Water-Energy-Food Nexus: Critical Review, Practical Applications, and Prospects for Future Research
Abstract
:1. Introduction
2. Assessing Existing WEF Nexus Frameworks
- (1)
- a focus on WEF resource security (i.e., availability, accessibility, quality of resources);
- (2)
- (3)
- promotion of innovation and knowledge mobilization;
- (4)
- utilization of robust datasets from multiple sources; and
- (5)
- participatory stakeholder involvement in framework development.
3. Literature Criticisms on the WEF Nexus Concept
4. Efforts to Narrow Gaps and Address Criticisms
4.1. Narrowing Knowledge Gaps
Hoff’s Knowledge Gaps * | Related Studies Addressing the Gaps | |
---|---|---|
A. | Lack of WEF Datasets and Knowledge on: | |
| [46,47,48,49,50] | |
| [51,52,53,54,55] | |
| [56,57,58,59] | |
| [60,61,62,63,64] | |
| [65,66,67,68,69,70] | |
| [71,72,73,74,75] | |
B. | Insufficient Availability of: | |
| [76,77,78,79,80,81] | |
| [16,82,83,84,85,86,87] | |
| [88,89,90,91,92,93,94] | |
C. | Lack of Agreement and Clarity on: | |
| [95,96,97,98] | |
| [99,100,101,102] | |
| [103,104,105] | |
| [8,22,33,44,92,106,107] |
4.2. Addressing Criticisms in WEF Nexus Frameworks
5. Updating the WEF Nexus Frameworks
- Making the nexus relevant for stakeholders and policyThis underlines the importance of participatory engagement to ensure that stakeholders in the water, energy, and food sectors can understand the interlinkages in the nexus and what this means for policy- and decision-making. Several methods could be used such as participatory modelling, group model building (cf. Purwanto et al., 2019), focus group discussions, and surveys and interviews, but the inclusion of relevant stakeholders throughout is critical.
- The issue of reliable data and informationAny WEF nexus study outputs should be based as much as possible on reliable data that are valid and integrated, and that are available with a good level of accessibility to facilitate quantitative analysis and providing robust, defensible results. Ideally, a universal, open-access, WEF database would be developed.
- Creating an adaptable frameworkFramework adaptability is important in the WEF nexus due to the diversity of resources, natural conditions, scales, levels, government, and planning systems, the responsibility of institutions, laws and regulations, and key nexus foci. As such, any framework must have the flexibility to adapt to a diverse set of circumstances.
- Being easily applicableIncorporating the WEF nexus into planning and decision-making systems is essential to move the WEF nexus from a concept to an operational framework that brings real benefits for a more sustainable and integrated policy-making process.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Fraiture, C.; Molden, D.; Wichelns, D. Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture. Agric. Water Manag. 2010, 97, 495–501. [Google Scholar] [CrossRef]
- Sušnik, J. Data-driven quantification of the global water-energy-food system. Resour. Conserv. Recycl. 2018, 133, 179–190. [Google Scholar] [CrossRef]
- Hülsmann, S.; Sušnik, J.; Rinke, K.; Langan, S.; van Wijk, D.; Janssen, A.B.G.; Mooij, W.M. Integrated modelling of water resources: The ecosystem perspective on the nexus approach. Curr. Opin. Environ. Sustain. 2019, 40, 14–20. [Google Scholar] [CrossRef]
- Bizikova, L.; Roy, D.; Swanson, D.; Venema, H.D.; McCandless, M. The Water–Energy–Food Security Nexus: Towards a Practical Planning and Decision-Support Framework for Landscape Investment and Risk Management; International Institute for Sustainable Development (IISD): Winnipeg, MB, Canada, 2013. [Google Scholar]
- Endo, A.; Burnett, K.; Orencio, P.M.; Kumazawa, T.; Wada, C.A.; Ishii, A.; Tsurita, I.; Taniguchi, M. Methods of the water-energy-food nexus. Water 2015, 7, 5806–5830. [Google Scholar] [CrossRef] [Green Version]
