Impact of Logistics Development Level on International Trade in China: A Provincial Analysis
Abstract
:1. Introduction
2. Literature Review
3. Construction of Index System, Methodology and Data
3.1. Construction of Index System
3.2. Methodology
3.3. Data
4. Spatio-Temporal Patterns of Trade between China and Countries along the BRI
4.1. Temporal Evolution Characteristics
4.2. Spatial Evolution Characteristics
4.2.1. Overall Network Spatial Characteristics
4.2.2. Domestic Spatial Characteristics
4.2.3. International Spatial Characteristics
5. Empirical Analysis
5.1. Overall Regression
5.2. Sub-Regional Regression
5.2.1. Domestic Sub-Regional Regression
5.2.2. International Sub-Regional Regression
6. Discussion
6.1. The Government Must Strengthen the Coordinated Development of Logistics among the Provinces of China
6.2. Countries along the BRI Should Strengthen Policy Communication and Coordination
7. Conclusions
- (1)
- The overall logistics development level of China had a steady upward trend from 2008 to 2018, with an increase of 47.07%. Besides, the logistics development level of the western region was significantly higher than that of the central and eastern regions, with an increase of 77.16%.
- (2)
- The trade between China and countries along the BRI generally showed a “W” type fluctuating upward trend, and the breadth and intensity of trade connections were significantly enhanced. Domestically, the total trade volume between China and countries along the BRI presented the trend of decreasing from the east to the west, with Beijing, Shanghai, Guangdong, and other provinces as the core. Internationally, the descending order of the total trade volume was Southeast Asia, West Asia-North Africa, South Asia, Mongolia-Russia, Central-Eastern Europe, and Central Asia.
- (3)
- The logistics development level significantly promoted the growth of the bilateral trade between China and countries along the BRI. However, compared with partner countries, the provincial logistics development level of China had a greater impact on trade.
- (4)
- The development level of logistics can significantly reduce the border effect, with a declining range of 20.547%.
- (5)
- The influence of logistics development level was different in different periods as well as international and domestic regions. The level was higher after the proposal of the BRI than that before the proposal of the BRI. Besides, the descending order of the level in the three regions was the eastern region, the central region, and the western region. And the descending order of the level in international regions was Southeast Asia, West Asia-North Africa, South Asia, Mongolia-Russia, Central-Eastern Europe, and Central Asia.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, M.L.; Qiu, Q.; Choi, C.H. How Will the Belt and Road Initiative Advance China’s Exports? Asia Pac. Bus. Rev. 2019, 25, 81–99. [Google Scholar] [CrossRef]
- Wen, Y.Z.; Lu, M.Q.; Li, X.J.; Che, B.Q.; Meng, D.Y.; Shi, Y.W. The Characteristics and Organizational Models of the West Circulation Network Based on the Western Corridor. Acta. Geogr. Sinica 2019, 74, 1205–1223. (In Chinese) [Google Scholar]
