Agricultural Innovations to Reduce the Health Impacts of Dams
Abstract
:1. Introduction
2. Agricultural Innovations to Reduce the Negative Impacts of Dams
2.1. Restoring Natural Predators of Parasite-Bearing Snails in Dammed Watersheds
2.2. Removing Submerged Aquatic Vegetation and Transforming It into an Agricultural Resource
2.3. Restoring Environmental Flows
2.4. Integrating Agriculture and Aquaculture
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC Global Warming of 1.5 °C. Available online: https://www.ipcc.ch/sr15/ (accessed on 8 January 2021).
- Dillon, A.; Fishman, R. Dams: Effects of Hydrological Infrastructure on Development. Annu. Rev. Resour. Econ. 2019, 11, 125–148. [Google Scholar] [CrossRef]
- Ansar, A.; Flyvbjerg, B.; Budzier, A.; Lunn, D. Should We Build More Large Dams? The Actual Costs of Hydropower Megaproject Development. Energy Policy 2014, 69, 43–56. [Google Scholar] [CrossRef] [Green Version]
- World Commission on Dams. Dams and Development: A New Framework for Decision-Making—The Report of the World Commission on Dams; Earthscan: Sterling, VA, USA, 2000; ISBN 1-134-89805-3. [Google Scholar]
- Nilsson, C.; Berggren, K. Alterations of Riparian Ecosystems Caused by River Regulation: Dam Operations Have Caused Global-Scale Ecological Changes in Riparian Ecosystems. How to Protect River Environments and Human Needs of Rivers Remains One of the Most Important Questions of Our Time. BioScience 2000, 50, 783–792. [Google Scholar] [CrossRef]
- Jobin, W. Dams and Disease: Ecological Design and Health Impacts of Large Dams, Canals and Irrigation Systems; Routledge: New York, NY, USA, 1999. [Google Scholar]
- Acreman, M. Managed Flood Releases from Reservoirs: Issues and Guidance; Centre for Ecology and Hydrology: Wallingford, UK, 2000; p. 96. [Google Scholar]
- Richter, B.D.; Postel, S.; Revenga, C.; Scudder, T.; Lehner, B.; Churchill, A.; Chow, M. Lost in Development’s Shadow: The Downstream Human Consequences of Dams. Water Altern. 2010, 3, 29. [Google Scholar]
- Duflo, E.; Pande, R. Dams. Q. J. Econ. 2007, 122, 601–646. [Google Scholar] [CrossRef]
- Strobl, E.; Strobl, R.O. The Distributional Impact of Dams: Evidence from Cropland Productivity in Africa. J. Dev. Econ. 2011, 96, 432–450. [Google Scholar] [CrossRef] [Green Version]
- Adams, W.M. Wasting the Rain: Rivers, People and Planning in Africa; Earthscan: London, UK, 1992; ISBN 978-1-85383-089-1. [Google Scholar]
- Saarnak, N.L. Flood Recession Agriculture in the Senegal River Valley. Geogr. Tidsskr. Dan. J. Geogr. 2003, 103, 99–113. [Google Scholar] [CrossRef]
- Owusu, K.; Obour, P.B.; Nkansah, M.A. Downstream Effects of Dams on Livelihoods of River-Dependent Communities: The Case of Ghana’s Kpong Dam. Geogr. Tidsskr. Dan. J. Geogr. 2017, 117, 1–10. [Google Scholar] [CrossRef]
- Maingi, J.K.; Marsh, S.E. Quantifying Hydrologic Impacts Following Dam Construction along the Tana River, Kenya. J. Arid Environ. 2002, 50, 53–79. [Google Scholar] [CrossRef]
- Lerer, L.B.; Scudder, T. Health Impacts of Large Dams. Environ. Impact Assess. Rev. 1999, 19, 113–123. [Google Scholar] [CrossRef]