- Hoff, H. Understanding the nexus. In Proceedings of the Background Paper for the Bonn2011 Conference: The Water, Energy and Food Security Nexus, Stockholm, Sweden, 16–18 November 2011. [Google Scholar]
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The water-energy-food nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13, 1–26. [Google Scholar] [CrossRef]
- WEF. Global Risks 2011 Six Edition: An Initiative of the Risk Response Network; World Economic Forum: Geneva, Switzerland, 2011. [Google Scholar]
- Walters, W.H. Citation-Based Journal Rankings: Key Questions, Metrics, and Data Sources. IEEE Access 2017, 5, 22036–22053. [Google Scholar] [CrossRef]
- Benson, D.; Gain, A.K.; Rouillard, J.J. Water governance in a comparative perspective: From IWRM to a ‘nexus’ approach? Water Altern. 2015, 8, 756–773. [Google Scholar]
- Bell, A.; Matthews, N.; Zhang, W. Opportunities for Improved Promotion of Ecosystem Services in Agriculture under the Water-Energy-Food Nexus. J. Environ. Stud. Sci. 2016, 6, 183–191. [Google Scholar] [CrossRef]
- ICIMOD. Contribution of Himalayan Ecosystems to Water, Energy and Food Security in South Asia: A Nexus Approach; ICIMOD: Kathmandu, Nepal, 2012. [Google Scholar]
- European Report on Development. Confronting Scarcity: Managing Water, Energy and Land for Inclusive and Sustainable Growth; European Union: Brussels, Belgium, 2012. [Google Scholar]
- Andrews-Speed, P.; Bleischwitz, R.; Boersma, T.; Johnson, C.; Kemp, G.; VanDeveer, S.D. The Global Resource Nexus: The Struggles for Land, Energy, Food, Water, and Minerals; The Transatlantic Academy: Washington, DC, USA, 2012. [Google Scholar]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerstrom, R.; Alfstad, T.; Rogner, H.; Fischer, G.; van Velthuizen, H.; Wiberg, D.; et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Chang. 2013, 3, 621–626. [Google Scholar] [CrossRef]
- UNECE. Reconciling Resource Uses in Transboundary Basins: Assessment of the Water-Food-Energy-Ecosystems Nexus; United Nations: Geneva, Switzerland, 2015. [Google Scholar]
- Flammini, A.; Puri, M.; Pluschke, L.; Dubois, O. Walking the Nexus Talk: Assessing the Water-Energy-Food Nexus in the Context of the Sustainable Energy for All Initiative; Food and Agriculture Organization (FAO): Rome, Italy, 2014. [Google Scholar]
- Bellfield, H.; Leggett, M.; Trivedi, M.; Pareira, J.; Gangga, A. How Can Indonesia Achieve Water, Energy and Food Security without Eroding its Natural Capital? WCS Indonesia and Global Canopy Programme: Jakarta, Indonesia, 2016. [Google Scholar]
- Ramos, E.; Kofinas, D.; Papadopoulou, C.; Papadopoulou, M.; Gardumi, F.; Brouwer, F.; Fournier, M.; Lluis, E.; Domingo, X.; Vamvakeridou-Lyroudia, L.; et al. D1.5: Framework for the Assessment of the Nexus. SIM4NEXUS. 2020. Available online: www.sim4nexus.eu (accessed on 15 January 2021).
- OECD. The Land-Water-Energy Nexus: Biophysical and Economic Consequences; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Shannak, S.; Mabrey, D.; Vittorio, M. Moving from theory to practice in the water–energy–food nexus: An evaluation of existing models and frameworks. Water-Energy Nexus 2018, 1, 17–25. [Google Scholar] [CrossRef]
- de Grenade, R.; House-Peters, L.; Scott, C.A.; Thapa, B.; Mills-Novoa, M.; Gerlak, A.; Verbist, K. The nexus: Reconsidering environmental security and adaptive capacity. Curr. Opin. Environ. Sustain. 2016, 21, 15–21. [Google Scholar] [CrossRef] [Green Version]
- FAO. Accelerating SDG 7 Achievement; Policy Brief 09; Water-Energy-Food Nexus for the review of SDG 7; FAO: Rome, Italy, 2018. [Google Scholar]
- Biggs, E.M.; Bruce, E.; Boruff, B.; Duncan, J.M.A.; Horsley, J.; Pauli, N.; McNeill, K.; Neef, A.; van Ogtrop, F.; Curnow, J.; et al. Sustainable development and the water–energy–food nexus: A perspective on livelihoods. Environ. Sci. Policy 2015, 54, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the Energy, Water and Food Nexus: Towards an Integrated Modelling Approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- Keairns, D.L.; Darton, R.C.; Irabien, A. The Energy-Water-Food Nexus. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 239–262. [Google Scholar] [CrossRef]
