Impact of the COVID-19 Pandemic on Farm Households’ Vulnerability to Multidimensional Poverty in Rural China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Descriptive Analysis of the Indexes
2.1.1. Data Source
2.1.2. Descriptive Analysis of the Indexes
2.2. Methodology
2.2.1. Data Normalization
2.2.2. Multidimensional Poverty Vulnerability Model
2.2.3. Estimation by Propensity Score Matching
3. Results
3.1. Measurement of Vulnerability to Multidimensional Poverty
3.2. Analysis of the Impact of COVID-19 on Farm Households’ Vulnerability to Multidimensional Poverty
3.2.1. Propensity Score Matching and Assessment
Assessing Conformity to Balance Requirement
Assessing Matching Quality
3.2.2. Analysis of ATT
4. Conclusions and Suggestions
4.1. Conclusions
4.2. Discussion
4.3. Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tisdell, C.A. Economic, social and political issues raised by the COVID-19 pandemic. Econ. Anal. Policy 2020, 68, 17–28. [Google Scholar] [CrossRef]
- Jeris, S.S.; Nath, R.D. Covid-19, oil price and UK economic policy uncertainty: Evidence from the ARDL approach. Quant. Financ. Econ. 2020, 4, 503–514. [Google Scholar] [CrossRef]
- Alradhawi, M.; Shubber, N.; Sheppard, J.; Ali, Y. Effects of the COVID-19 pandemic on mental well-being amongst individuals in society—A letter to the editor on “The socio-economic implications of the coronavirus and COVID-19 pandemic: A review”. Int. J. Surg. 2020, 78, 147–148. [Google Scholar] [CrossRef] [PubMed]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Bajardi, P.; Poletto, C.; Ramasco, J.J.; Tizzoni, M.; Colizza, V.; Vespignani, A. Human Mobility Networks, Travel Restrictions, and the Global Spread of 2009 H1N1 Pandemic. PLoS ONE 2011, 6, e16591. [Google Scholar] [CrossRef] [Green Version]
- Adda, J. Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data. Q. J. Econ. 2016, 131, 891–941. [Google Scholar] [CrossRef] [Green Version]
- Seleiman, M.F.; Selim, S.; Alhammad, B.A.; Alharbi, B.M.; Juliatti, F.C. Will novel coronavirus (COVID-19) pandemic impact agriculture, food security and animal sectors? Biosci. J. 2020, 36, 1315–1326. [Google Scholar] [CrossRef]
- Ambrus, A.; Field, E.; Gonzalez, R. Loss in the Time of Cholera: Long-Run Impact of a Disease Epidemic on the Urban Landscape. Am. Econ. Rev. 2020, 110, 475–525. [Google Scholar] [CrossRef] [Green Version]
- Gong, B.; Zhang, S.; Yuan, L.; Chen, K.Z. A balance act: Minimizing economic loss while controlling novel coronavirus pneumonia. J. Chin. Gov. 2020, 5, 249–268. [Google Scholar] [CrossRef] [Green Version]
- Beutels, P.; Jia, N.; Zhou, Q.Y.; Smith, R.; Cao, W.C.; De Vlas, S.J. The economic impact of SARS in Beijing, China. Trop. Med. Int. Health 2009, 14, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Su, M. A preliminary assessment of the impact of COVID-19 on environment—A case study of China. Sci. Total Environ. 2020, 728, 138915. [Google Scholar] [CrossRef]