- Rohr, J.R.; Barrett, C.B.; Civitello, D.J.; Craft, M.E.; Delius, B.; DeLeo, G.A.; Hudson, P.J.; Jouanard, N.; Nguyen, K.H.; Ostfeld, R.S.; et al. Emerging Human Infectious Diseases and the Links to Global Food Production. Nat. Sustain. 2019, 2, 445–456. [Google Scholar] [CrossRef]
- Steinmann, P.; Keiser, J.; Bos, R.; Tanner, M.; Utzinger, J. Schistosomiasis and Water Resources Development: Systematic Review, Meta-Analysis, and Estimates of People at Risk. Lancet Infect. Dis. 2006, 6, 411–425. [Google Scholar] [CrossRef]
- Lund, A.J.; Sam, M.M.; Sy, A.B.; Sow, O.W.; Ali, S.; Sokolow, S.H.; Merrell, S.B.; Bruce, J.; Jouanard, N.; Senghor, S.; et al. Unavoidable Risks: Local Perspectives on Water Contact Behavior and Implications for Schistosomiasis Control in an Agricultural Region of Northern Senegal. Am. J. Trop. Med. Hyg. 2019, 101, 837–847. [Google Scholar] [CrossRef] [Green Version]
- Ross, A.G.P.; Olveda, R.M.; Chy, D.; Olveda, D.U.; Li, Y.; Harn, D.A.; Gray, D.J.; McManus, D.P.; Tallo, V.; Chau, T.N.P.; et al. Can Mass Drug Administration Lead to the Sustainable Control of Schistosomiasis? J. Infect. Dis. 2015, 211, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Kittur, N.; King, C.H.; Campbell, C.H., Jr.; Kinung’hi, S.; Mwinzi, P.N.M.; Karanja, D.M.S.; N’Goran, E.K.; Phillips, A.E.; Gazzinelli-Guimaraes, P.H.; Olsen, A.; et al. Persistent Hotspots in Schistosomiasis Consortium for Operational Research and Evaluation Studies for Gaining and Sustaining Control of Schistosomiasis after Four Years of Mass Drug Administration of Praziquantel. Am. J. Trop. Med. Hyg. 2019, 101, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human Schistosomiasis. Lancet 2014, 383, 2253–2264. [Google Scholar] [CrossRef]
- Ezeamama, A.E.; Bustinduy, A.L.; Nkwata, A.K.; Martinez, L.; Pabalan, N.; Boivin, M.J.; King, C.H. Cognitive Deficits and Educational Loss in Children with Schistosome Infection—A Systematic Review and Meta-Analysis. PLoS Negl. Trop. Dis. 2018, 12, e0005524. [Google Scholar] [CrossRef] [Green Version]
- Fenwick, A.; Figenschou, B.H. The Effect of Schistosoma Mansoni Infection on the Productivity of Cane Cutters on a Sugar Estate in Tanzania. Bull. World Health Org. 1972, 47, 567–572. [Google Scholar]
- Barbosa, F.; Pereira Da Costa, D. Incapacitating Effects of Schistosomiasis Mansoni on the Productivity of Sugar-Cane Cutters in Northeastern Brazil. Am. J. Epidemiol. 1981, 114, 102–111. [Google Scholar] [CrossRef]
- Ersado, L. Small-Scale Irrigation Dams, Agricultural Production, and Health: Theory and Evidence from Ethiopia; World Bank Policy Research; The World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Castello, L.; Macedo, M.N. Large-Scale Degradation of Amazonian Freshwater Ecosystems. Glob. Chang. Biol. 2016, 22, 990–1007. [Google Scholar] [CrossRef]