- Urbinatti, A.M.; Benites-Lazaro, L.L.; de Carvalho, C.M.; Giatti, L.L. The conceptual basis of water-energy-food nexus governance: Systematic literature review using network and discourse analysis. J. Integr. Environ. Sci. 2020, 17, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Endo, A.; Yamada, M.; Miyashita, Y.; Sugimoto, R.; Ishii, A.; Nishijima, J.; Fujii, M.; Kato, T.; Hamamoto, H.; Kimura, M.; et al. Dynamics of water–energy–food nexus methodology, methods, and tools. Curr. Opin. Environ. Sci. Health 2019, 13, 46–60. [Google Scholar] [CrossRef]
- Taniguchi, M.; Endo, A.; Gurdak, J.J.; Swarzenski, P. Water-Energy-Food Nexus in the Asia-Pacific Region. J. Hydrol. Reg. Stud. 2017, 11, 1–8. [Google Scholar] [CrossRef]
- Dai, J.; Wu, S.; Han, G.; Weinberg, J.; Xie, X.; Wu, X.; Song, X.; Jia, B.; Xue, W.; Yang, Q. Water-energy nexus: A review of methods and tools for macro-assessment. Appl. Energy 2018, 210, 393–408. [Google Scholar] [CrossRef]
- Smajgl, A.; Ward, J.; Pluschke, L. The water-food-energy Nexus-Realising a new paradigm. J. Hydrol. 2016, 533, 533–540. [Google Scholar] [CrossRef]
- Wichelns, D. The water-energy-food nexus: Is the increasing attention warranted, from either a research or policy perspective? Environ. Sci. Policy 2017, 69, 113–123. [Google Scholar] [CrossRef]
- Middleton, C.; Allouche, J.; Gyawali, D.; Allen, S. The rise and implications of the water-energy-food nexus in Southeast Asia through an environmental justice lens. Water Altern. 2015, 8, 627–654. [Google Scholar]
- Allouche, J.; Middleton, C.; Gyawal, D. Nexus Nirvana or Nexus Nullity? A Dynamic Approach to Security and Sustainability in the Water-Energy-Food Nexus; STEPS Working Paper 63; STEPS Centre: Brighton, UK, 2014. [Google Scholar]
- Mitchell, B.; Bellette, K.; Richardson, S. ‘Integrated’ approaches to water and natural resources management in South Australia. Int. J. Water Resour. Dev. 2015, 31, 718–731. [Google Scholar] [CrossRef]
- Galaitsi, S.; Veysey, J.; Huber-lee, A. Where Is the Added Value? A Review of the Water-Energy-Food Nexus Literature; Stockholm Environment Institute: Stockholm, Sweden, 2018. [Google Scholar]
- Simpson, G.B.; Jewitt, G.P. The water-energy-food nexus in the anthropocene: Moving from ‘nexus thinking’ to ‘nexus action’. Curr. Opin. Environ. Sustain. 2019, 40, 117–123. [Google Scholar] [CrossRef]
- Leese, M.; Meisch, S. Securitising sustainability? Questioning the ‘water, energy and food-security nexus. Water Altern. 2015, 8, 695–709. [Google Scholar]
- Reinhard, S.; Verhagen, J.; Wolters, W.; Ruben, R. Water-Food-Energy Nexus; Wageningen Economic Research: Wageningen, The Netherlands, 2017; p. 28. [Google Scholar]
- Leck, H.; Conway, D.; Bradshaw, M.; Rees, J. Tracing the water-energy-food nexus: Description, theory and practice. Geogr. Compass 2015, 9, 445–460. [Google Scholar] [CrossRef] [Green Version]
- Cairns, R.; Krzywoszynska, A. Anatomy of a buzzword: The emergence of ‘the water-energy-food nexus’ in UK natural resource debates. Environ. Sci. Policy 2016, 64, 164–170. [Google Scholar] [CrossRef]
- Foran, T. Node and regime: Interdisciplinary analysis of water-energy-food nexus in the Mekong region. Water Altern. 2015, 8, 655–674. [Google Scholar]
- Dargin, J.; Daher, B.; Mohtar, R.H. Complexity versus simplicity in water energy food nexus (WEF) assessment tools. Sci. Total Environ. 2019, 650, 1566–1575. [Google Scholar] [CrossRef]
- Macknick, J.; Newmark, R.; Heath, G.; Hallett, K.C. Operational water consumption and withdrawal factors for electricity generating technologies: A review of existing literature. Environ. Res. Lett. 2012, 7, 045802. [Google Scholar] [CrossRef]
