1. Introduction
Enhancing agricultural innovation is considered a key process for adapting the agricultural sector to climate change [
1,
2]. This process involves an interactive, dynamic, collaborative, and flexible way of dealing with the complex nature of agriculture under the continual effects of climate change [
3]. To support agricultural innovation, strengthening innovation networks is critical [
4]. An innovation network is defined as “a diverse group of actors that voluntarily contribute knowledge and other resources (such as money, equipment, and land) to jointly develop or improve a social or economic process or product” [
3] (p. 16). Extension and Advisory Service (EAS) agencies are considered the key player for helping to strengthen innovation networks [
5] and are recognized as an engine for supporting agricultural innovation [
6]. EAS agencies are conceptualized as “all the institutions from different sectors that facilitate farmers’ access to knowledge, information, and technologies; their interaction with markets, research, and education; and the development of technical, organizational, and management skills and practices” [
7] (p. 1).
The current body of literature broadly outlines the roles and strategies that EAS agencies need to perform in order to strengthen innovation networks in the context of climate change. The Food and Agriculture Organization (FAO) suggested that EAS agencies need to play a broader range of intermediary roles to enhance innovation network formation and support interaction among multiple actors for climate change adaptation [
2]. According to the Global Forum for Rural Advisory Services, EAS agencies need to connect farmers with diverse actors, such as various agencies, communities, and institutions, to utilize the benefits of information and resources [
8]. However, empirical studies on the role of EAS agencies in strengthening the innovation networks for climate change adaptation remain rare. A case study in Sweden reported that EAS agencies confined the discourse of climate change adaptation to farmers and EAS organizations and lacked the involvement of a wider range of stakeholders [
9]. A study in a mountainous region of Pakistan identified that EAS agencies made minimal efforts to connect farmers with diverse actors, and consequently, farmers had very limited information sources [
10]. In this vein, Tensay [
11] showed that key actors were missing from farmers’ innovation networks in Ethiopia and emphasized the need for the improvement of partnerships and linkages among various Ethiopian actors. Smallholder farmers in Malawi argued that they wanted to be linked with research institutions to conduct on-farm adaptive research for adapting to climate change [
12]. In addition, a study in China proposed an evaluation framework of EAS to enhance innovation in the agriculture sector [
13], and Charatsari et al. [
14] reported the use of information and communication technology in the farming sector and suggested various pathways to enhance innovation.
According to the FAO, the role of EAS agencies in strengthening innovation networks should not be considered as a one-size-fits-all approach and should be responsive to the particular context [
2]. In the current literature of innovation networks studies, there is little understanding of EAS agencies’ roles related to particular climate extremes, such as floods, cyclones, and droughts. Although wetland agriculture (e.g., marshes, Haors) is highly affected by climate change [
15,
16], to date, there has been little study of how innovation networks could be enhanced in this case. Again, public EAS agencies are considered to perform the leading role in supporting innovation [
5,
6], but little is known on how they could strengthen the innovation networks and support adaptation to the particular stressors of climate change. This article is positioned within this empirical knowledge gap. In the context of Bangladesh’s rice production, we investigated the effectiveness of EAS for strengthening innovation networks, specifically for the case of adaptation to flash flooding.
Rice is the staple food in Bangladesh and is predominantly produced in the Haor areas [
17]. Haors are large bowl-shaped floodplain depressions located in the northeastern part of the country [
18]. In the Haor areas, rice is cultivated over 1.74 million hectares, representing 15.3% of the total rice cultivation area of Bangladesh and 16.5% (about 5.25 million metric tons) of the total rice production of the country [
19]. Monocropping of Boro rice (cultivated from December to May) is the dominant cropping pattern [
20] and is practiced in more than 80% of Haor areas [
21].