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Piontti, A.P.Y.; Mu, K.; Rossi, L.; Sun, K.; et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 2020, 368, 395–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.H.; Chi, Y.; Zhao, W.J.; Hu, Z.W.; Duan, F.Z. Village-level multidimensional poverty measurement in China: Where and how. J. Geogr. Sci. 2018, 28, 1444–1466. [Google Scholar] [CrossRef] [Green Version]
- Alkire, S.; Foster, J. Counting and multidimensional poverty measurement. J. Public Econ. 2011, 95, 476–487. [Google Scholar] [CrossRef]
- Chen, K.M.; Leu, C.H.; Wang, T.M. Measurement and Determinants of Multidimensional Poverty: Evidence from Taiwan. Soc. Indic. Res. 2019, 145, 459–478. [Google Scholar] [CrossRef]
- Adeoye, I.D.; Seini, W.; Sarpong, D.; Amegashie, D. Effect of off-farm income on multi-dimensional poverty among rural farm households in Nigeria. Int. J. Soc. Econ. 2019, 46, 1081–1094. [Google Scholar] [CrossRef]
- Zhang, H.M.; Xu, Z.D.; Wu, K.; Zhou, D.Q.; Wei, G. Multi-dimensional poverty measurement for photovoltaic poverty alleviation areas: Evidence from pilot counties in China. J. Clean. Prod. 2019, 241, 118382. [Google Scholar] [CrossRef]
- Pan, J.; Hu, Y. Spatial Identification of Multi-dimensional Poverty in Rural China: A Perspective of Nighttime-Light Remote Sensing Data. J. Indian Soc. Remote. Sens. 2018, 46, 1093–1111. [Google Scholar] [CrossRef]
- Alkire, S.; Fang, Y. Dynamics of Multidimensional Poverty and Uni-dimensional Income Poverty: An Evidence of Stability Analysis from China. Soc. Indic. Res. 2019, 142, 25–64. [Google Scholar] [CrossRef]
- Qi, W.P.; Wang, Y.H.; Zhao, W.J.; Liagn, C.X.; Cheng, X. Multidimensional poverty measurement of poverty-stricken counties in China’s 14 contiguous destitute areas considering ecological environment. J. Appl. Ecol. 2018, 29, 3760–3772. [Google Scholar]
- Singh, N.; Kaur, J.; Uppal, A. Multi-dimensional Poverty among the Persons with Disability in India. Indian J. Econ. Dev. 2018, 14, 600–611. [Google Scholar] [CrossRef]
- Bárcena-Martín, E.; Pérez-Moreno, S.; Rodríguez-Díaz, B. Rethinking multidimensional poverty through a multi-criteria analysis. Econ. Model. 2020, 91, 313–325. [Google Scholar] [CrossRef]
- Acconcia, A.; Carannante, M.; Misuraca, M.; Scepi, G. Measuring Vulnerability to Poverty with Latent Transition Analysis. Soc. Indic. Res. 2020, 151, 1–31. [Google Scholar] [CrossRef]
- Azeem, M.M.; Mugera, A.W.; Schilizzi, S. Poverty and vulnerability in the Punjab, Pakistan: A multilevel analysis. J. Asian Econ. 2016, 44, 57–72. [Google Scholar] [CrossRef]
- Celidoni, M. Vulnerability to poverty: An empirical comparison of alternative measures. Appl. Econ. 2013, 45, 1493–1506. [Google Scholar] [CrossRef] [Green Version]
- Alkire, S.; Apablaza, M.; Chakravarty, S.; Yalonetzky, G. Measuring chronic multidimensional poverty. J. Policy Model. 2017, 39, 983–1006. [Google Scholar] [CrossRef] [Green Version]
- Gloede, O.; Menkhoff, L.; Waibel, H. Shocks, Individual Risk Attitude, and Vulnerability to Poverty among Rural Households in Thailand and Vietnam. World Dev. 2015, 71, 54–78. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, M. Measuring Vulnerability to Multidimensional Poverty. Soc. Indic. Res. 2020, 148, 67–103. [Google Scholar] [CrossRef] [Green Version]