- Lian, F.; He, Y.Z.; Yang, Z.Z. Competitiveness of the China-Europe Railway Express and Linner Shipping under the Enforced Sulfur Emission Control Convention. Transport. Res. E-Log 2020, 135, 101861. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, C.; Sheng, L.; Liu, Y. High-Quality Development of China Railway Express Based on Win-Win Co-construction. Chin. J. Eng. Sci. 2020, 22, 125–131. [Google Scholar] [CrossRef]
- Kundu, T.; Sheu, J.-B. Analyzing the Effect of Government Subsidy on Shippers’ Mode Switching Behavior in the Belt and Road Strategic Context. Transp. Res. Part E Logist. Transp. Rev. 2019, 129, 175–202. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Sun, Y.; Lee, P.T.W. Impact of the Development of the China-Europe Railway Express-a Case on the Chonqing International Logistics Center. Transport. Res. A-Pol 2020, 136, 244–261. [Google Scholar]
- Wei, H.; Lee, P.T.-W. Designing a Coordinated Horizontal Alliance System for China’s Inland Ports with China Railway Express Platforms along the Silk Road Economic Belt. Transp. Res. Part E Logist. Transp. Rev. 2021, 147, 102238. [Google Scholar] [CrossRef]
- Wang, J.; Jiao, J.; Ma, L. An Organizational Model and Border Port Hinterlands for the China-Europe Railway Express. J. Geogr. Sci. 2018, 28, 1275–1287. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.M. Development Status, Challenges and Suggestions of CR Express in the Context of High-Quality Development. Inter-trade 2020, 5, 28–34. (In Chinese) [Google Scholar]
- Bensassi, S.; Márquez-Ramos, L.; Martinez-Zarzoso, I.; Suárez-Burguet, C. Relationship between Logistics Infrastructure and Trade: Evidence from Spanish Regional Exports. Transp. Res. Part A Policy Pr. 2015, 72, 47–61. [Google Scholar] [CrossRef]
- Limao, N.; Venables, A.J. Infrastructure, Geographical Disadvantage and Transport Costs. World Bank. Econ. Rev. 2001, 15, 451–479. [Google Scholar] [CrossRef]
- Martínez-Zarzoso, I.; García-Menéndez, L.; Suárez-Burguet, C. Impact of Transport Costs on International Trade: The Case of Spanish Ceramic Exports. Marit. Econ. Logist. 2003, 5, 179–198. [Google Scholar] [CrossRef]
- Baier, S.L.; Bergstrand, J.H. The Growth of World Trade: Tariffs, Transport Costs, and Income Similarity. J. Int. Econ. 2001, 53, 1–27. [Google Scholar] [CrossRef]
- Hummels, D.L.; Schaur, G. Time as a Trade Barrier. Am. Econ. Rev. 2013, 103, 2935–2959. [Google Scholar] [CrossRef] [Green Version]
- Nordas, H.K. Time as a Trade Barrier: Implications for Low-Income Countries. OECD. Econ. Stud. 2006, 42, 137–167. [Google Scholar] [CrossRef] [Green Version]
- Djankov, S.; Freund, C.; Pham, C.S. Trading on Time. Rev. Econ. Stat. 2010, 92, 166–173. [Google Scholar] [CrossRef]
- Longo, R.; Sekkat, K. Economic Obstacles to Expanding Intra-African Trade. World Dev. 2004, 32, 1309–1321. [Google Scholar] [CrossRef]
- Egger, P.; Larch, M. Interdependent Preferential Trade Agreement Memberships: An Empirical Analysis. J. Int. Econ. 2008, 76, 384–399. [Google Scholar] [CrossRef]
- Clark, X.; Dollar, D.; Micco, A. Port Efficiency, Maritime Transport Costs, and Bilateral Trade. J. Dev. Econ. 2004, 75, 417–450. [Google Scholar] [CrossRef] [Green Version]
- Alderighi, M.; Gaggero, A.A. Fly and Trade: Evidence from the Italian manufacturing Industry. Econ. Transp. 2017, 9, 51–60. [Google Scholar] [CrossRef]
