The Effects of Rice Husk Biochar Rate on Arbuscular Mycorrhizal Fungi and Growth of Soursop (Annona muricata L.) Seedlings
Abstract
:1. Introduction
- i.
- To determine the establishment of AMF symbiosis with RHB addition at varying application rate.
- ii.
- To determine the effects of RHB and AMF symbiosis on growth of soursop seedlings on soil biological and chemical properties.
2. Materials and Methods
2.1. RHB Mixture to Soils Preparation and Mycorrhizal Inoculation
2.2. Experiment Setup
2.3. Plant Growth Analysis
2.4. Determination of Root Analysis (Root length, Root Volume, Root Surface Area)
2.5. Determination of Soil Microbial and Mycorrhizal Analysis
2.6. Statistical Analysis
3. Results
3.1. Effects of AMF and RHB on Soursop Plant Growth
3.2. Effects of AMF and RHB on Soil Microbial Properties
4. Discussion
4.1. Effects of AMF and RHB on Soursop Plant Growth
4.2. Effects of AMF and RHB on Soursop Soil Microbial Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaewpradit, W.; Toomsan, B.; Cadisch, G.; Vityakon, P.; Limpinuntana, V.; Sejan, P.; Jogloy, S.; Patanothai, A. Mixing groundnut residues and rice straw to improve rice yield and N use efficiency. Field Crops Res. 2009, 110, 130–138. [Google Scholar] [CrossRef]
- Manickam, T.; Cornelissen, G.; Bachmann, R.T.; Illani, Z.I.; Mulder, J.; Sarah, E.H. Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons. Sustainability 2015, 7, 16756–16770. [Google Scholar] [CrossRef] [Green Version]
- Yamato, M.; Okimori, Y.; Wibowo, I.F.; Anshiori, S.; Ogawa, M. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci. Plant Nutr. J. 2006, 52, 489–495. [Google Scholar] [CrossRef]
- Chan, K.; Van Zwieten, L.; Meszaros, L.; Downie, A.; Joseph, S. Agronomic values of greenwater biochar as a soil amendment. Soil Res. 2008, 45, 629–634. [Google Scholar] [CrossRef]
- Deenik, J.L.; McClellan, T.; Uehara, G.; Antal, N.J.; Campbell, S. Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci. Soc. Am. J. 2010, 74, 1259–1270. [Google Scholar] [CrossRef]
- Ezawa, T.; Smith, S.E.; Smith, F.E. P metabolism and transport in MA fungi. Plant Soil 2002, 244, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B. Prehistorically modified soils of central Amazonia: A model for sustainable agriculture in the twenty first century. Philosophical transactions of the royal society. Biol. Sci. 2007, 362, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaafar, N.M.; Clode, P.L.; Abbott, L.K. Soil microbial responses to biochars varying in particle size, surface and pore properties. Pedosphere 2015, 25, 770–780. [Google Scholar] [CrossRef]
- Blackwell, P.; Krull, E.; Butler, G.; Herbert, A.; Solaiman, Z. Effect of banded biochar on dryland wheat production and fertiliser use in south western Australia: An agronomic and economic perspective. Aust. J. Soil Res. 2010, 48, 531–545. [Google Scholar] [CrossRef]
- Lai, L.; Ismail, M.R.; Muharam, F.M.; Yusof, M.M.; Ismail, R.; Jaafar, N.M. Effects of rice straw biochar and nitrogen fertilizer on rice growth and yield. Asian J. Crop Sci. 2017, 9, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Milla, O.V.; Rivera, E.B.; Huang, W.J.; Chien, C.; Wang, Y.M. Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field test. J. Soil Sci. Plant Nutr. 2013, 13, 251–266. [Google Scholar]