- Azeem, M.M.; Mugera, A.W.; Schilizzi, S. Vulnerability to Multi-Dimensional Poverty: An Empirical Comparison of Alternative Measurement Approaches. J. Dev. Stud. 2018, 54, 1612–1636. [Google Scholar] [CrossRef]
- Omotoso, K.O.; Adesina, J.O.; Gbadegesin, T.F. Children on the Edge: Estimating Children’s Vulnerability to Multidimensional Poverty in Post-Apartheid South Africa. Child Indic. Res. 2020, 13, 1155–1174. [Google Scholar] [CrossRef]
- Gregorioa, G.B.; Ancog, R.C. Assessing the Impact of the COVID-19 Pandemic on Agricultural Production in Southeast Asia: Toward Transformative Change in Agricultural Food Systems. Asian J. Agric. Dev. 2020, 17, 1–13. [Google Scholar] [CrossRef]
- Hoang, T.T.H.; Van Rompaey, A.; Meyfroidt, P.; Govers, G.; Vu, K.C.; Nguyen, A.T.; Hens, L.; Vanacker, V. Impact of tourism development on the local livelihoods and land cover change in the Northern Vietnamese highlands. Environ. Dev. Sustain. 2020, 22, 1371–1395. [Google Scholar] [CrossRef]
- Dalatu, P.I.; Midi, H. New Approaches to Normalization Techniques to Enhance K-Means Clustering Algorithm. Malays. J. Math. Sci. 2020, 14, 41–62. [Google Scholar]
- Wang, B.H.; Zhang, S. A subjective and objective integration approach of determining weights for trustworthy measurement. IEEE Access 2018, 6, 25829–25835. [Google Scholar] [CrossRef]
- Mutabazi, K.D.; Sieber, S.; Maeda, C.; Tscherning, K. Assessing the determinants of poverty and vulnerability of smallholder farmers in a changing climate: The case of Morogoro region, Tanzania. Reg. Environ. Chang. 2015, 15, 1243–1258. [Google Scholar] [CrossRef]
- Calvo, C. Vulnerability to Multidimensional Poverty: Peru, 1998–2002. World Dev. 2008, 36, 1011–1020. [Google Scholar] [CrossRef]
- Andrilion, A.; Pirracchio, R.; Chevret, S. Performance of propensity score matching to estimate causal effects in small samples. Stat. Methods Med Res. 2020, 29, 644–658. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Toledano, B.I.; Kallas, Z.; Palmeros Rojas, O.; Gil, J.M. Determinant Factors of the Adoption of Improved Maize Seeds in Southern Mexico: A Survival Analysis Approach. Sustainability 2018, 10, 3543. [Google Scholar] [CrossRef] [Green Version]
- Habiyaremye, A. Estimating the impact of sericulture adoption on farmer income in Rwanda: An application of propensity score matching. Agrekon 2017, 56, 296–311. [Google Scholar] [CrossRef] [Green Version]
- Sohag, K.; Mahmud, K.T.; Alam, F.; Samargandi, N. Can Zakat System Alleviate Rural Poverty in Bangladesh? A Propensity Score Matching Approach. J. Poverty 2015, 19, 261–277. [Google Scholar] [CrossRef]
- Li, D.Q.; Tang, X.S.; Zhou, C.B.; Phoon, K.K. Characterization of uncertainty in probabilistic model using bootstrap method and its application to reliability of piles. Appl. Math. Model. 2015, 39, 5310–5326. [Google Scholar] [CrossRef]
Variabl Type | Variable Name | Variable Description | Control Group | Treated Group | ||
---|---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | |||