- Behar, A.; Manner, P. Logistics and Exports. Department of Economics and CSAE Working Paper Series; University of Oxford: Oxford, UK, 2008. [Google Scholar]
- Puertas, R.; Martil Garcia, L. Logistics Performance and Export Competitiveness: European Experience. Empirica 2014, 41, 467–480. [Google Scholar] [CrossRef]
- Çelebi, D. The Role of Logistics Performance in Promoting Trade. Marit. Econ. Logist. 2019, 21, 307–323. [Google Scholar] [CrossRef]
- Huang, W.X.; Gong, X.S. Empirical Analysis on Impact of International Logistics Performance of Silk-Road Economic Belt on China’s Export of Machinery and Electronic Productions. J. Int. Trade 2014, 10, 56–66. (In Chinese) [Google Scholar]
- Feng, Z.Q.; Liu, W.J. The Impact of Logistics Performance on the China’s Export Ternary Margins of Machinery and Transport Equipment. J. Ind. Tech. Econ. 2019, 1, 49–57. (In Chinese) [Google Scholar]
- Zhao, S.S.; Li, H.S. Influence of Logistics Level of Countries along the “Silk Road Belt” to National Trade of Xinjiang. Arid. Land. Geogr. 2017, 40, 897–905. (In Chinese) [Google Scholar]
- Srisawat, P.; Kronprasert, N.; Arunotayanun, K. Development of Decision Support System for Evaluating Spatial Efficiency of Regional Transport Logistics. Transp. Res. Procedia 2017, 25, 4832–4851. [Google Scholar] [CrossRef]
- Zhang, H.; You, J.; Haiyirete, X.; Zhang, T. Measuring Logistics Efficiency in China Considering Technology Heterogeneity and Carbon Emission through a Meta-Frontier Model. Sustainability 2020, 12, 8157. [Google Scholar] [CrossRef]
- Zheng, W.; Xu, X.; Wang, H. Regional Logistics Efficiency and Performance in China along the Belt and Road Initiative: The Analysis of Integrated DEA and Hierarchical Regression with Carbon Constraint. J. Clean. Prod. 2020, 276, 123649. [Google Scholar] [CrossRef]
- Tinbergen, J. Shaping the World Economy: Suggestions for International Economic Policy; The Twentieth Century Incorporate: New York, NY, USA, 1962. [Google Scholar]
- Anderson, J.E. A Theoretical Foundation for the Gravity Equation. Am. Econ. Rev. 1979, 69, 106–116. [Google Scholar]
- Bergstrand, J.H. The Gravity Equation in International Trade: Some Microeconomic Foundations and Empirical Evidence. Rev. Econ. Stat. 1985, 67, 474. [Google Scholar] [CrossRef]
- Bergstrand, J.H. The Generalized Gravity Equation, Monopolistic Competition, and the Factor-Proportions Theory in International Trade. Rev. Econ. Stat. 1989, 71, 143. [Google Scholar] [CrossRef]
- The Development Research Center of the State Council Information Network. Available online: http://www.drcnet.com.cn/www/int/ (accessed on 5 October 2020).
- Wei, S.-J. Intra-National versus International Trade: How Stubborn are Nations in Global Integration; National Bureau of Economic Research: Cambridge, MA, USA, 1996. [Google Scholar]
- Novy, D. Gravity Redux: Measuring International Trade Costs with Panel Data. Econ. Inq. 2012, 51, 101–121. [Google Scholar] [CrossRef] [Green Version]
- Poncet, S. Measuring Chinese Domestic and International Integration. China Econ. Rev. 2003, 14, 1–21. [Google Scholar] [CrossRef]
- China Free Trade Area Service Network. Available online: http://fta.mofcom.gov.cn/ (accessed on 5 October 2020).
