Exploratory Research on Overfertilization in Grain Production and Its Relationship with Financial Factors: Evidence from China
Abstract
:1. Introduction
2. Literature Review
2.1. Estimation of the Degree of Overuse of Chemical Fertilizers in Grain Production
2.2. Economic Factors and Other Factors Influencing Overuse of Chemical Fertilizers in Grain Production
3. Hypotheses, Materials, and Methods
3.1. Hypotheses
3.2. Overfertilization Evaluation Model
3.3. The Influencing Factors Model for Overfertilization
3.4. Data and Data Sources
4. Results, Analysis, and Discussion
4.1. Evaluation and Analysis of the Degree of Overfertilization
4.2. Effects of Financial Factors on Overfertilization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moo-Young, M. Comprehensive Biotechnology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- DeVincentis, A.J.; Solis, S.S.; Bruno, E.M.; Leavitt, A.; Gomes, A.; Rice, S.; Zaccaria, D. Using cost-benefit analysis to understand adoption of winter cover cropping in California’s specialty crop systems. J. Environ. Manag. 2020, 261, 110205. [Google Scholar] [CrossRef]
- Yang, H.; Shen, X.; Lai, L. Spatio-temporal variations in health costs caused by chemical fertilizer utilization in China from 1990 to 2012. Sustainability 2017, 9, 1505. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.L.; Chen, D.L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutr. Cycl. Agroecosyst. 2002, 63, 117–127. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Y.; Tang, Y. Quantifying economically and ecologically optimum nitrogen rates for rice production in south-eastern China. Agric. Ecosyst. Environ. 2011, 142, 195–204. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, Q.; Ge, X.; Zhu, L.; Li, X.; Yang, X.; Ouyang, H.; Wu, J. Defining the ecological efficiency of nitrogen use in the context of nitrogen cycling. Ecol. Indic. 2019, 107, 105493. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, J. Calculation of Economic Level of Chemical Fertilizers Application in Grain Production-A Case Study of Wheat Growers in North China Plain. J. Agrotech. Econ. 2013, 25–31. [Google Scholar] [CrossRef]
- Qiu, G.H.; Luan, H.; Li, J. Impact of risk avoidance on the overuse of chemical fertilizers in farmers. Chin. Rural Econ. 2014, 3, 85–96. [Google Scholar]
- Shi, C.; Guo, Y.; Zhu, J. Evaluation of over-fertilization in China and its influencing factors. Res. Agric. Mod. 2016, 37, 671–679. [Google Scholar] [CrossRef]
- Liu, A.; Ye, Z. China Statistical Yearbook-2020, 1st ed.; China Statistical Publishing House: Beijing, China, 2020. [Google Scholar]
- National Bureau of Statistics for the People’s Republic of China. China Statistical Yearbook 2017, 1st ed.; China Statistics Press: Beijing, China, 2017. [Google Scholar]
- Talanow, K.; Topp, E.N.; Loos, J.; Martín-López, B. Farmers’ perceptions of climate change and adaptation strategies in South Africa’s Western Cape. J. Rural Stud. 2021, 81, 203–209. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Available online: http://www.moa.gov.cn/nybgb/2013/dbaq/201712/t20171219_6119839.htm (accessed on 2 February 2021).
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Available online: http://www.moa.gov.cn/nybgb/2015/qi/201712/t20171219_6103732.htm (accessed on 25 January 2021).
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Available online: http://www.moa.gov.cn/gk/tzgg_1/tz/201604/t20160426_5108762.htm (accessed on 25 January 2021).