- Johnson, P.T.; Olden, J.D.; Vander Zanden, M.J. Dam Invaders: Impoundments Facilitate Biological Invasions into Freshwaters. Front. Ecol. Environ. 2008, 6, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Golden, C.D.; Shapero, A.; Vaitla, B.; Smith, M.R.; Myers, S.S.; Stebbins, E.; Gephart, J.A. Impacts of Mainstream Hydropower Development on Fisheries and Human Nutrition in the Lower Mekong. Front. Sustain. Food Syst. 2019, 3, 93. [Google Scholar] [CrossRef] [Green Version]
- Alkalay, A.S.; Rosen, O.; Sokolow, S.H.; Faye, Y.P.W.; Faye, D.S.; Aflalo, E.D.; Jouanard, N.; Zilberg, D.; Huttinger, E.; Sagi, A. The Prawn Macrobrachium Vollenhovenii in the Senegal River Basin: Towards Sustainable Restocking of All-Male Populations for Biological Control of Schistosomiasis. PLoS Negl. Trop. Dis. 2014, 8, e3060. [Google Scholar] [CrossRef]
- Halstead, N.T.; Hoover, C.M.; Arakala, A.; Civitello, D.J.; De Leo, G.A.; Gambhir, M.; Johnson, S.A.; Jouanard, N.; Loerns, K.A.; McMahon, T.A.; et al. Agrochemicals Increase Risk of Human Schistosomiasis by Supporting Higher Densities of Intermediate Hosts. Nat. Commun. 2018, 9, 837. [Google Scholar] [CrossRef]
- Hoover, C.M.; Rumschlag, S.L.; Strgar, L.; Arakala, A.; Gambhir, M.; de Leo, G.A.; Sokolow, S.H.; Rohr, J.R.; Remais, J.V. Effects of Agrochemical Pollution on Schistosomiasis Transmission: A Systematic Review and Modelling Analysis. Lancet Planet. Health 2020, 4, e280–e291. [Google Scholar] [CrossRef]
- Khagram, S. Dams and Development: Transnational Struggles for Water and Power; Cornell University Press: Ithaca, NY, USA, 2004; ISBN 978-0-8014-4228-5. [Google Scholar]
- Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. A Global Boom in Hydropower Dam Construction. Aquat. Sci. 2015, 77, 161–170. [Google Scholar] [CrossRef]
- Sokolow, S.H.; Jones, I.; Jocque, M.; La, D.; Cords, O.; Knight, A.; Lund, A.; Wood, C.L.; Lafferty, K.D.; Kuris, A.M.; et al. Nearly 400 Million People Are at Higher Risk of Schistosomiasis Because Dams Block the Migration of Snail-Eating River Prawns. Philos. Trans. R. Soc. Lond. B 2017, 372, 20160127. [Google Scholar] [CrossRef] [Green Version]
- Swartz, S.J.; De Leo, G.A.; Wood, C.L.; Sokolow, S.H. Infection with Schistosome Parasites in Snails Leads to Increased Predation by Prawns: Implications for Human Schistosomiasis Control. J. Exp. Biol. 2015, 218, 3962–3967. [Google Scholar] [CrossRef] [Green Version]
- Sokolow, S.H.; Huttinger, E.; Jouanard, N.; Hsieh, M.H.; Lafferty, K.D.; Kuris, A.M.; Riveau, G.; Senghor, S.; Thiam, C.; N’Diaye, A.; et al. Reduced Transmission of Human Schistosomiasis after Restoration of a Native River Prawn That Preys on the Snail Intermediate Host. Proc. Natl. Acad. Sci. USA 2015, 112, 9650–9655. [Google Scholar] [CrossRef] [Green Version]
- Hoover, C.M.; Sokolow, S.H.; Kemp, J.; Sanchirico, J.N.; Lund, A.J.; Jones, I.J.; Higginson, T.; Riveau, G.; Savaya, A.; Coyle, S.; et al. Modelled Effects of Prawn Aquaculture on Poverty Alleviation and Schistosomiasis Control. Nat. Sustain. 2019, 2, 611–620. [Google Scholar] [CrossRef]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Hammerschlag, N.; Schmitz, O.J.; Flecker, A.S.; Lafferty, K.D.; Sih, A.; Atwood, T.B.; Gallagher, A.J.; Irschick, D.J.; Skubel, R.; Cooke, S.J. Ecosystem Function and Services of Aquatic Predators in the Anthropocene. Trends Ecol. Evol. 2019. [Google Scholar] [CrossRef]