- MacDonald, A.M.; Bonsor, H.C.; Dochartaigh, B.É.Ó.; Taylor, R.G. Quantitative maps of groundwater resources in Africa. Environ. Res. Lett. 2012, 7, 024009. [Google Scholar] [CrossRef]
- Lezzaik, K.; Milewski, A. A quantitative assessment of groundwater resources in the Middle East and North Africa region. Hydrogeol. J. 2018, 26, 251–266. [Google Scholar] [CrossRef]
- van Camp, M.; Mjemah, I.C.; al Farrah, N.; Walraevens, K. Modeling approaches and strategies for data-scarce aquifers: Example of the Dar es Salaam aquifer in Tanzania. Hydrogeol. J. 2013, 21, 341–356. [Google Scholar] [CrossRef]
- Rahmati, O.; Pourghasemi, H.R.; Melesse, A.M. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena 2016, 137, 360–372. [Google Scholar] [CrossRef]
- Rezaei, A.; Mohammadi, Z. Annual safe groundwater yield in a semiarid basin using combination of water balance equation and water table fluctuation. J. Afr. Earth Sci. 2017, 134, 241–248. [Google Scholar] [CrossRef]
- Davies, E.G.R.; Kyle, P.; Edmonds, J.A. An integrated assessment of global and regional water demands for electricity generation to 2095. Adv. Water Resour. 2013, 52, 296–313. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, P.W.; Hoekstra, A.Y. The consumptive water footprint of electricity and heat: A global assessment. Environ. Sci. Water Res. Technol. 2015, 1, 285–297. [Google Scholar] [CrossRef]
- Liao, X.; Hall, J.W.; Eyre, N. Water use in China’s thermoelectric power sector. Glob. Environ. Chang. 2016, 41, 142–152. [Google Scholar] [CrossRef]
- Vanham, D.; Medarac, H.; Schyns, J.F.; Hogeboom, R.J.; Magagna, D. The consumptive water footprint of the European union energy sector. Environ. Res. Lett. 2019, 14, 104016. [Google Scholar] [CrossRef]
- Dodder, R.S. A review of water use in the U.S. electric power sector: Insights from systems-level perspectives. Curr. Opin. Chem. Eng. 2014, 5, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Nyathi, M.K.; Annandale, J.G.; Beletse, Y.G.; Beukes, D.J.; Plooy, C.P.d.; Pretorius, B.; van Halsema, G.E. Nutritional Water Productivity of Traditional Vegetable Crops; Water Research Commission: Gezina, South Africa, 2016. [Google Scholar]
- Nyathi, M.K.; van Halsema, G.E.; Beletse, Y.G.; Annandale, J.G.; Struik, P.C. Nutritional water productivity of selected leafy vegetables. Agric. Water Manag. 2018, 209, 111–122. [Google Scholar] [CrossRef]
- Nyathi, M.K.; Mabhaudhi, T.; van Halsema, G.E.; Annandale, J.G.; Struik, P.C. Benchmarking nutritional water productivity of twenty vegetables—A review. Agric. Water Manag. 2019, 221, 248–259. [Google Scholar] [CrossRef]
- Nouri, H.; Stokvis, B.; Borujeni, S.C.; Galindo, A.; Brugnach, M.; Blatchford, M.L.; Alaghmand, S.; Hoekstra, A.Y. Reduce blue water scarcity and increase nutritional and economic water productivity through changing the cropping pattern in a catchment. J. Hydrol. 2020, 588, 125086. [Google Scholar] [CrossRef]
- Ball, V.E.; Färe, R.; Grosskopf, S.; Margaritis, D. The role of energy productivity in U.S. agriculture. Energy Econ. 2015, 49, 460–471. [Google Scholar] [CrossRef] [Green Version]
- Moghaddasi, R.; Pour, A.A. Energy consumption and total factor productivity growth in Iranian agriculture. Energy Rep. 2016, 2, 218–220. [Google Scholar] [CrossRef] [Green Version]
- Elsoragaby, S.; Yahya, A.; Mahadi, M.R.; Nawi, N.M.; Mairghany, M. Energy utilization in major crop cultivation. Energy 2019, 173, 1285–1303. [Google Scholar] [CrossRef]
- Rautaray, S.K.; Pradhan, S.; Mohanty, S.; Dubey, R.; Raychaudhuri, S.; Mohanty, R.K.; Mishra, A.; Ambast, S.K. Energy efficiency, productivity and profitability of rice farming using Sesbania as green manure-cum-cover crop. Nutr. Cycl. Agroecosyst. 2020, 116, 83–101. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Snyder, S.W.; Packman, A.I.; Lin, Y.J.; Chiang, P.-C. Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus. Water-Energy Nexus 2018, 1, 26–41. [Google Scholar] [CrossRef]