- Antal, M.J.; Groli, M. The art, science and technology of charcoal production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Chan, K.Y.; Xu, Z. Biochar: Nutrient properties and their enhancement. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 67–84. [Google Scholar]
- Rovica, R. Oil Palm Empty Fruit Bunch Biochar and Compost as Amendment for Improvement of Polybag-Growing Media and Oil Palm Seedlings. Master’s Thesis, Universiti Putra Malaysia, Seri Kembangan, Malaysia, 2017. [Google Scholar]
- Zahidah, A.R.; Rosenani, A.B.; Siti Hajar, A.; Radziah, O. Effect of rice husk biochar and chicken manure as a soil amendment on yield, heavy metals and nutrient uptake of Phyllanthus niruri. Int. J. Agric. Environ. Res. 2017, 3, 3667–3681. [Google Scholar]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; de Macedo, J.L.V.; Blum, W.E.H.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Solaiman, Z.; Murphy, D.V.; Abbott, L.K. Biochars influence seed germination and early growth of seedlings. Plant Soil 2011, 353, 237–287. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhang, A.; Ji, C.Y.; Joseph, S.; Bian, R.J.; Li, L.Q.; Pan, G.X.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant Soil 2013, 373, 583–594. [Google Scholar] [CrossRef]
- Ndor, E.; Jayeoba, O.J.; Asadu, C.L.A. Effect of biochar soil amendment on soil properties and yield of sesame varieties in Lafia, Nigeria. Am. J. Exp. Agric. 2015, 9, 1–8. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Downie, A.; Morris, S.; Petty, S.; Rust, J.; Chan, K.Y. A glasshouse study on the interaction of low mineral ash biochar with N in a sandy soil. Aust. J. Soil Res. 2010, 48, 569–576. [Google Scholar] [CrossRef]
- Mekuria, W.; Noble, A. The role of biochar in ameliorating disturbed soils and sequestering soil carbon in tropical agriculture production systems. Appl. Environ. Soil Sci. 2013, 2013, 354965. [Google Scholar] [CrossRef] [Green Version]
- Jaafar, N.M.; Clode, P.L.; Abbott, L.K. Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. J. Integr. Agric. 2014, 13, 483–490. [Google Scholar] [CrossRef]
- Gerdemann, J.W.; Nicolsons, T.H. Spores of mycorrhizal endogone extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Parkinson, D.D.; Gray, R.G.; Williams, S.T. Methods for Studying the Ecology of Soils Microorganisms; Blackwell Publishing: Oxford, UK, 1971; p. 116. [Google Scholar]
- Sarah Chandran, C.; Thomas, S.; Unni, M.R. Organic Farming: New Advances towards Sustainable Agriculture System; Spinger: Cham, Switzerland, 2019; p. 127. [Google Scholar]
- Masulili, A.; Utomo, W.H.; Syechfani, M. Rice husk biochar for rice-based cropping system in acid soil. The characterisation of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in west Kalimantan, Indonesia. J. Agric. Sci. 2010, 2, 39–47. [Google Scholar]
- Oka, H.; Rungrattanaksin, W. Improvement of sandy soil in the northeast by using carbonized rice husks. ICA Tech. Rep. 1993, 13, 40–42. [Google Scholar]
- Doyle, R.B.; Close, D.C. Biochar media addition impacts apple rootstock growth and nutrition. Hort Sci. 2014, 49, 1188–1193. [Google Scholar]
- Brennan, A.; Jimenez, E.M.; Puschenreiter, M.; Alberquerque, J.A.; Switzer, C. Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil. Plant Soil 2014, 379, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Hodge, A. Microbial ecology of the arbuscular mycorrhiza. Mini Review in FEMS. Microbiol. Ecol. 2000, 32, 91–96. [Google Scholar] [CrossRef]