- Sokolow, S.H.; Lafferty, K.D.; Kuris, A.M. Regulation of Laboratory Populations of Snails (Biomphalaria and Bulinus Spp.) by River Prawns, Macrobrachium Spp. (Decapoda, Palaemonidae): Implications for Control of Schistosomiasis. Acta Trop. 2014, 132, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Cogels, F.X.; Coly, A.; Niang, A. Impact of Dam Construction on the Hydrological Regime and Quality of a Sahelian Lake in the River Senegal Basin. Regul. Rivers Res. Manag. 1997, 13, 27–41. [Google Scholar] [CrossRef]
- Manikowski, S.; Strapasson, A. Sustainability Assessment of Large Irrigation Dams in Senegal: A Cost-Benefit Analysis for the Senegal River Valley. Front. Environ. Sci. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- OMVS/GEF Transboundary Diagnostic Environmental Analysis of the Senegal River Basin. Available online: https://iwlearn.net/documents/3196 (accessed on 8 February 2021).
- Klumpp, R.K.; Chu, K.Y. Importance of the Aquatic Weed Ceratophyllum to Transmission of Schistosoma Haematobium in the Volta Lake, Ghana. Bull. World Health Org. 1980, 58, 791–798. [Google Scholar]
- Thomas, J.D.; Tait, A.I. Control of the Snail Hosts of Schistosomiasis by Environmental Manipulation: A Field and Laboratory Appraisal in the Ibadan Area, Nigeria. Philos. Trans. R. Soc. Lond. B 1984, 305, 201–253. [Google Scholar] [CrossRef]
- Haggerty, C.J.E.; Bakhoum, S.; Civitello, D.J.; Leo, G.A.D.; Jouanard, N.; Ndione, R.A.; Remais, J.V.; Riveau, G.; Senghor, S.; Sokolow, S.H.; et al. Aquatic Macrophytes and Macroinvertebrate Predators Affect Densities of Snail Hosts and Local Production of Schistosome Cercariae That Cause Human Schistosomiasis. PLoS Negl. Trop. Dis. 2020, 14, e0008417. [Google Scholar] [CrossRef]
- Wood, C.L.; Sokolow, S.H.; Jones, I.J.; Chamberline, A.J.; Lafferty, K.D.; Kuris, A.M.; Jocque, M.; Hopkins, S.H.; Adams, G.; Buck, J.C.; et al. Precision Mapping of Snail Habitats Provides a Powerful Indicator of Human Schistosomiasis Transmission. Proc. Natl. Acad. Sci. USA 2019, 116, 23182–23191. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Field Use of Molluscicides in Schistosomiasis Control Programmes: An Operational Manual for Programme Managers; World Health Organization (WHO): Geneva, Switzerland, 2017; ISBN 978 92 4 151199 5. [Google Scholar]
- Chu, K.Y. Trials of Ecological and Chemical Measures for the Control of Schistosoma Haematobium Transmission in a Volta Lake Village. Bull. World Health Organ. 1978, 56, 313. [Google Scholar]
- Boelee, E.; Laamrani, H. Environmental Control of Schistosomiasis through Community Participation in a Moroccan Oasis. Trop. Med. Int. Health 2004, 9, 997–1004. [Google Scholar] [CrossRef] [Green Version]