- Liermann, C.R.; Nilsson, C.; Robertson, J.; Ng, R.Y. Implications of dam obstruction for global freshwater fish diversity. Bioscience 2012, 62, 539–548. [Google Scholar] [CrossRef]
- Odiyo, J.O.; Chimuka, L.; Mamali, M.A.; Fatoki, O.S. Trophic status of Vondo and Albasini Dams; impacts on aquatic ecosystems and drinking water. Int. J. Environ. Sci. Technol. 2012, 9, 203–218. [Google Scholar] [CrossRef] [Green Version]
- Elosegi, A.; Sabater, S. Effects of hydromorphological impacts on river ecosystem functioning: A review and suggestions for assessing ecological impacts. Hydrobiologia 2013, 712, 129–143. [Google Scholar] [CrossRef]
- Yan, Q.; Bi, Y.; Deng, Y.; He, Z.; Wu, L.; van Nostrand, J.D.; Shi, Z.; Li, J.; Wang, X.; Hu, Z.; et al. Impacts of the Three Gorges Dam on microbial structure and potential function. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; He, D.; Wang, H. Environmental consequences of damming the mainstream lancang-mekong river: A review. Earth-Sci. Rev. 2015, 146, 77–91. [Google Scholar] [CrossRef]
- Hecht, J.S.; Lacombe, G.; Arias, M.E.; Dang, T.D.; Piman, T. Hydropower dams of the Mekong River basin: A review of their hydrological impacts. J. Hydrol. 2019, 568, 285–300. [Google Scholar] [CrossRef]
- Feng, K.; Hubacek, K.; Siu, Y.L.; Li, X. The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis. Renew. Sustain. Energy Rev. 2014, 39, 342–355. [Google Scholar] [CrossRef] [Green Version]
- Al-Ansari, T.; Korre, A.; Nie, Z.; Shah, N. Development of a life cycle assessment tool for the assessment of food production systems within the energy, water and food nexus. Sustain. Prod. Consum. 2015, 2, 52–66. [Google Scholar] [CrossRef]
- Pacetti, T.; Lombardi, L.; Federici, G. Water-energy Nexus: A case of biogas production from energy crops evaluated by Water Footprint and Life Cycle Assessment (LCA) methods. J. Clean. Prod. 2015, 101, 278–291. [Google Scholar] [CrossRef]
- Mannan, M.; Al-Ansari, T.; Mackey, H.R.; Al-Ghamdi, S.G. Quantifying the energy, water and food nexus: A review of the latest developments based on life-cycle assessment. J. Clean. Prod. 2018, 193, 300–314. [Google Scholar] [CrossRef]
- Masella, P.; Galasso, I. A comparative cradle-to-gate life cycle study of bio-energy feedstock from camelina Sativa, an Italian case study. Sustainability 2020, 12, 9590. [Google Scholar] [CrossRef]
- Okadera, T.; Geng, Y.; Fujita, T.; Dong, H.; Liu, Z.; Yoshida, N.; Kanazawa, T. Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input-output analysis approach. Energy Policy 2015, 78, 148–157. [Google Scholar] [CrossRef]
- Wang, Y.B.; Wu, P.T.; Engel, B.A.; Sun, S.K. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China. Sci. Total Environ. 2014, 497–498, 1–9. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Water Footprint Assessment: Evolvement of a New Research Field. Water Resour. Manag. 2017, 31, 3061–3081. [Google Scholar] [CrossRef] [Green Version]
- Ababaei, B.; Etedali, H.R. Water footprint assessment of main cereals in Iran. Agric. Water Manag. 2017, 179, 401–411. [Google Scholar] [CrossRef]
- Das, K.; Gerbens-leenes, P.W.; Nonhebel, S. The water footprint of food and cooking fuel: A case study of self- suf fi cient rural India. J. Clean. Prod. 2020, 281, 125255. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhang, T.; Bai, Y.; Ji, C.; Ma, X.; Shen, X.; Hong, J. Energy and water footprints of cereal production in China. Resour. Conserv. Recycl. 2021, 164, 105150. [Google Scholar] [CrossRef]
- McCarl, B.A.; Yang, Y.; Srinivasan, R.; Pistikopoulos, E.N.; Mohtar, R.H. Data for WEF Nexus Analysis: A Review of Issues. Curr. Sustain. Energy Rep. 2017, 4, 137–143. [Google Scholar] [CrossRef]
- Sušnik, J.; Chew, C.; Domingo, X.; Mereu, S.; Trabucco, A.; Evans, B.; Vamvakeridou-Lyroudia, L.; Savić, D.A.; Laspidou, C.; Brouwer, F. Multi-stakeholder development of a serious game to explore the water-energy-food-land-climate nexus: The SIM4NEXUS approach. Water 2018, 10, 139. [Google Scholar] [CrossRef] [Green Version]