- The World Bank Group World Development Indicators, DataBank. Available online: http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators (accessed on 8 October 2020).
- National Bureau of Statistics of China. China Statistical Yearbook (2009–2019); China Statistics Press: Beijing, China, 2008–2018. (In Chinese)
- China Communications and Transportation Association. China Transportation Yearbook (2009–2019); People’s Communication Press: Beijing, China, 2008–2018. (In Chinese) [Google Scholar]
- Zhang, Z.X.; Huang, H.R.; Lin, L. Analysis on Trade Relationship and Potential between China and West Asian Countries along “the Belt and Road”. East. China. Econ. Manag. 2019, 33, 13–19. (In Chinese) [Google Scholar]
- Liu, S.L.; Hu, A.G. Transportation Infrastructure and Regional Economic Integration in China. Econ. Res. J. 2011, 3, 73–83. (In Chinese) [Google Scholar]
- Liang, S.L.; Zhang, M. The Influence of Infrastructure Interconnectivity on the Border Effect of Trade between China and Its Neighboring Countries. Asia-Pacific. Econ. Rev. 2016, 1, 101–106. [Google Scholar]
- Helliwell, J.F. Do National Border Borders Matter for Quebec’s Trade? Can. J. Econ. 1996, 26, 507–522. [Google Scholar] [CrossRef]
System | Subsystem | Index | Index Interpretation | Weight |
---|---|---|---|---|
Comprehensive evaluation index system of logistics development level | Regional economic support | Economic development | GDP per capita | 0.0754 |
Industrial structure | Value added by the secondary and tertiary industries/GDP | 0.0154 | ||
Investment level | Total investment in fixed assets/GDP | 0.0435 | ||
Consumption level | Total retail sales of consumer goods/GDP | 0.0386 | ||
Openness | Total import and export/GDP | 0.1989 | ||
Logistics infrastructure | Transport infrastructure | Mileage of highway, railway and waterway /Land area | 0.0768 | |
Postal infrastructure | Postal outlets/Population | 0.1147 | ||
Internet penetration | Number of internet users/Population | 0.0437 | ||
Telephone penetration | Mobile phone ownership/Population | 0.0457 | ||
Logistics operation and development | Logistics freight scale | Freight volume of highway, railway, waterway and aviation/land area | 0.1889 | |
Logistics output scale | Value added by transportation, storage and post/GDP | 0.0481 | ||
Logistics employment scale | Employment in transportation, storage and post/Total employment | 0.0415 | ||
Logistics investment scale | Investment in transportation, storage and post/ Total investment in fixed assets | 0.0687 |
Province | Area | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | Eastern | 0.454 | 0.402 | 0.442 | 0.456 | 0.457 | 0.453 | 0.446 | 0.412 | 0.408 | 0.410 | 0.437 |
Tianjin | Eastern | 0.329 | 0.341 | 0.348 | 0.341 | 0.361 | 0.359 | 0.369 | 0.367 | 0.368 | 0.374 | 0.377 |
Hebei | Eastern | 0.154 | 0.170 | 0.189 | 0.187 | 0.195 | 0.209 | 0.219 | 0.225 | 0.231 | 0.232 | 0.244 |
Shanxi | Central | 0.165 | 0.186 | 0.191 | 0.191 | 0.201 | 0.209 | 0.221 | 0.242 | 0.248 | 0.249 | 0.253 |
Inner | Western | 0.132 | 0.150 | 0.160 | 0.159 | 0.171 | 0.189 | 0.197 | 0.193 | 0.209 | 0.219 | 0.217 |
Liaoning | Eastern | 0.200 | 0.198 | 0.213 | 0.216 | 0.228 | 0.244 | 0.254 | 0.257 | 0.270 | 0.279 | 0.279 |
Jilin | Central | 0.134 | 0.141 | 0.151 | 0.147 | 0.157 | 0.162 | 0.171 | 0.189 | 0.197 | 0.211 | 0.215 |