- Quilliam, R.S.; van Niekerk, M.A.; Chadwick, D.R.; Cross, P.; Hanley, N.; Jones, D.L.; Vinten, A.J.A.; Willby, N.; Oliver, D.M. Can Macrophyte Harvesting from Eutrophic Water Close the Loop on Nutrient Loss from Agricultural Land? J. Environ. Manag. 2015, 152, 210–217. [Google Scholar] [CrossRef] [Green Version]
- Traore, O.; Traore, K.; Yaye, A. Characterization of Three Invading Aquatic Plants in Burkina Faso and Their Possible Use for Crop Production. Int. J. Biol. Chem. Sci. 2009, 3. [Google Scholar] [CrossRef]
- Reddy, K.R.; Busk, W.F.D. Nutrient Removal Potential of Selected Aquatic Macrophytes. J. Environ. Qual. 1985, 14, 459–462. [Google Scholar] [CrossRef]
- Becker, J.; Ganatra, A.A.; Kandie, F.; Muhlbauer, L.; Ahlheim, J.; Brack, W.; Torto, B.; Agola, E.L.; McOdimba, F.; Hollert, H.; et al. Pesticide Pollution in Freshwater Paves the Way for Schistosomiasis Transmission. Sci. Rep. 2020, 10, 3650. [Google Scholar] [CrossRef]
- Haggerty, C.J.E.; Delius, B.; Jouanard, N.; Ndao, P.D.; Leo, G.A.D.; Lund, A.J.; Lopez-Carr, D.; Remais, J.V.; Riveau, G.; Sokolow, S.H.; et al. Identifying Low Risk Insecticides to Address Both Food Shortages and the Biocontrol of Human Schistosomiasis. bioRxiv 2021. [Google Scholar] [CrossRef]
- Waddy, B.B. Research into the Health Problems of Man Made Lakes, with Special Reference to Africa. Trans. R. Soc. Trop. Med. Hyg. 1975, 69, 39–50. [Google Scholar] [CrossRef]
- DeGeorges, A.; Reilly, B.K. Dams and Large Scale Irrigation on the Senegal River. Impacts on Man and the Environment. Available online: http://hdr.undp.org/sites/default/files/degeorges_andre.pdf (accessed on 19 February 2018).
- Lautze, J.; Kirshen, P. Dams, Health, and Livelihoods: Lessons from the Senegal, Suggestions for Africa. Int. J. River Basin Manag. 2007, 5, 199–206. [Google Scholar] [CrossRef]
- Sabo, J.L.; Ruhi, A.; Holtgrieve, G.W.; Elliott, V.; Arias, M.E.; Ngor, P.B.; Räsänen, T.A.; Nam, S. Designing River Flows to Improve Food Security Futures in the Lower Mekong Basin. Science 2017, 358, eaao1053. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Olden, J.D. Designing Flows to Resolve Human and Environmental Water Needs in a Dam-Regulated River. Nat. Commun. 2017, 8, 2158. [Google Scholar] [CrossRef]
- Raso, L.; Bader, J.-C.; Weijs, S. Reservoir Operation Optimized for Hydropower Production Reduces Conflict with Traditional Water Uses in the Senegal River. J. Water Resour. Plan. Manag. 2020, 146, 05020003. [Google Scholar] [CrossRef]
- Richter, B.D.; Thomas, G.A. Restoring Environmental Flows by Modifying Dam Operations. Ecol. Soc. 2007, 12, 12. [Google Scholar] [CrossRef]
- Jobin, W. Rapid Health Impact Assessment of Manantali Dam OMVS Energy Project West Africa; World Bank (Africa Technical Department): Washington, DC, USA, 1993; p. 57. [Google Scholar]
- Ofoezie, I.E.; Asaolu, S.O. Water Level Regulation and Control of Schistosomiasis Transmission: A Case Study in Oyan Reservoir, Ogun State, Nigeria. Bull. World Health Organ. 1997, 75, 435–441. [Google Scholar]
- Bianchi, P.R.; Gianelli, L. Water-Related Disease Control via Dam Operation: Balancing Hydropower Production and Malaria Spreading on Kariba Reservoir; Politecnico Milano: Milan, Italy, 2017. [Google Scholar]