Quality of materials | Quality of safe housing | Brick + concrete house = 3; Brick + tile or brick + wood house = 2; Soil + wood house = 1 | 2.83 | 0.40 | 2.89 | 0.33 |
Safety of drinking water | Tap water = 4, Well water = 3, River water = 2, Other = 1 | 3.54 | 0.57 | 3.50 | 0.57 | |
Average cultivated land area per household member | Cultivated land area/household size | 10.00 | 1.13 | 10.13 | 1.09 | |
Income level | Average net income per household member | Net household income/household size | 10,531.39 | 4493.89 | 10,133.78 | 4797.48 |
Wage income | Income from rural migrant workers in the household | 13,832.26 | 10,091.82 | 11,983.18 | 12,424.89 | |
Property income | Property income from household land transfer and dividends and so forth. | 2954.60 | 2736.02 | 3449.52 | 3303.62 | |
Health status | Physical conditions | Healthy = 4, Chronic disease = 3, Serious illness = 2, Severe disability = 1 | 3.00 | 0.71 | 3.08 | 0.77 |
Medical burden ratio | Medical expenses/total household income | 1.24 | 0.51 | 3.54 | 0.80 | |
Healthcare quality | Very good = 4, Good = 3, Average = 2, Poverty-stricken = 1 | 3.54 | 0.59 | 3.51 | 0.58 | |
Employment status | Labor skill training | Did not participate = 0, Participated = 1 | 0.92 | 0.27 | 0.39 | 0.49 |
Number of rural migrant workers | Number of rural migrant workers in the household | 1.14 | 0.86 | 0.83 | 0.77 | |
Public welfare job | Number of household members with public welfare jobs | 0.56 | 0.52 | 0.61 | 0.69 | |
Industrial development | Industry support fund | With industry support fund = 1, Without industry support fund = 0 | 0.78 | 0.42 | 0.82 | 0.38 |
Industrial development outcome | Very good = 4, Good = 3, Average = 2, Poverty-stricken = 1 | 3.39 | 0.53 | 3.31 | 0.49 | |
Participation in cooperative businesses | Participated = 1, Did not participate = 0 | 0.67 | 0.47 | 0.22 | 0.41 | |
Covariate | Type of farm household | General household = 1, Household lifted out of poverty = 2, Household with the minimum living guarantee = 3, Household with the five guarantees = 4 | 1.64 | 0.56 | 1.57 | 0.56 |
Household size | Number of people in the household | 2.32 | 1.06 | 2.78 | 1.19 | |
Gender of household head | Male = 1, Female = 0 | 0.82 | 0.38 | 0.87 | 0.33 | |
Education level of household head | University = 4, High school = 3, Junior high school = 2, Elementary school or below = 1 | 1.39 | 0.55 | 1.46 | 0.56 | |
Ethnicity | Han = 1, Ethnic minority = 0 | 0.70 | 0.46 | 0.72 | 0.45 | |
Number of people out of the labor force | Number of people in the household who are out of the labor force | 0.18 | 0.43 | 0.19 | 0.44 | |
Dependency ratio | Number of elderly over 60 years and children under 16 years/household size | 1.16 | 0.85 | 1.04 | 0.91 | |
Sanitary condition | Very good = 4, Good = 3, Average = 2, Poverty-stricken = 1 | 3.58 | 0.56 | 3.54 | 0.55 | |
Microfinance for poverty alleviation | Applied for microfinance for poverty alleviation = 2, Did not apply = 1 | 0.29 | 0.45 | 0.18 | 0.49 | |
Transportation conditions | Very convenient = 4, Convenient = 3, average = 2, Not convenient = 1 | 3.60 | 0.57 | 1.90 | 0.55 | |