Heilongjiang | Central | 0.129 | 0.139 | 0.147 | 0.143 | 0.144 | 0.154 | 0.166 | 0.176 | 0.188 | 0.200 | 0.209 |
Shanghai | Eastern | 0.618 | 0.547 | 0.603 | 0.613 | 0.586 | 0.573 | 0.582 | 0.615 | 0.608 | 0.694 | 0.628 |
Jiangsu | Eastern | 0.267 | 0.257 | 0.286 | 0.292 | 0.297 | 0.291 | 0.303 | 0.302 | 0.306 | 0.324 | 0.332 |
Zhejiang | Eastern | 0.239 | 0.240 | 0.260 | 0.267 | 0.276 | 0.284 | 0.298 | 0.319 | 0.323 | 0.383 | 0.390 |
Anhui | Central | 0.158 | 0.155 | 0.166 | 0.170 | 0.188 | 0.221 | 0.236 | 0.241 | 0.252 | 0.270 | 0.274 |
Fujian | Eastern | 0.209 | 0.210 | 0.228 | 0.231 | 0.242 | 0.259 | 0.264 | 0.282 | 0.286 | 0.301 | 0.308 |
Jiangxi | Central | 0.131 | 0.139 | 0.148 | 0.143 | 0.152 | 0.170 | 0.180 | 0.187 | 0.201 | 0.217 | 0.216 |
Shandong | Eastern | 0.202 | 0.208 | 0.228 | 0.235 | 0.246 | 0.243 | 0.250 | 0.257 | 0.270 | 0.299 | 0.312 |
Henan | Central | 0.139 | 0.143 | 0.154 | 0.163 | 0.180 | 0.188 | 0.200 | 0.212 | 0.228 | 0.237 | 0.255 |
Hubei | Central | 0.162 | 0.170 | 0.188 | 0.171 | 0.181 | 0.200 | 0.214 | 0.234 | 0.250 | 0.267 | 0.277 |
Hunan | Central | 0.139 | 0.158 | 0.160 | 0.158 | 0.164 | 0.177 | 0.185 | 0.195 | 0.203 | 0.216 | 0.227 |
Guangdong | Eastern | 0.319 | 0.303 | 0.327 | 0.324 | 0.337 | 0.362 | 0.356 | 0.363 | 0.356 | 0.368 | 0.373 |
Guangxi | Western | 0.121 | 0.134 | 0.144 | 0.144 | 0.154 | 0.162 | 0.174 | 0.188 | 0.198 | 0.207 | 0.222 |
Hainan | Eastern | 0.152 | 0.165 | 0.169 | 0.170 | 0.179 | 0.196 | 0.215 | 0.232 | 0.235 | 0.239 | 0.254 |
Chongqing | Western | 0.194 | 0.205 | 0.218 | 0.226 | 0.235 | 0.263 | 0.285 | 0.287 | 0.294 | 0.312 | 0.326 |
Sichuan | Western | 0.114 | 0.131 | 0.136 | 0.139 | 0.151 | 0.164 | 0.188 | 0.195 | 0.212 | 0.223 | 0.235 |
Guizhou | Western | 0.143 | 0.158 | 0.168 | 0.170 | 0.172 | 0.190 | 0.199 | 0.212 | 0.218 | 0.229 | 0.242 |
Yunnan | Western | 0.100 | 0.107 | 0.128 | 0.118 | 0.116 | 0.133 | 0.148 | 0.156 | 0.172 | 0.195 | 0.206 |
Tibet | Western | 0.134 | 0.124 | 0.149 | 0.152 | 0.159 | 0.160 | 0.166 | 0.203 | 0.226 | 0.227 | 0.236 |
Shaanxi | Western | 0.134 | 0.146 | 0.152 | 0.153 | 0.156 | 0.168 | 0.186 | 0.204 | 0.219 | 0.236 | 0.245 |
Gansu | Western | 0.106 | 0.112 | 0.117 | 0.122 | 0.129 | 0.134 | 0.153 | 0.168 | 0.186 | 0.189 | 0.194 |
Qinghai | Western | 0.115 | 0.119 | 0.121 | 0.109 | 0.126 | 0.162 | 0.171 | 0.183 | 0.196 | 0.208 | 0.214 |
Ningxia | Western | 0.127 | 0.140 | 0.152 | 0.153 | 0.165 | 0.178 | 0.197 | 0.202 | 0.214 | 0.210 | 0.209 |
Xinjiang | Western | 0.128 | 0.121 | 0.121 | 0.121 | 0.133 | 0.154 | 0.164 | 0.177 | 0.174 | 0.195 | 0.197 |
average CV | 0.189 | 0.191 | 0.205 | 0.206 | 0.214 | 0.226 | 0.237 | 0.248 | 0.256 | 0.272 | 0.277 | |
0.579 | 0.489 | 0.500 | 0.513 | 0.473 | 0.423 | 0.391 | 0.368 | 0.336 | 0.360 | 0.320 | ||
Eastern average | 0.286 | 0.277 | 0.299 | 0.303 | 0.309 | 0.316 | 0.323 | 0.330 | 0.333 | 0.355 | 0.358 | |
Central average | 0.145 | 0.154 | 0.163 | 0.161 | 0.171 | 0.185 | 0.197 | 0.210 | 0.221 | 0.233 | 0.241 | |
Western average | 0.129 | 0.137 | 0.147 | 0.147 | 0.156 | 0.171 | 0.186 | 0.197 | 0.210 | 0.221 | 0.229 |
Region | Country |
---|---|
Mongolia-Russia | Russia(*), Mongolia(*); |