- Friedman, M. A Monetary Theory of Nominal Income. J. Polit. Econ. 1971, 79, 323–337. [Google Scholar] [CrossRef]
- Ng’ang’a, S.K.; Jalang’o, D.A.; Girvetz, E.H. Adoption of technologies that enhance soil carbon sequestration in East Africa. What influence farmers’ decision? Int. Soil Water Conserv. Res. 2020, 8, 90–101. [Google Scholar] [CrossRef]
- Hörner, D.; Wollni, M. Integrated soil fertility management and household welfare in Ethiopia. Food Policy 2021. [Google Scholar] [CrossRef]
- Emerton, L.; Snyder, K.A. Rethinking sustainable land management planning: Understanding the social and economic drivers of farmer decision-making in Africa. Land Use Policy 2018, 29, 684–694. [Google Scholar] [CrossRef]
- Freeman, H.A.; Omiti, J.M. Fertilizer use in semi-arid areas of Kenya: Analysis of smallholder farmers’ adoption behavior under liberalized markets. Nutr. Cycl. Agroecosyst. 2003, 66, 23–31. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, H.; Mosler, H.J.; Abbaspour, K.C. Factors affecting farmers’ decisions on fertilizer use: A case study for the Chaobai watershed in Northern China. Cons. J. Sustain. Dev. 2010, 4, 80–102. [Google Scholar]
- Ebenstein, A.; Zhang, J.; McMillan, M.; Chen, K. Chemical Fertilizer and Migration in China. NBER Work. Pap. Ser. 2011, 17245. [Google Scholar]
- Wu, Y. Chemical fertilizer use efficiency and its determinants in China’s farming sector: Implications for environmental protection. China Agric. Econ. Rev. 2011, 3, 117–130. [Google Scholar] [CrossRef]
- Pan, D. The impact of agricultural extension on farmer nutrient management behavior in Chinese rice production: A household-level analysis. Sustainability 2014, 6, 6644–6665. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, Z.; Yu, R.; Li, F.; Li, K.; Cao, H.; Yang, N.; Li, M.; Dai, J.; Zan, Y.; et al. Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China. Agric. Ecosyst. Environ. 2016, 224, 1–11. [Google Scholar] [CrossRef]
- Liu, W.; Yang, H.; Liu, J.; Azevedo, L.B.; Wang, X.; Xu, Z.; Abbaspour, K.C.; Schulin, R. Global assessment of nitrogen losses and trade-offs with yields from major crop cultivations. Sci. Total Environ. 2016, 572, 526–537. [Google Scholar] [CrossRef]
- Hua, C.; Woodward, R.T.; You, L. An ex-post evaluation of agricultural extension programs for reducing fertilizer input in Shaanxi, China. Sustainability 2017, 9, 566. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Peng, S. Exploring the trends in nitrogen input and nitrogen use efficiency for agricultural sustainability. Sustainability 2017, 9, 1905. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What could promote farmers to replace chemical fertilizers with organic fertilizers? J. Clean. Prod. 2018, 199, 882–899. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Q.; Liang, Q. Cooperative membership, social capital, and chemical input use: Evidence from China. Land Use Policy 2018, 70, 394–401. [Google Scholar] [CrossRef]
- Ma, L.; Feng, S.; Reidsma, P.; Qu, F.; Heerink, N. Identifying entry points to improve fertilizer use efficiency in Taihu Basin, China. Land Use Policy 2014, 37, 52–59. [Google Scholar] [CrossRef]
- Ma, J. Farmers’ usage of chemical fertilizers in grain crops and its variables: A case in the North China Plain. J. Agrotech. Econ. 2006, 36–42. [Google Scholar] [CrossRef]
- Jahel, C.; Augusseau, X.; Lo Seen, D. Modelling cropping plan strategies: What decision margin for farmers in Burkina Faso? Agric. Syst. 2018, 167, 17–33. [Google Scholar] [CrossRef]
- Abokyi, E.; Strijker, D.; Asiedu, K.F.; Daams, M.N. The impact of output price support on smallholder farmers’ income: Evidence from maize farmers in Ghana. Heliyon 2020, 6, e05013. [Google Scholar] [CrossRef]