- Lawford, R.G. A design for a data and information service to address the knowledge needs of the Water-Energy-Food (W-E-F) Nexus and strategies to facilitate its implementation. Front. Environ. Sci. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Purwanto, A.; Sušnik, J.; Suryadi, F.X.; de Fraiture, C. Quantitative simulation of the water-energy-food (WEF) security nexus in a local planning context in indonesia. Sustain. Prod. Consum. 2020, 25, 198–216. [Google Scholar] [CrossRef]
- Nhamo, L.; Mabhaudhi, T.; Mpandeli, S.; Dickens, C.; Nhemachena, C.; Senzanje, A.; Dhesigen, D.; Liphadzi, S.; Modi, A.T. An integrative analytical model for the water-energy-food nexus: South Africa case study. Environ. Sci. Policy 2020, 109, 15–24. [Google Scholar] [CrossRef]
- Sadegh, M.; AghaKouchak, A.; Mallakpour, I.; Huning, L.S.; Mazdiyasni, O.; Niknejad, M.; Foufoula-Georgiou, E.; Moore, F.C.; Brouwer, J.; Farid, A.; et al. Data and analysis toolbox for modeling the nexus of food, energy, and water. Sustain. Cities Soc. 2020, 61, 102281. [Google Scholar] [CrossRef]
- Villamayor-Tomas, S.; Grundmann, P.; Epstein, G.; Evans, T.; Kimmich, C. The water-energy-food security nexus through the lenses of the value chain and the institutional analysis and development frameworks. Water Altern. 2015, 8, 735–755. [Google Scholar]
- Artioli, F.; Acuto, M.; McArthur, J. The water-energy-food nexus: An integration agenda and implications for urban governance. Polit. Geogr. 2017, 61, 215–223. [Google Scholar] [CrossRef]
- Weitz, N.; Huber-Lee, A.; Nilsson, M.; Davis, M.; Hoff, H. Cross-Sectoral Integration in the Sustainable Development Goals: A Nexus Approach; Stockholm Environment Institute: Stockholm, Sweden, 2014; p. 8. [Google Scholar]
- Märker, C.; Venghaus, S.; Hake, J.F. Integrated governance for the food–energy–water nexus–The scope of action for institutional change. Renew. Sustain. Energy Rev. 2018, 97, 290–300. [Google Scholar] [CrossRef]
- Mercure, J.F.; Paim, M.A.; Bocquillon, P.; Lindner, S.; Salas, P.; Martinelli, P.; Berchin, I.I.; de Andrade Guerra, J.B.S.O.; Derani, C.; de Albuquerque Junior, C.L.; et al. System complexity and policy integration challenges: The Brazilian Energy-Water-Food Nexus. Renew. Sustain. Energy Rev. 2019, 105, 230–243. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. Governance of the water-energy-food security nexus: A multi-level coordination challenge. Environ. Sci. Policy 2019, 92, 356–367. [Google Scholar] [CrossRef]
- Bréthaut, C.; Gallagher, L.; Dalton, J.; Allouche, J. Power dynamics and integration in the water-energy-food nexus: Learning lessons for transdisciplinary research in Cambodia. Environ. Sci. Policy 2019, 94, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Hooda, P.S.; Edwards, A.C.; Anderson, H.A.; Miller, A. A review of water quality concerns in livestock farming areas. Sci. Total Environ. 2000, 250, 143–167. [Google Scholar] [CrossRef]
- Love, B.J.; Nejadhashemi, A.P. Water quality impact assessment of large-scale biofuel crops expansion in agricultural regions of Michigan. Biomass Bioenergy 2011, 35, 2200–2216. [Google Scholar] [CrossRef]
- Allende, A.; Monaghan, J. Irrigation water quality for leafy crops: A perspective of risks and potential solutions. Int. J. Environ. Res. Public Health 2015, 12, 7457–7477. [Google Scholar] [CrossRef] [Green Version]
- Chalar, G.; Garcia-Pesenti, P.; Silva-Pablo, M.; Perdomo, C.; Olivero, V.; Arocena, R. Weighting the impacts to stream water quality in small basins devoted to forage crops, dairy and beef cow production. Limnologica 2017, 65, 76–84. [Google Scholar] [CrossRef]
- Ringler, C.; Bhaduri, A.; Lawford, R. The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency? Curr. Opin. Environ. Sustain. 2013, 5, 617–624. [Google Scholar] [CrossRef]