Southeast Asia | Singapore(√), Malaysia(√), Indonesia(√), Myanmar(√), Thailand(√), Lao PDR(*), Cambodia(√), Vietnam(√), Brunei Darussalam(√), Philippines(√); |
South Asia | India(√), Pakistan(√), Bangladesh(√), Afghanistan(*), Sri Lanka(√), Maldives(√), Nepal(*), Bhutan(*); |
Central Asia | Kazakhstan(*), Uzbekistan(*), Turkmenistan(*), Tajikistan(*), Kyrgyzstan(*); |
West Asia-North Africa | Iran(√), Iraq(√), Turkey(*), Syria(*), Jordan(*), Lebanon(*), Israel(*), Palestine(*), Saudi Arabia(√), Yemen(√), Oman(√), United Arab Emirates(√), Qatar(√), Kuwait(√); Bahrain(√), Greece(√), Cyprus(√), Egypt(√), Azerbaijan(*), Armenia(*), Georgia(*); |
Central-Eastern Europe | Poland(*), Lithuania(*), Estonia(*), Latvia(*), Czech(*), Slovakia(*), Hungary(*), Slovenia(*), Croatia(*), Bosnia and Herzegovina(*), Montenegro(*), Serbia(*), Romania(*), Bulgaria(*), North Macedonia(*), Albania(*), Ukraine(*), Belarus(*), Moldova(*); |
Type | 2008 | 2018 | ||
---|---|---|---|---|
Trade Flows | Proportion | Trade Flows | Proportion | |
<$100 million | 1521 | 75.48 | 1322 | 65.6 |
$100 million–$1 billion | 359 | 17.82 | 462 | 22.93 |
$1 billion–$5 billion | 106 | 5.26 | 165 | 8.19 |
$5 billion–$10 billion | 20 | 0.99 | 35 | 1.74 |
$10 billion–$15 billion | 7 | 0.35 | 18 | 0.89 |
>$15 billion | 2 | 0.1 | 13 | 0.65 |
Year | Total Trade Volume ($1 Billion) | CV | ||||
---|---|---|---|---|---|---|
Eastern | Central | Western | Eastern | Central | Western | |
2008 | 504.47 | 42.12 | 51.82 | 0.82 | 0.66 | 1.41 |
2009 | 432.75 | 31.29 | 39.56 | 0.84 | 0.63 | 1.15 |
2010 | 594.99 | 45.09 | 54.27 | 0.81 | 0.56 | 1.12 |
2011 | 760.25 | 62.67 | 73.45 | 0.79 | 0.64 | 1.11 |
2012 | 801.98 | 69.79 | 92.95 | 0.79 | 0.63 | 1.09 |
2013 | 863.28 | 74.62 | 106.63 | 0.83 | 0.55 | 1.09 |
2014 | 911.37 | 85.29 | 123.67 | 0.89 | 0.54 | 1.02 |
2015 | 828.84 | 76.27 | 96.66 | 0.90 | 0.36 | 0.94 |
2016 | 797.80 | 70.50 | 84.92 | 0.93 | 0.36 | 0.95 |
2017 | 902.83 | 80.08 | 120.14 | 0.90 | 0.38 | 0.95 |
2018 | 1030.27 | 105.43 | 154.38 | 0.78 | 0.40 | 0.96 |
Year | Mongolia-Russia | Southeast Asia | South Asia | Central Asia | West Asia- North Africa | Central-Eastern Europe | “Belt” Region | “Road” Region |
---|---|---|---|---|---|---|---|---|
2008 | 59.17 | 231.07 | 65.47 | 30.82 | 163.73 | 48.15 | 172.00 | 426.41 |
2009 | 41.10 | 212.93 | 56.83 | 23.74 | 128.96 | 40.03 | 127.96 | 375.64 |
2010 | 58.92 | 292.79 | 80.47 | 30.13 | 179.08 | 52.97 | 173.70 | 520.65 |
2011 | 85.53 | 362.39 | 96.99 | 37.75 | 249.01 | 64.69 | 228.24 | 668.12 |
2012 | 94.01 | 400.06 | 92.97 | 45.95 | 267.67 | 64.07 | 245.64 | 719.08 |
2013 | 95.10 | 443.12 | 93.20 | 50.27 | 268.38 | 94.45 | 290.41 | 754.11 |
2014 | 100.75 | 480.08 | 106.03 | 42.95 | 319.68 | 70.84 | 264.36 | 855.98 |
2015 | 73.19 | 466.58 | 111.16 | 32.60 | 253.01 | 65.23 | 216.60 | 785.16 |
2016 | 73.85 | 447.65 | 112.73 | 30.15 | 221.88 | 66.96 | 214.27 | 738.95 |
2017 | 90.58 | 518.66 | 126.93 | 36.27 | 249.97 | 80.64 | 255.94 | 847.11 |
2018 | 115.07 | 587.72 | 139.12 | 41.70 | 297.87 | 93.73 | 301.42 | 973.79 |
Variable | Standard Equation (Model 1) | Add LDL (Model 2) | Add Domestic (Model 3) | Add LDL and Domestic (Model 4) | 2000–2018 (Model 5) | 2000–2012 (Model 6) | 2013–2018 (Model 7) |
---|---|---|---|---|---|---|---|
lnGDPi | 0.883 *** | 0.707 *** | 0.854 *** | 0.684 *** | 0.679 *** | 0.667 *** | 0.807 *** |