- Hu, Y.F.; You, F.; Luo, Q.Y. Characterizing the attitudes of the grain-planting farmers of Huaihe Basin, China. Food Policy 2018, 79, 224–234. [Google Scholar] [CrossRef]
- Gelo, D. Forest commons, vertical integration and smallholder’s saving and investment responses: Evidence from a quasi-experiment. World Dev. 2020, 132, 104962. [Google Scholar] [CrossRef]
- Qu, Y.; Guo, M. Empirical Research on Farmers’ Investment Behavior. Shanghai Econ. Rev. 2002, 4, 17–27. [Google Scholar] [CrossRef]
- Stringer, L.C.; Fraser, E.D.G.; Harris, D.; Lyon, C.; Pereira, L.; Ward, C.F.M.; Simelton, E. Adaptation and development pathways for different types of farmers. Environ. Sci. Policy 2020, 104, 174–189. [Google Scholar] [CrossRef]
- Pan, Z.; Sun, Z. Research on Farmers’ Agricultural Investment in the Process of Non-agriculturalization. J. Cent. Univ. Financ. Econ. 2007, 1, 88–93. [Google Scholar] [CrossRef]
- Friedman, M. The Permanent Income Hypothesis. In Theory of the Consumption Function; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Zhang, G.; Wang, X.; Sun, B.; Zhao, H.; Lu, F.; Zhang, L. Status of mineral nitrogen fertilization and net mitigation potential of state fertilization recommendations in Chinese croplands. Agric. Syst. 2016, 146, 1–10. [Google Scholar] [CrossRef]
- Xiang, C.; Jia, X.; Huang, J. Effect of Agricultural Technology Training on Nitrogen Fertilizer Application by Farmers: Empirical Study on Corn Production in Shouguang City, Shandong Province. J. Agrotech. Econ. 2012, 4–10. [Google Scholar] [CrossRef]
- Xu, R.; Jiang, D.; Qian, W. Crop tolerance of trichloroacetic acid in phosphate fertilizers. Chin. J. Environ. Eng. 1988, 6, 1–43. [Google Scholar]
- Alatengxihuri; Zeng, X.; Bai, L. Effect of Different Land Use on Farmland Soil Nutrients. Res. Agric. Mod. 2010, 31, 492–495. [Google Scholar] [CrossRef]
- Luan, J. Does Agricultural Labor Migration Have Substitution Relation with Fertilizer Use? Experience and Evidence from China’s Main Provinces and Municipalities Planting Crops. West. Forum 2017, 27, 12–21. [Google Scholar] [CrossRef]
- Paudel, K.P.; Lohr, L.; Martin, N.R. Effect of risk perspective on fertilizer choice by sharecroppers. Agric. Syst. 2000, 66, 115–128. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Zhang, L.; Li, Q. Fertilization Behavior of Peasants and Agricultural Non-point Source Pollution. J. Agrotech. Econ. 2006, 6, 4–12. [Google Scholar]
- Li, H.; Ren, D.; Ran, R. Farmers’ Behaviors of Fertilizers Use-A Case Study of Sichuan Province. J. Sichuan Agric. Univ. 2008, 26, 297–300. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, H. Study on Fertilizers Input by Farmers and Non-point Source Pollution. Acta Agric. Jiangxi 2012, 24, 183–186. [Google Scholar] [CrossRef]
- Ji, Y.; Zang, H.; Lu, W.; Liu, H. Differentiation, incomplete information and excessive fertilizer use by farmers. J. Agrotech. Econ. 2016, 14–22. [Google Scholar] [CrossRef]
- Mayila, T.; Fuqinayi, Y.; Asiya, T. Impact factors of excessive household fertilization: A case study of cotton growing in Xinjiang, China. Cotton Sci. 2016, 28, 619–627. [Google Scholar] [CrossRef]
- Zheng, W.; He, Z.; Xu, X. Evaluation of over-fertilization in main grain crops in Jiangsu and its influencing factors. Res. Agric. Mod. 2017, 38, 666–672. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, Y.; Hu, R.; Yang, F.; Shen, X. The impact of rural-urban migration experience on fertilizer use: Evidence from rice production in China. J. Clean. Prod. 2021, 280, 124429. [Google Scholar] [CrossRef]
- Li, J.; Feng, S.; Luo, T.; Guan, Z. What drives the adoption of sustainable production technology? Evidence from the large scale farming sector in East China. J. Clean. Prod. 2020, 257, 120611. [Google Scholar] [CrossRef]