- Syafieqa, M.Z. Effect of Different Mycorrhizal Inoculums on Growth and Yield of Okra (Ablemoschus esculentus L.); Universiti Putra Malaysia: Seri Kembangan, Malaysia, 2015. [Google Scholar]
- Syahidah, N.R. Effects of Arbuscular Mycorrhiza Fungi and Fertilizer on the Growth of Soursop (Annona muricata L.); Universiti Putra Malaysia: Seri Kembangan, Malaysia, 2016. [Google Scholar]
- Silva, D.K.A.; Silva, F.S.B.; Yano-Melo, A.M.; Maia, L.C. Uso de vermicomposto favorece o crescimento de mudas de gravioleira (Annona muricata L. ‘Muricata’) associada a fungos micorrízicos arbusculares. Acta Bot Bras. 2008, 22, 863–869. [Google Scholar] [CrossRef] [Green Version]
- Azcon-Aguilar, C.; Azcon, R.; Encina, C.L.; Barea, J.M. Effect of arbuscular mycorrhiza on the growth and development of micropropagated Annona cherimola plants. Agric. Food Sci. 1994, 3, 281–288. [Google Scholar] [CrossRef]
- Johansson, R.C.; Gowda, P.H.; Mulla, D.J.; Dalzell, B.J. Metamodelling phosphorus best management practices for policy use: A frontier approach. Agric. Econ. 2004, 30, 63–74. [Google Scholar] [CrossRef]
- Medina, A.; Probanza, A.; Manero, F.G.; Azcon, R. Interaction of arbuscular mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity (thymidine and leucine incorporation) and fungal biomass (ergosterol and chitin). Appl. Soil Ecol. 2003, 22, 15–28. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
Treatment | Plant Biomass (g) | |
---|---|---|
Shoot | Root | |
T1 | 2.35 c | 0.92 c |
T2 | 6.15 b | 3.50 ab |
T3 | 8.73 ab | 2.27 bc |
T4 | 10.44 a | 4.70 a |
T5 | 8.53 ab | 3.83 ab |
T6 | 10.28 a | 4.19 ab |
T7 | 7.90 ab | 3.76 ab |
T8 | 7.89 ab | 3.67 ab |
Interaction (AMF*RHB) | 0.0237 * | 0.0166 * |
Treatment | Soil Microbial Population (log10 cfu/g Dry Soil) | ||
---|---|---|---|
Bacterial | Fungal | Actinomycetes | |
T1 | 5.05 a | 2.16 a | 3.53 a |
T2 | 4.79 b | 2.22 a | 3.31 ab |
T3 | 5.12 a | 2.28 a | 2.77 c |
T4 | 5.01 a | 2.34 a | 3.12 abc |
T5 | 4.90 ab | 1.53 a | 2.90 c |
T6 | 5.05 a | 1.94 a | 2.93 bc |
T7 | 5.05 a | 2.20 a | 3.12 bc |
T8 | 4.97 ab | 2.14 a | 3.17 abc |
Interaction (AMF*RHB) | 0.0533 * | 0.2046 ns | 0.0164 |
Treatment | Root infection (%) | No of Spore/10 g of Soil |
---|---|---|
T1 (Control) | 45.00 a | 3.00 d |
T2 | 43.89 a | 18.67 a |
T3 | 83.90 a | 3.00 d |
T4 | 73.75 a | 15.50 ab |
T5 | 77.50 a | 1.67 d |
T6 | 70.83 a | 8.67 c |
T7 | 70.84 a | 1.67 d |
T8 | 80.42 a | 11.00 bc |
Interaction (AMF*RHB) | 0.0636 ns | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harun, N.S.N.; Jaafar, N.M.; Sakimin, S.Z. The Effects of Rice Husk Biochar Rate on Arbuscular Mycorrhizal Fungi and Growth of Soursop (Annona muricata L.) Seedlings. Sustainability 2021, 13, 1817. https://doi.org/10.3390/su13041817
Harun NSN, Jaafar NM, Sakimin SZ. The Effects of Rice Husk Biochar Rate on Arbuscular Mycorrhizal Fungi and Growth of Soursop (Annona muricata L.) Seedlings. Sustainability. 2021; 13(4):1817. https://doi.org/10.3390/su13041817
Chicago/Turabian StyleHarun, Nur Saidahtul Nadiah, Noraini Md. Jaafar, and Siti Zaharah Sakimin. 2021. "The Effects of Rice Husk Biochar Rate on Arbuscular Mycorrhizal Fungi and Growth of Soursop (Annona muricata L.) Seedlings" Sustainability 13, no. 4: 1817. https://doi.org/10.3390/su13041817
APA StyleHarun, N. S. N., Jaafar, N. M., & Sakimin, S. Z. (2021). The Effects of Rice Husk Biochar Rate on Arbuscular Mycorrhizal Fungi and Growth of Soursop (Annona muricata L.) Seedlings. Sustainability, 13(4), 1817. https://doi.org/10.3390/su13041817