lnGDPj | 0.662 *** | 0.590 *** | 0.637 *** | 0.599 *** | 0.587 *** | 0.554 *** | 0.620 *** |
lnDij | −1.254 *** | −1.267 *** | −0.807 *** | −0.843 *** | −0.743 *** | −0.785 *** | −0.777 *** |
LDLi | 4.053 *** | 4.002 *** | 3.987 *** | 4.210 *** | 4.606 *** | ||
LDLj | 1.546 *** | 0.831 *** | 0.619 *** | 0.714 *** | 0.971 *** | ||
Domestici | 4.172 *** | 3.942 *** | 4.441 *** | 4.180 *** | 4.293 *** | ||
Coastj | 0.099 *** | 0.078 *** | 0.086 *** | ||||
FTAij | 0.242 *** | 0.114 *** | 0.282 *** | ||||
Cons | −0.595 *** | −0.294 *** | −4.167*** | −3.590 *** | −4.374 *** | −3.498 *** | −5.832 *** |
R2 | 0.639 | 0.680 | 0.681 | 0.716 | 0.717 | 0.720 | 0.746 |
Variable | Eastern Region (Model 8) | Central Region (Model 9) | Western Region (Model 10) |
---|---|---|---|
lnGDPi | 0.874 *** | 0.414 *** | 0.445 *** |
lnGDPj | 0.836 *** | 0.578 *** | 0.384 *** |
lnDij | −0.827 *** | −0.811 *** | −0.859 |
LDLi | 1.190 *** | 0.207 | −0.222 |
LDLj | 1.254 *** | 0.641 *** | 0.433 *** |
Domestici | 2.273 *** | 4.742 *** | 5.051 *** |
Coastj | 0.305 *** | 0.003 | −0.026 |
FTAij | 0.199 *** | 1.179 *** | 0.110 *** |
Cons | −5.931 *** | −1.089 *** | 0.275 *** |
R2 | 0.802 | 0.787 | 0.687 |
Variable | Mongolia-Russia (Model 11) | Southeast Asia (Model 12) | South Asia (Model 13) | Central Asia (Model 14) | West Asia-North African (Model 15) | Central-Eastern Europe (Model 16) | “Belt” Region (Model 17) | “Road” Region (Model 18) |
---|---|---|---|---|---|---|---|---|
lnGDPi | 0.976 *** | 0.886 *** | 0.530 *** | 0.623 *** | 0.687 *** | 0.472 *** | 0.523 *** | 0.905 *** |
lnGDPj | −0.112 | 0.650 *** | 0.467 *** | 0.321 *** | 0.583 *** | 0.545 *** | 0.548 *** | 0.667 *** |
lnDij | −0.306 *** | −0.781 *** | −0.269 *** | −1.066 *** | −0.060 | 0.688 *** | −0.715 *** | −0.542 *** |
LDLi | 0.433 | 4.286 *** | 2.351 *** | 0.162 | 4.068 *** | 4.073 *** | 3.089 *** | 5.049 *** |
LDLj | −0.273 | 1.525 *** | 2.161 *** | 1.987 *** | 0.494 *** | −0.554 *** | 0.325 *** | 0.736 *** |
Domestici | 7.440 *** | 3.953 *** | 5.995 *** | 3.324 *** | 6.964 *** | 10.127 *** | 4.669 *** | 5.030 *** |
Coastj | 3.586 *** | 0.163 ** | 0.316 *** | 0.174 *** | 0.115 *** | 0.147 *** | ||
FTAij | 0.197 *** | −0.247 * | −0.124 ** | 0.499 *** | ||||
Cons | −5.302 | −6.370 *** | −7.046 *** | 0.970 | −10.581 *** | −15.225 *** | −2.865 *** | −8.701 *** |
R2 | 0.903 | 0.857 | 0.905 | 0.886 | 0.772 | 0.855 | 0.738 | 0.778 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Cao, X.; Li, J. Impact of Logistics Development Level on International Trade in China: A Provincial Analysis. Sustainability 2021, 13, 2107. https://doi.org/10.3390/su13042107
Ma W, Cao X, Li J. Impact of Logistics Development Level on International Trade in China: A Provincial Analysis. Sustainability. 2021; 13(4):2107. https://doi.org/10.3390/su13042107
Chicago/Turabian StyleMa, Wei, Xiaoshu Cao, and Jiyuan Li. 2021. "Impact of Logistics Development Level on International Trade in China: A Provincial Analysis" Sustainability 13, no. 4: 2107. https://doi.org/10.3390/su13042107
APA StyleMa, W., Cao, X., & Li, J. (2021). Impact of Logistics Development Level on International Trade in China: A Provincial Analysis. Sustainability, 13(4), 2107. https://doi.org/10.3390/su13042107