- Savari, M.; Gharechaee, H. Application of the extended theory of planned behavior to predict Iranian farmers’ intention for safe use of chemical fertilizers. J. Clean. Prod. 2020, 263, 121512. [Google Scholar] [CrossRef]
- Zheng, W.; Luo, B.; Hu, X. The determinants of farmers’ fertilizers and pesticides use behavior in China: An explanation based on label effect. J. Clean. Prod. 2020, 272, 123054. [Google Scholar] [CrossRef]
- Stigter, T.Y. 10.11-Restoration of Groundwater Quality to Sustain Coastal Ecosystems Productivity; Eric, W., Donald, M., Eds.; Treatise on Estuarine and Coastal Science; Academic Press: Salt Lake City, UT, USA, 2011; pp. 245–262. ISBN 9780080878850. [Google Scholar] [CrossRef]
- Mulla, D.J.; Page, A.L.; Ganje, T.J. Cadmium Accumulations and Bioavailability in Soils from Long-Term Phosphorus Fertilization. J. Environ. Qual. 1980, 9. [Google Scholar] [CrossRef]
- Sun, T.; Zhou, Q.; Li, P. Pollution Ecology, 1st ed.; Science Press: Beijing, China, 2001. [Google Scholar]
- Xia, L.; Wang, H. Soil Pollution and Prevention, 1st ed.; East China University of Science and Technology Press: Shanghai, China, 2001. [Google Scholar]
- Huang, G.; Wang, X.; Qian, H. The negative impacts of chemical fertilizers on agricultural ecological environment and countermeasures. Ecol. Environ. 2004, 656–660. [Google Scholar] [CrossRef]
- Li, D.; Wu, Z.; Liang, C. Soil Environmental Pollution and Agricultural Product Quality. Bull. Soil Water Conserv. 2008, 172–177. [Google Scholar] [CrossRef]
- Xu, R. Research Progresses in Soil Acidification and Its Control. Soils 2015, 47, 238–244. [Google Scholar] [CrossRef]
- National Environmental Protection Agency. Report on Ecological Problems in China, 1st ed.; China Environmental Science Press: Beijing, China, 1999. [Google Scholar]
- Zhang, F.S.; Wang, J.Q.; Zhang, W.F.; Cui, Z.L.; Ma, W.Q.; Chen, X.P.; Jiang, R.F. Nutrient use efficiency of major cereal crops in China and measures for improvement. Acta Pedol. Sin. 2008, 45, 915–924. [Google Scholar] [CrossRef]
- Chen, H.; Yu, C.; Li, C.; Xin, Q.; Huang, X.; Zhang, J.; Yue, Y.; Huang, G.; Li, X.; Wang, W. Modeling the impacts of water and fertilizer management on the ecosystem service of rice rotated cropping systems in China. Agric. Ecosyst. Environ. 2016, 219, 49–57. [Google Scholar] [CrossRef]
- Ju, X.; Gu, B.; Wu, Y.; Galloway, J.N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Chang. 2016, 41, 26–32. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Zhang, F.; Du, F.; Li, L. Analysis on the change of fertilizer application amount and efficiency of main grain crops in China. J. Plant. Nutr. Fertil. 2010, 16, 1136–1143. [Google Scholar] [CrossRef]
- Zhou, F.; Jin, S. International comparison of agricultural fertilizer utilization efficiency from the perspective of yield rate. World Agric. 2016, 4, 35–44. [Google Scholar] [CrossRef]
- Liu, D.; Li, Q.; Song, X. Analysis on Fertilizer Application Efficiency of Grain Production in China—Based on Stochastic Frontier Function. Resour. Dev. Mark. 2017, 4, 19–25. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Tian, X.; Yan, B. Estimation of fertilizer use efficiency in agriculture and improving wages. J. Environ. Econ. 2017, 2, 101–114. [Google Scholar] [CrossRef]
- Li, Z. Study on excessive application of Chemical Fertilizer in Grain production in China. J. Anhui Agric. Sci. 2016, 44, 245–247. [Google Scholar] [CrossRef]