Communication facilities | Very good = 4, Good = 3, Average = 2, Poverty-stricken = 1 | 3.57 | 0.57 | 1.89 | 0.59 |
Dimension | Group | Maximum | Upper Quartile | Median | Lower Quartile | Minimum | Average | Standard Deviation | Coefficient of Variation |
---|---|---|---|---|---|---|---|---|---|
Vulnerability to material deprivation | Overall | 0.017 | 0.006 | 0.005 | 0.004 | 0.001 | 0.006 | 0.002 | 0.307 |
Control group | 0.017 | 0.006 | 0.005 | 0.005 | 0.001 | 0.006 | 0.002 | 0.301 | |
Treated group | 0.016 | 0.006 | 0.005 | 0.004 | 0.001 | 0.006 | 0.002 | 0.310 | |
Vulnerability to income deprivation | Overall | 0.497 | 0.292 | 0.268 | 0.239 | 0.023 | 0.265 | 0.063 | 0.238 |
Control group | 0.395 | 0.280 | 0.256 | 0.211 | 0.023 | 0.237 | 0.065 | 0.274 | |
Treated group | 0.497 | 0.301 | 0.274 | 0.254 | 0.172 | 0.283 | 0.054 | 0.189 | |
Vulnerability to health deprivation | Overall | 0.256 | 0.040 | 0.022 | 0.012 | 0.002 | 0.030 | 0.027 | 0.901 |
Control group | 0.256 | 0.036 | 0.018 | 0.010 | 0.003 | 0.027 | 0.027 | 0.973 | |
Treated group | 0.250 | 0.042 | 0.024 | 0.012 | 0.002 | 0.031 | 0.027 | 0.854 | |
Vulnerability to employment deprivation | Overall | 0.691 | 0.466 | 0.446 | 0.414 | 0.048 | 0.439 | 0.077 | 0.176 |
Control group | 0.535 | 0.459 | 0.439 | 0.370 | 0.048 | 0.408 | 0.085 | 0.209 | |
Treated group | 0.691 | 0.471 | 0.449 | 0.424 | 0.321 | 0.461 | 0.063 | 0.136 | |
Vulnerability to industrial development deprivation | Overall | 0.238 | 0.110 | 0.079 | 0.060 | 0.029 | 0.086 | 0.032 | 0.378 |
Control group | 0.199 | 0.105 | 0.074 | 0.060 | 0.029 | 0.082 | 0.029 | 0.360 | |
Treated group | 0.238 | 0.113 | 0.083 | 0.059 | 0.031 | 0.088 | 0.034 | 0.386 | |
Vulnerability to multidimensional deprivation | Overall | 0.164 | 0.067 | 0.050 | 0.040 | 0.018 | 0.056 | 0.026 | 0.464 |
Control group | 0.159 | 0.058 | 0.049 | 0.038 | 0.018 | 0.051 | 0.017 | 0.345 | |
Treated group | 0.164 | 0.072 | 0.050 | 0.042 | 0.018 | 0.060 | 0.030 | 0.499 |
Variable | Mean | T-Test | V(T)/ | |||
---|---|---|---|---|---|---|
Treated Group | Control Group | %bias | T | P > T | V(C) | |
Dependency ratio | 0.26531 | 0.2585 | 3.1 | 0.51 | 0.608 | 1.08 |
Number of people out of the labor force | 0.06037 | 0.06675 | −5.9 | −0.88 | 0.38 | 0.85 |
Sanitary condition | 0.12798 | 0.13265 | −3.4 | −0.55 | 0.584 | 0.88 |
Gender of household head | 0.17347 | 0.18707 | −3.8 | −0.61 | 0.544 | |
Ethnicity of household head | 0.35544 | 0.38435 | −6.4 | −1.03 | 0.305 | |
Education level of household head | 0.83787 | 0.84297 | −2.8 | −0.45 | 0.652 | 0.94 |
Household size | 0.25624 | 0.27239 | −8.6 | −1.39 | 0.166 | 0.92 |
Type of farm household | 0.19501 | 0.20011 | −2.7 | −0.45 | 0.656 | 0.97 |
Microfinance for poverty alleviation | 0.63435 | 0.61224 | 4.7 | 0.78 | 0.434 | |
Convenience in transportation | 0.1559 | 0.1695 | −7.2 | −1.15 | 0.248 | 0.82 |
Communication facilities | 0.17687 | 0.18141 | −2.3 | −0.38 | 0.702 | 0.88 |
Matching Approach | Quality Indicator | Matching Quality |
---|---|---|
Before matching | Pseudo-R2 | 0.034 |
Average standardized bias | 13.93 | |