Flash flooding damages Boro rice every year in Haor areas [
22,
23] and severely affects Bangladesh’s food security and economic growth [
24]. Flash flooding is sudden, localized flooding produced by heavy rainfall over a short period (a few hours to a day) within a catchment and produces rapidly rising and fast-moving river flows [
25]. The flash flooding in 2017 was the most devastating in Bangladeshi history and damaged 371,381 hectares of land, with a loss of 0.88 million metric tons of Boro rice [
25,
26]. Flash flooding coincides with the harvesting period (March–April) of Boro rice [
27,
28]. It has recently been occurring 2 to 3 weeks before the harvesting of Boro rice [
24,
25,
26,
29]. The increased intensity and variability of flash flooding is linked to climate change [
30,
31]. Several models and predictions conclude that climate change will increase pre-monsoon rainfall, which will lead to earlier and more frequent flash flooding in Haor areas [
28,
32,
33,
34]. In response to this increased risk, EAS activities have been promoted to mitigate the loss of rice production. This enhancement of EAS has been undertaken by the country’s lead agricultural EAS agency, the Department of Agricultural Extension (DAE).
The Department of Agricultural Extension (DAE) is the leading agency for implementing agricultural policy and provides EAS [
35,
36]. In 2012, the Ministry of Agriculture in Bangladesh formulated the National Agricultural Extension Policy, which is comparable with the principles and strategies of enhancing agricultural innovation [
37]. The policy highlighted multi-stakeholder partnerships and collaboration as the cornerstone of service delivery [
37]. In this vein, DAE has emphasized networking and collaboration among the agricultural stakeholders to enhance information, knowledge sharing, and broad-based understanding to better utilize resources and expertise [
36,
38].
DAE has declared Haor areas as special zones and formulated guidelines to help farmers to adapt Boro rice production to flash flooding [
38]. Communication in Haor areas is restrictive due to their remoteness and geographical context (e.g., flooded for 7 to 8 months a year) [
39,
40]. Consequently, the organization has focused on supporting effective communication, connecting different actors with farmers’ innovation networks, and strengthening farmers’ innovation networks for better knowledge and resource sharing [
38].
The objective of this research is to examine the effectiveness of EAS for strengthening innovation networks using measures of diversity, balance in the connection between formal and informal actors and strong and weak ties, trust among the connected actors, and intercluster connections. This was done in the context of DAE’s efforts to help farmers to adapt Boro rice production to flash flooding in Bangladesh.
2. Theoretical Framework
The study adopted agricultural innovation and innovation network theory as a way of defining the limits of the Extension frameworks. A social network can be conceptualized as a set of people or organizations and their relationships [
41]. People perpetually communicate and interact with members of different groups, such as professional, social, religious, and communal groups [
42]. These groups work like a network, and members of one group have connections with a variety of groups with diverse interests. Thus, they develop a “networked society.” This network has a highly flexible boundary that allows the transfer of information, develops ideas, and affects people’s actions [
43]. Therefore, social networks facilitate the generation, acquisition, and diffusion of knowledge and information [
44].
Agricultural innovation is conceptualized as the process whereby “individuals or organizations bring existing or new products, processes, and forms of organization into social and economic use to increase effectiveness, competitiveness, resilience to shocks or environmental sustainability, thereby contributing to food and nutritional security, economic development, and sustainable natural resource management” [
45] (p. x). Traditional linear innovation processes only focus on knowledge transfer from scientists to EAS agencies to farmers. However, enhancing agricultural innovation is a complex nonlinear process that occurs through interaction among heterogeneous actors [
46].
The innovation process needs extensive connections among multiple knowledge and information sources [
47]. An effective innovation process is evaluated by the extent to which the innovation networks can accumulate diversity in resources and capabilities from varied actor types [
48]. Diversity enhances the flow of different and new information and ideas to the networks [
49,
50] and increases the innovativeness of the actors [
51]. Innovation in the agriculture sector may originate from the actors and institutions, including those who usually do not regard themselves as a component of that sector, such as stakeholders related to meteorological and other public and private sectors organizations [
5]. Therefore, in many cases, important actors may remain absent or do not interact and contribute in ways that could enhance innovation processes [
52]. Thus, information flow from the likely important actors is restricted and becomes “sticky.” Networking, collaboration, and sharing of information among the diversified actors allow the “sticky” information to be disentangled and utilized to enhance the innovation processes [
47]. Thus, developing, diversifying, and strengthening innovation networks is a crucial part of innovation processes [
4,
45,
46,
53].
