragán-Ochoa, F., Brill, F., Büche, K., Krautblatter, M., Langbein, M., Pittore, M., Rosero-Velásquez, H., Schoepfer, E., Spahn, H., & Zapata-Tapia, C. (2021). Community Perception and Communication of Volcanic Risk from the Cotopaxi Volcano in Latacunga, Ecuador. Sustainability, 13(4), 1714. https://doi.org/10.3390/su13041714