- Karnib, A. Bridging Science and Policy in Water-Energy-Food Nexus: Using the Q-Nexus Model for Informing Policy Making. Water Resour. Manag. 2018, 32, 4895–4909. [Google Scholar] [CrossRef]
- van Gevelt, T. The water–energy–food nexus: Bridging the science–policy divide. Curr. Opin. Environ. Sci. Health 2020, 13, 6–10. [Google Scholar] [CrossRef]
- Wu, L.; Elshorbagy, A.; Pande, S.; Zhuo, L. Trade-offs and synergies in the water-energy-food nexus: The case of Saskatchewan, Canada. Resour. Conserv. Recycl. 2021, 164, 105192. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, S. Water and Energy Scarcity for Agriculture: Is Irrigation Modernization the Answer? Irrig. Drain. 2017, 66, 34–44. [Google Scholar] [CrossRef]
- Dinar, A.; Tieu, A.; Huynh, H. Water scarcity impacts on global food production. Glob. Food Sec. 2019, 23, 212–226. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, B. Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses. Appl. Energy 2020, 268, 114974. [Google Scholar] [CrossRef]
- Altamirano, M.A.; van Bodegom, A.J.; van der Linden, N.; de Rijke, H.; Verhagen, J.; Bucx, T.; Boccalon, A.; van der Zwaan, B. Operationalizing the WEF Nexus Quantifying the Trade-Offs and Synergies between the Water-Energy and Food Sectors; ECN: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Sperling, J.B.; Berke, P.R. Urban Nexus Science for Future Cities: Focus on the Energy-Water-Food-X Nexus; Texas A&M University: College Station, TX, USA, 2017. [Google Scholar]
- Purwanto, A.; Sušnik, J.; Suryadi, F.X.; de Fraiture, C. Using group model building to develop a causal loop mapping of the water-energy-food security nexus in Karawang Regency, Indonesia. J. Clean. Prod. 2019, 240, 118170. [Google Scholar] [CrossRef]
- Daher, B.; Hannibal, B.; Mohtar, R.H.; Portney, K. Toward understanding the convergence of researcher and stakeholder perspectives related to water-energy-food (WEF) challenges: The case of San Antonio, Texas. Environ. Sci. Policy 2020, 104, 20–35. [Google Scholar] [CrossRef]
- Martinez, P.; Blanco, M.; Castro-Campos, B. The Water–Energy–Food Nexus: A Fuzzy-Cognitive Mapping Approach to Support Nexus-Compliant Policies in Andalusia (Spain). Water 2018, 10, 664. [Google Scholar] [CrossRef] [Green Version]
- Mguni, P.; van Vliet, B.; Spaargaren, G.; Nakirya, D.; Osuret, J.; Isunju, J.B.; Ssekamatte, T.; Mugambe, R. What could go wrong with cooking? Exploring vulnerability at the water, energy and food Nexus in Kampala through a social practices lens. Glob. Environ. Chang. 2020, 63, 102086. [Google Scholar] [CrossRef]
- Cansino-loeza, B.; Ponce-ortega, M. Sustainable Assessment of Water-Energy-Food Nexus at Regional Level through a Multi-Stakeholder Optimization Approach. J. Clean. Prod. 2020, 290, 125194. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Cudennec, C.; Gain, A.K.; Hoff, H.; Lawford, R.; Qi, J.; de Strasser, L.; Yillia, P.T.; Zheng, C. Challenges in operationalizing the water–energy–food nexus. Hydrol. Sci. J. 2017, 62, 1714–1720. [Google Scholar] [CrossRef] [Green Version]
- Hoff, H.; Alrahaife, S.A.; el Hajj, R.; Lohr, K.; Mengoub, F.E.; Farajalla, N.; Fritzsche, K.; Jobbins, G.; Özerol, G.; Schultz, R.; et al. A nexus approach for the MENA region-from concept to knowledge to action. Front. Environ. Sci. 2019, 7, 48. [Google Scholar] [CrossRef]
- Brouwer, F.; Anzaldi, G.; Laspidou, C.; Munaretto, S.; Schmidt, G.; Strosser, P.; Sušnik, J.; Vamvakeridou-Lyroudia, L. Commentary to SEI Report ‘Where is the Added Value? A Review of the Water-Energy-Food Nexus Literature’. SIM4NEXUS. 2018. Available online: www.sim4nexus.eu (accessed on 4 December 2020).
- Sustainable Integrated Management for the NEXUS of Water-Landfood-Energy-Climate for a Resource-Efficient Europe (SIM4NEXUS). Available online: https://www.sim4nexus.eu/ (accessed on 4 December 2020).