Enhancing innovation is primarily associated with the exchange and use of information and resources [
45]. Therefore, the types and ways interactions occur among the actors are important considerations [
46]. The degrees of relationships among the actors are called ‘ties’ (contacts), which vary in their interpersonal strength [
54,
55]. Granovetter [
56] (p. 1361) described the idea of the tie strength as “a combination of the amount of time, the emotional intensity, and intimacy and the reciprocal services which characterize the tie.” Ties regulate the ways, means, and expression of communication, and affect the motivation, needs, and desires for communication [
57]. Granovetter [
56] suggested that a network of relationships usually encompass strong, weak, and absent ties. Ties are weak if there are no frequent or significant interactions, and ties are strong if there are numerous interactions [
58].
Examination of information, ideas, and resource exchange needs to consider the existence of strong and weak ties in a particular network [
59]. Strong ties are more competent providers of information flows within organization and groups, while weak ties facilitate the flow of information outside the groups [
60]. Actors who share only strong ties could have narrow prospects for further acquisition of new information and resources because they belong to similar interests in terms of outlook and knowledge. On the contrary, weak-tied pairs have a greater chance of heterogeneous information and resource exchange because they function in dissimilar social networks and access different knowledge, ideas, and resources [
61]. Thus, new and complementary information and ideas are achieved through only the weak ties [
62]. Strengthening innovation networks, therefore, should focus on achieving a balance between utilizing weak ties and promoting strong ties [
60,
63].
The innovation networks can be strengthened by allowing the combination of both formal and informal actors and encouraging their interactions [
51,
64]. Formal relationships and interactions are contractual, rules-based, and largely established by prior membership in a particular group or organization [
65]. On the other hand, informal interactions originate through trust- and emotion-based relationships among specific actors who are known to one another and mostly connected by friendship, kinship, and proximity [
66]. The scope for and occurrence of informal contacts can develop and strengthen a trust-based relationship [
5]. The nonappearance of formal organizational structures and working strategies allows actors considerable flexibility to adapt to new challenges and broaden scopes to enhance innovation processes [
67,
68]. However, both under- and over-formalization of relationships in innovation networks can serve to restrict innovation [
69]. EAS agencies should support farmers in a way that allows them greater openness and enhances their access to and collaboration with diverse formal and informal actors [
5,
70,
71].
In order to leverage the potential for enhancing innovation, actors involved in the innovation networks should develop trust between one another [
72]. Specifically, opportunities of the innovating actors to connect and interact through different ties and relationships might not ensure the effective exchange of information and resources if trust is lacking [
73]. In the innovation network, trust is the “relational glue” that supports interactions between both formal and informal actors, enabling knowledge access and sharing and enhancing innovation process [
74]. Since innovation networks comprise multiple actors with diverse interests, conflict and distrust may arise that EAS agencies need to minimize, and EAS agencies must focus on rebuilding trust and relationships among actors to forge a viable basis for cooperation [
72].
“Clusters” can also be developed to enhance knowledge creation, sharing, and resource exchange among the innovating actors [
75,
76]. Clusters may be defined as the geographically adjacent farmers and other actors who are involved in a particular crop sector and who establish linkages and share resources for the benefits of farming [
77,
78]. Membership of a farmer cluster creates an opportunity to foster connections and interactions with diversified actors [
79,
80]. Membership of such a cluster also influences trust in other innovating actors in the networks [
79]. Scholars have argued that encouraging inter-farmer clusters connections [
81] and linking them with various innovating actors might help explore and utilize heterogeneous information and resources required to enhance innovation [
80,
82].