- Huang, W.; Jiang, L. Efficiency performance of fertilizer use in arable agricultural production in China. China Agric. Econ. Rev. 2019, 11. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Sun, B. Study on control strategy of agricultural non-point source pollution in China. Environ. Prot. 2008, 8, 4–6. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Pan, J.; Zhang, Y.; Liu, H. A multi-criteria evolutionary-based algorithm as a regional scale decision support system to optimize nitrogen consumption rate; A case study in North China plain. J. Clean. Prod. 2020, 256. [Google Scholar] [CrossRef]
- Ma, J.; Cai, X. Willingness of farmers to reduce N application rate and its determinants: A case study of the North China Plain. Chin. Rural Econ. 2007, 9, 9–16. [Google Scholar]
- Gong, Q.; Mu, X.; Tian, Z. Analysis on the Influencing Factors of Farmers’ Risk Awareness and Evasion Ability of Over-fertilization-Based on the Questionnaire Survey of 284 Farmers in Jianghan Plain. Chin. Rural Econ. 2010, 10, 66–76. [Google Scholar]
- Cui, X.; Cai, Y.; Zhang, A. Production Willingness and Influencing Factors of Farmers to Reduce the Chemical Fertilizers and Pesticides Applied. Chin. Rural Econ. 2011, 11, 97–100. [Google Scholar]
- Gong, Q.W.; Zhang, J.B.; Li, J. Empirical Analysis on the Influencing Factors for Farmers Decision-making on the Fertilizer Application Quantity: Based on the Investigation Data in Hubei Province. Issues Agric. Econ. 2008, 10, 65–70. [Google Scholar]
- Pandey, C.; Diwan, H. Integrated approach for managing fertilizer intensification linked environmental issues. Manag. Environ. Qual. Int. J. 2018, 29. [Google Scholar] [CrossRef]
- Jiang, L.; Li, Z. Urbanization and the change of fertilizer use intensity for agricultural production in Henan Province. Sustainability 2016, 8, 186. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.H.; Chen, M.X.; Miszhra, A.K. Subsidies under uncertainty: Modeling of input- and output-oriented policies. Econ. Model. 2020, 85, 39–56. [Google Scholar] [CrossRef]
- Scholz, R.W.; Geissler, B. Feebates for dealing with trade-offs on fertilizer subsidies: A conceptual framework for environmental management. J. Clean. Prod. 2018, 189, 898–909. [Google Scholar] [CrossRef]
- Yang, J.; Lin, Y. Driving factors of total-factor substitution efficiency of chemical fertilizer input and related environmental regulation policy: A case study of Zhejiang Province. Environ. Pollut. 2020, 263, 114541. [Google Scholar] [CrossRef]
- Xin, X.; Wang, J. Summary of research on grain subsidy policies. Agric. Econ. 2011, 35. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, H. Adjustment orientation of Grain production subsidy policy in China—Based on the perspective of supply-side reform. Sub. Natl. Fisc. Res. 2019, 10, 82–86. [Google Scholar]
- Huang, W. Analysis of the policy causes of pollution from agriculture fertilizers and its countermeasures. Ecol. Environ. Sci. 2011, 20, 193–198. [Google Scholar] [CrossRef]
- Li, C.H. Analysis of factors influencing farmers’ Willingness and Behavior to apply Chemical Fertilizer—Based on the survey data of 11 natural villages in Xianyang city, Shaanxi Province. Shanxi Agric. Econ. 2015, 39–42. [Google Scholar] [CrossRef]
- Takeshima, H.; Adhikari, R.P.; Shivakoti, S.; Kaphle, B.D.; Kumar, A. Heterogeneous returns to chemical fertilizer at the intensive margins: Insights from Nepal. Food Policy 2017, 69, 97–109. [Google Scholar] [CrossRef]
- Tur-Cardona, J.; Bonnichsen, O.; Speelman, S.; Verspecht, A.; Carpentier, L.; Debruyne, L.; Marchand, F.; Jacobsen, B.H.; Buysse, J. Farmers’ reasons to accept bio-based fertilizers: A choice experiment in seven different European countries. J. Clean. Prod. 2018, 197, 406–416. [Google Scholar] [CrossRef]
- Fan, C.F.; Shi, J.M. Predictive Analysis of Cost of grain planting Based on a combined model of Holt-winters and trend ARMA. Chin. J. Agric. Resour. Reg. Plan. 2014, 35, 45–51. [Google Scholar] [CrossRef]