- Kibret, S.; Wilson, G.G.; Ryder, D.; Tekie, H.; Petros, B. Can Water-Level Management Reduce Malaria Mosquito Abundance around Large Dams in Sub-Saharan Africa? PLoS ONE 2018, 13, e0196064. [Google Scholar] [CrossRef]
- Dunham, J.B.; Angermeier, P.L.; Crausbay, S.D.; Cravens, A.E.; Gosnell, H.; McEvoy, J.; Moritz, M.A.; Raheem, N.; Sanford, T. Rivers Are Social–Ecological Systems: Time to Integrate Human Dimensions into Riverscape Ecology and Management. Wires Water 2018, 5, e1291. [Google Scholar] [CrossRef]
- Marques, H.L.A.; New, M.B.; Boock, M.V.; Barros, H.P.; Mallasen, M.; Valenti, W.C. Integrated Freshwater Prawn Farming: State-of-the-Art and Future Potential. Rev. Fish. Sci. Aquac. 2016, 24, 264–293. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Sie, M.; Hijmans, R.; Otsuka, K. Increasing Rice Production in Sub-Saharan Africa: Challenges and Opportunities. Adv. Agron. 2007, 94, 55–133. [Google Scholar] [CrossRef]
- Ahmed, N.; Garnett, S.T. Sustainability of Freshwater Prawn Farming in Rice Fields in Southwest Bangladesh. J. Sustain. Agric. 2010, 34, 659–679. [Google Scholar] [CrossRef]
- Kurup, B.M.; Ranjeet, K. Integration of Freshwater Prawn Culture with Rice Farming in Kuttanad, India. Naga WorldFish Cent. Q. 2002, 25, 16–19. [Google Scholar]
- Garchitorena, A.; Sokolow, S.H.; Roche, B.; Ngonghala, C.N.; Jocque, M.; Lund, A.; Barry, M.; Mordecai, E.A.; Daily, G.C.; Jones, J.H.; et al. Disease Ecology, Health and the Environment: A Framework to Account for Ecological and Socio-Economic Drivers in the Control of Neglected Tropical Diseases. Philos. Trans. R. Soc. Lond. B 2017, 372, 20160128. [Google Scholar] [CrossRef]
- Matthews, N.; McCartney, M. Opportunities for Building Resilience and Lessons for Navigating Risks: Dams and the Water Energy Food Nexus. Environ. Prog. Sustain. Energy 2018, 37, 56–61. [Google Scholar] [CrossRef]
- The Nature Conservancy Sustainable Rivers Project. Available online: https://www.nature.org/en-us/what-we-do/our-priorities/protect-water-and-land/land-and-water-stories/sustainable-rivers-project/ (accessed on 15 January 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lund, A.J.; Lopez-Carr, D.; Sokolow, S.H.; Rohr, J.R.; De Leo, G.A. Agricultural Innovations to Reduce the Health Impacts of Dams. Sustainability 2021, 13, 1869. https://doi.org/10.3390/su13041869
Lund AJ, Lopez-Carr D, Sokolow SH, Rohr JR, De Leo GA. Agricultural Innovations to Reduce the Health Impacts of Dams. Sustainability. 2021; 13(4):1869. https://doi.org/10.3390/su13041869
Chicago/Turabian StyleLund, Andrea J., David Lopez-Carr, Susanne H. Sokolow, Jason R. Rohr, and Giulio A. De Leo. 2021. "Agricultural Innovations to Reduce the Health Impacts of Dams" Sustainability 13, no. 4: 1869. https://doi.org/10.3390/su13041869
APA StyleLund, A. J., Lopez-Carr, D., Sokolow, S. H., Rohr, J. R., & De Leo, G. A. (2021). Agricultural Innovations to Reduce the Health Impacts of Dams. Sustainability, 13(4), 1869. https://doi.org/10.3390/su13041869