In order to strengthen farmers’ innovation networks, EAS thus needs to connect farmers with various actors in a way that supports diversity, ensures balance in the connection between formal and informal actors and strong and weak ties, develops trust among the connected actors, and encourages intercluster connections.
3. Methods
The study followed a mixed-method social research approach to examine how DAE has strengthened the Haor farmers’ innovation networks to adapt Boro rice cultivation to flash flooding [
83]. The research was conducted at Shanir Haor, which is locally known as the grain-bowl of Sunamganj, a northeastern district in Bangladesh [
25]. Mapping a particular actor’s or group’s innovation network could provide valuable insight about a particular commodity or location-based innovation process [
84]. Therefore, an egocentric network approach was followed to achieve the research objective [
85]. The egocentric network develops a picture of a particular actor or group by identifying the types of connected actors, the nature and quantity of ties, and the kind of information and resources exchanged with connected actors [
86]. The particular actor or group of interest is defined as the ego, and all the actors/groups connected with ego are defined as the alter [
41]. The relationship between the ego and the alter is defined as a tie [
41], which can be strong, weak, or absent [
56].
DAE provides EAS through group approaches [
38]. Although individual farmers can obtain services from DAE, farmers’ groups are prioritized as the locus for implementing EAS strategies or programs [
36]. The lowest administrative unit of DAE is the block. DAE forms 12 groups in each block, and each group consists of 30 farmers [
38]. In this research, farmers of the DAE formed groups are called DAE-farmers, and all other farmers are identified as non-DAE farmers. The research compared DAE- and non-DAE farmers’ innovation networks because comparison among different farmer groups provides insights on the dynamics that underlie access to information and resources from various sources [
79,
81].
DAE has a total of 5 blocks in Shanir Haor. Through discussions with DAE agents, 20 functional farmer groups were identified. We randomly selected 5 groups that accounted for 150 DAE-farmers. With the help of local representatives, the same number of non-DAE farmers (i.e., 150) were randomly selected from the blocks where DAE-formed groups were initially identified. At the beginning, informal discussions were conducted with both groups of farmers following a name generator approach [
87]. Farmers were asked to name 5 actors important to them for securing information and farm inputs to adapt Boro rice production to flash flooding. Consequently, 2 lists of actors were prepared, 1 for performing agronomic activities (e.g., seed sowing, fertilizer application) and another for conducting harvesting activities.
An interview schedule was developed that contained 2 identical sets of questions for agronomic and harvesting activities. The interview schedule included questions to examine the sociodemographic characteristics, such as age, level of education, family size, and farm size, of the respondents (see
Supplementary Materials). Informed by Makini et al. [
88], the survey was conducted with 150 DAE-farmers and 150 non-DAE farmers. The respondents were requested to identify the actors with whom they are connected from a list. The respondents were asked the number of times they had contacted identified actors during the Boro rice production season. They were also requested to identify the type of support they received from these actors in the form of information and farm inputs [
89]. The respondents were asked to mention their levels of trust in identified actors according to the Likert-type scales with the response options high, moderate, and low [
90,
91]. After this phase, key informant interviews were conducted with 5 DAE-farmers and 5 non-DAE farmers to understand the roles of DAE in their networks, the types of information and farm inputs they secured, and the reasons for more/less contact and high/low trust in particular actors. In addition, a focus group discussion with 12 DAE-farmers was conducted. Data from key informant interviews and focus group discussions were audio-recorded. Data were collected from January to April 2019.