WEF Nexus Framework | Document Source and Publisher | |
---|---|---|
A | Food, Water, and Energy Nexus and the Contribution ofHimalayan Ecosystem Services [13]
|
|
B | The Water–Energy–Land (WEL) Nexus [14]
|
|
C | The Resource Nexus [15]
|
|
D | The CLEWS Framework [16]
|
|
E | Nexus Dialogue: Agreed Key Interlinkages [17]
|
|
F | The Framework Linking Water, Food, Energy Security [4]
|
|
G | Approach to the Water-Energy-Food Nexus [18]
|
|
H | Key Interactions Between Water, Energy, Food Security [19]
|
|
I | Water, Land, Energy, Food, and Climate (WLEFC) Nexus [20]
|
|
J | Main Linkages Within the Land, Water, and Energy Nexus [21]
|
|
No. | Main Features in the Nexus Approach/Framework | WEF Nexus Frameworks (Table 1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | ||
1. | Incorporate WEF and exogenous variables, multi-resource [6,22,26] | V | V | V | V | V | V | V | V | V | V |
2. | Social, economic, and political context [8,22,27,28] | V | V | V | V | V | V | V | V | V | |
3. | Green economy, sustainability, environmental context [6,27] | V | V | V | V | V | V | V | V | ||
4. | Interdisciplinary and transdisciplinary [7,22,28,29] | V | V | V | V | V | V | V | V | ||
5. | Decision-making, policy-making, governance, solution-oriented [8,26,30,31] | V | V | V | V | V | V | V | V | ||
6. | Incorporate global trends [6] | V | V | V | V | V | V | V | V | ||
7. | Case study, local coverage, context specific, in-site context [6,22,26,27] | V | V | V | V | V | V | ||||
8. | Capacity building, awareness raising [6,26] | V | V | V | V | V | |||||
9. | Spatial-temporal scope [22,26] | V | V | V | V | ||||||
10. | Practical guide for implementation and simulation [8,31] | V | V | V | V | ||||||
11. | Mixed methods of qualitative–quantitative [22,29] | V | V | V | V | ||||||
12. | Collaborative, participatory approach, stakeholders involvement [8,27,28] | V | V | V | V | ||||||
13. | Robust data sets, minimized data requirement [22,26,27] | V | V | V | V | ||||||
14. | Promote innovation, knowledge mobilization, theoretical approach [8,27,28] | V | V | V | |||||||
15. | Focuses on WEF resource security [6] | V | V | V | |||||||
16. | Appropriate and validated stages, using system approach and critical analysis [26,28] | V | V | V |
No. | Main Criticism |
---|---|
A. | The WEF Nexus Concept |
| |
| |
| |
| |
| |
| |
| |
B. | The Application of WEF Nexus Approach |
| |
| |
| |
| |
| |
C. | Outcome and Impact of WEF Nexus Approaches |
| |
| |
| |
| |
|
Data Source | Type of Data | Level |
---|---|---|
Water | ||
FAO (Food and Agriculture Organization)—AQUASTAT (http://www.fao.org/nr/water/aquastat/data/; accessed on 2 December 2020) | Land use, economy-development-food security, precipitation, renewable water resource, dam capacity, water withdrawal, wastewater, irrigation and drainage, water conservation, water harvesting, flood occurrence, drinking water access, etc.) |
|
Water Footprint Network (https://waterfootprint.org/en/resources/waterstat/; accessed on 2 December 2020) | Product water footprint, national water footprint, International virtual water flow, monthly gridded blue water footprint, water scarcity, water pollution level, etc. |
|
USGS data (https://waterdata.usgs.gov/nwis; accessed on 2 December 2020) | Surface water, groundwater, water quality, water use |
|
Energy | ||
IEA (International Energy Agency) (https://www.iea.org/data-and-statistics; accessed on 2 December 2020) | Energy supply, energy consumption, electricity, energy import-export, CO2 emission, energy prices, renewable energy |
|
IRENA (International Renewable Energy Agency) (https://www.irena.org/Statistics; accessed on 2 December 2020) | Capacity and generation, energy balances, energy transition, energy policy, cost, climate change, finance and investment |
|
Food | ||
FAO (Food and Agriculture Organization) (http://www.fao.org/faostat/en/#data; accessed on 2 December 2020) | Food production, trade, food balance, food security, price, inputs, population, investment, macro-statistics, agri-environmental Indicators, emission-agriculture, emission-land use, forestry, etc. |
|
OECD-FAO (http://www.agri-outlook.org/data/; accessed on 2 December 2020) | Agricultural product, consumption, imports, dairy, meats, fishery, etc. |
|
Multiple Data | ||
(http://data.worldbank.org/indicator/; accessed on 2 December 2020) | Data and indicators related to agricultural data, economy, energy, environment, climate change, water etc. |
|
(https://ourworldindata.org/energy; accessed on 2 December 2020) | Agricultural production, meat and dairy, fishery, energy, access to energy, renewable energy, air pollution, clean water, sanitation, etc. |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purwanto, A.; Sušnik, J.; Suryadi, F.X.; de Fraiture, C. Water-Energy-Food Nexus: Critical Review, Practical Applications, and Prospects for Future Research. Sustainability 2021, 13, 1919. https://doi.org/10.3390/su13041919
Purwanto A, Sušnik J, Suryadi FX, de Fraiture C. Water-Energy-Food Nexus: Critical Review, Practical Applications, and Prospects for Future Research. Sustainability. 2021; 13(4):1919. https://doi.org/10.3390/su13041919
Chicago/Turabian StylePurwanto, Aries, Janez Sušnik, Franciscus X. Suryadi, and Charlotte de Fraiture. 2021. "Water-Energy-Food Nexus: Critical Review, Practical Applications, and Prospects for Future Research" Sustainability 13, no. 4: 1919. https://doi.org/10.3390/su13041919
APA StylePurwanto, A., Sušnik, J., Suryadi, F. X., & de Fraiture, C. (2021). Water-Energy-Food Nexus: Critical Review, Practical Applications, and Prospects for Future Research. Sustainability, 13(4), 1919. https://doi.org/10.3390/su13041919