T-test | 44.68 | |
Nearest neighbor matching | Pseudo-R2 | 0.004 |
Average standardized bias | 2.82 | |
T-test | 3.57 | |
Radius matching (0.005) | Pseudo-R2 | 0.003 |
Average standardized bias | 4.02 | |
T-test | 9.44 | |
Kernel matching (0.005) | Pseudo-R2 | 0.002 |
Average standardized bias | 4.12 | |
T-test | 10.82 |
Variable Sample | Matching Approach | Treated Group | Control Group | ATT | S.E. | T-Stat |
---|---|---|---|---|---|---|
Vulnerability to material deprivation | Nearest neighbor matching (1:1) | 0.098 | 0.108 | −0.010 | 0.006 | −1.63 * |
Kernel matching | 0.106 | 0.115 | −0.010 | 0.007 | −1.49 | |
Radius matching (caliper = 0.1) | 0.108 | 0.116 | −0.008 | 0.007 | −1.19 | |
Vulnerability to income deprivation | Nearest neighbor matching (1:1) | 0.603 | 0.466 | 0.137 | 0.009 | 16.01 *** |
Kernel matching | 0.620 | 0.471 | 0.149 | 0.008 | 18.48 *** | |
Radius matching (caliper = 0.1) | 0.624 | 0.474 | 0.150 | 0.009 | 16.96 *** | |
Vulnerability to health deprivation | Nearest neighbor matching (1:1) | 0.355 | 0.226 | 0.129 | 0.007 | 19.64 *** |
Kernel matching | 0.345 | 0.216 | 0.128 | 0.006 | 21.19 *** | |
Radius matching (caliper = 0.1) | 0.336 | 0.208 | 0.128 | 0.006 | 20.26 *** | |
Vulnerability to employment deprivation | Nearest neighbor matching (1:1) | 0.764 | 0.547 | 0.217 | 0.010 | 21.82 *** |
Kernel matching | 0.765 | 0.553 | 0.212 | 0.008 | 25.27 *** | |
Radius matching (caliper = 0.1) | 0.771 | 0.553 | 0.218 | 0.009 | 23.6 *** | |
Vulnerability to industrial development deprivation | Nearest neighbor matching (1:1) | 0.385 | 0.254 | 0.131 | 0.011 | 11.97 *** |
Kernel matching | 0.393 | 0.250 | 0.142 | 0.010 | 13.7 *** | |
Radius matching (caliper = 0.1) | 0.390 | 0.255 | 0.135 | 0.011 | 12.15 *** | |
Vulnerability to multidimensional deprivation | Nearest neighbor matching (1:1) | 0.455 | 0.330 | 0.125 | 0.004 | 30.17 *** |
Kernel matching | 0.460 | 0.331 | 0.129 | 0.004 | 34.82 *** | |
Radius matching (caliper = 0.1) | 0.460 | 0.331 | 0.129 | 0.004 | 32.44 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.L.; Zhu, K.; Chen, Q.Y.; Li, J.; Cai, J.; He, T.; Liao, H.P. Impact of the COVID-19 Pandemic on Farm Households’ Vulnerability to Multidimensional Poverty in Rural China. Sustainability 2021, 13, 1842. https://doi.org/10.3390/su13041842
Liu YL, Zhu K, Chen QY, Li J, Cai J, He T, Liao HP. Impact of the COVID-19 Pandemic on Farm Households’ Vulnerability to Multidimensional Poverty in Rural China. Sustainability. 2021; 13(4):1842. https://doi.org/10.3390/su13041842
Chicago/Turabian StyleLiu, Yuan Li, Kai Zhu, Qi Yao Chen, Jing Li, Jin Cai, Tian He, and He Ping Liao. 2021. "Impact of the COVID-19 Pandemic on Farm Households’ Vulnerability to Multidimensional Poverty in Rural China" Sustainability 13, no. 4: 1842. https://doi.org/10.3390/su13041842
APA StyleLiu, Y. L., Zhu, K., Chen, Q. Y., Li, J., Cai, J., He, T., & Liao, H. P. (2021). Impact of the COVID-19 Pandemic on Farm Households’ Vulnerability to Multidimensional Poverty in Rural China. Sustainability, 13(4), 1842. https://doi.org/10.3390/su13041842