In the survey data, the identified and nonidentified actors were coded as 1 and 0, respectively. Centrality measures for the ego networks, such as size and degree, were calculated. “Size” shows the number of alter directly connected with an ego [
92], and “Degree” denotes the importance of an ego in the network [
84]. Scores of 1 and 2 were assigned for information and farm inputs, respectively, to understand the types of supports obtained. The responses on trust were coded as 3, 2, and 1 for high, moderate, and low, respectively. The data were entered in the Microsoft Excel Worksheet 2016, and descriptive statistics were performed [
93]. To calculate the mean difference in various parameter of DAE- and non-DAE farmers, the Statistical Package for the Social Sciences software (IBM SPSS Statistics Version 26) was used. In order to quantify strong ties, the first integer value to reach the mark of the mean value of contact number was considered [
60,
94]. The integer values to reach the mark of the mean value of contact number were 7 and above for agronomic activities and 4 and above for harvesting activities. Any value below these was designated as a weak tie and used to compare with strong ties [
94]. Innovation networks maps were drawn using UCINET (version 6.689) software. The key informant interview and focus group discussion data were transcribed and coded using NVivo (version 12 Pro) software with codes such as information sources, farm input sources, agronomic practices, harvesting activities, connections, links, support, contact, and trust. The coded texts were organized under themes such as important actors, types of supports secured, support from DAE, and trust in the connected actors to explore the findings [
95].
6. Conclusions
Strengthening innovation networks is considered a critical process to ensure agricultural sustainability in the context of climate extremes. This research’s objective was to examine the effectiveness of EAS for strengthening innovation networks using measures of diversity, balance in the connection between formal and informal actors and strong and weak ties, trust among the connected actors, and intercluster connections. This was done in the context of DAE’s efforts to help farmers adapt Boro rice production to flash flooding in Bangladesh. The findings indicate that while DAE intent was to strengthen farmers’ innovation networks to adapt rice cultivation to flash flooding, it only supported the facilitation of the agronomic network development and missed the opportunity to enable the harvesting networks’ efficacy. As the harvesting activities are highly exposed to flash flooding, the absence of adequate support from the DAE indicates that farmers are still at significant risk of production losses due to flood related damages. DAE-farmers developed clusters with formal, rule-based actors, such as DAE and research institutions, and obtained information and resources to perform agronomic activities. On the other hand, non-DAE farmers created clusters with informal, trust-based actors, such as relatives, local input dealers, and harvesting laborers to draw supports. Dependency on formal actors and clusters effectively restricted DAE-farmers from contacting and utilizing other informal actors (e.g., local input dealers, relatives) to conduct agronomic activities. In the harvesting networks, DAE provided minimal support in delivering rice maturity indicators and the timing of harvesting information. DAE-farmers lacked the required and timely updates on local weather, rain and flash flood occurrences during the harvesting period. There was a limited exchange of knowledge and resources between DAE- and non-DAE farmers in both agronomic and harvesting networks. The results also indicate that adaptation to flash flooding is most effectively achieved by including both formal and informal actors in the innovation networks. This allows information to be accessed from a much broader set of actors and provides greater opportunity for adaptation to flash flooding.
This paper examined the theory of enhancing innovation and investigated approaches to quantifying the effectiveness of EASs for strengthening innovation networks. Using innovation theory, this study contributes to understanding the role of actors within an innovation network and allows formal measurement of the effectiveness of networks in supporting adaptation. This analysis shows the value of including both formal and informal actors in the innovation network as a way to prevent a lock-in situation and network failure. From the EAS practices and policy perspective, the study indicates that the current strategies to support the adaptation of wetland agriculture to climate extreme need to be revisited and that it is imperative to consider the role of both formal and informal actors in the process of adaptation. EAS agencies should help wetland farmers connect with both formal and informal actors to maximize information access. In addition, EAS agencies need to encourage the sharing of information and resources among the farmers who are included in the institutional support programs and the farmers who are excluded. The policymakers and EAS agencies need to rethink the support services that are provided during the harvesting period of wetland crops and extend support and connect farmers with relevant actors in order to obtain timely and updated local weather, rain, and flash flood information. The implication of this study suggests that effective EAS strategies must include both formal and informal actors, as well as ensuring effective communication with broader farmer groups.
There are several avenues for further study related to strengthening the innovation networks for adaptation to climate extremes. These include understanding the reasons behind the limited sharing of information and resources among various farmer groups and approaches to developing better strategies that enhance cluster connections. The shortfalls and inadequacies of the current EAS policy and operational strategies need to be examined to formulate better ways of supporting farmers during the crop harvesting period.