- Yan, L.Z.; Cheng, S.K.; Min, Q.W.; Fan, C.H. Dynamic comparison of corn production costs between China and the USA. Chin. Rural Econ. 2004, 65–72. [Google Scholar]
- Cheng, S. The Relationship between Scale of Land Operation and Grain Productivity. Ph.D. Thesis, China Agricultural University, Beijing, China, 2018. [Google Scholar]
- Fan, C.F.; Shi, J.M. An Empirical Analysis of Factors Affecting Food Planting Costs in Shandong Province—Taking Corn and Wheat as Examples. J. China Agric. Resour. Reg. 2014, 35, 67–74. [Google Scholar] [CrossRef]
- Wan, J.S. Analysis of the Impact of Production Costs on Grain Production Capacity in the Early 21st Century. Macroeconomics 2004, 24–28. [Google Scholar] [CrossRef]
- Fan, C.F. Research on the Benefits of Grain Planting in Shandong Province. Ph.D. Thesis, Shandong Agricultural University, Taian, China, 2014. [Google Scholar]
- Wang, S.G.; Tian, X. Causes of the rising grain production cost in China: An empirical analysis of rice, wheat, and corn. Res. Agric. Mod. 2017, 38, 571–580. [Google Scholar] [CrossRef]
- Yin, J.; Dang, J.Q.; Sun, X.X. Effect of price and substitution on fertilizer use in agricultural production: An empirical analysis of corn and cabbage. J. China Agric. Univ. 2020, 25, 209–220. [Google Scholar] [CrossRef]
- Cao, H. Research on Eco-Friendly Behavior of Farmers in Major Grain Producing Areas. Ph.D. Thesis, Northwest A & F University, Yangling, China, 2019. [Google Scholar] [CrossRef]
- Cai, Y.; Yu, L. Rural household participation in and satisfaction with compensation programs targeting farmland preservation in China. J. Clean. Prod. 2018, 205, 1148–1161. [Google Scholar] [CrossRef]
- Feng, D.; Liang, L.; Wu, W.; Li, C.; Wang, L.; Li, L.; Zhao, G. Factors influencing willingness to accept in the paddy land-to-dry land program based on contingent value method. J. Clean. Prod. 2018, 183, 392–402. [Google Scholar] [CrossRef]
- Alexander, K.S.; Parry, L.; Thammavong, P.; Sacklokham, S.; Pasouvang, S.; Connell, J.G.; Jovanovic, T.; Moglia, M.; Larson, S.; Case, P. Rice farming systems in Southern Lao PDR: Interpreting farmers’ agricultural production decisions using Q methodology. Agric. Syst. 2018, 150, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Diallo, L.; Qing-jun, C.; Zhen-ming, Y.; Jin-hu, C.; Dafaalla, T.I.M. Effects of Various Doses of Mineral Fertilizers (NPKS and Urea) on Yield and Economic Profitability of New Varieties of Zea mays L. in Faranah, Guinea. J. Northeast Agric. Univ. 2016, 23, 1–8. [Google Scholar] [CrossRef]
- He, L.; Huang, J. The Stability of Land Use Rights and Fertilizers Use-An Empirical Study of Guangdong Province. China Rural Surv. 2001, 5, 42–48. [Google Scholar]
- Rao, J.; Ji, X.T.; Ouyang, W.; Zhao, X.C.; Lai, X.H. Dilemma Analysis of China Agricultural Non-point Source Pollution Based on Peasants’ Household Surveys. Procedia Environ. Sci. 2012, 13, 2169–2178. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Yang, Y. Study on the Application of Chemical Fertilizers by Farmers in the Perspective of Factor Substitution-Based on the Data of Rural Fixed-point Households in China. J. Agrotech. Econ. 2015, 84–91. [Google Scholar] [CrossRef]
- Jin, H. Rationality of the families in economic cycle: The construction of farmers’ rational analysis framework. Economist 2015, 55–64. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, S.; Zhang, J.; Zhang, X.; Wang, C. Effects of controlled-release fertilizer on rice grain yield, nitrogen use efficiency, and greenhouse gas emissions in a paddy field with straw incorporation. Field Crops Res. 2020, 253, 107814. [Google Scholar] [CrossRef]
- Yang, Q.H. Analysis of countermeasures for farmers’ income growth—based on the empirical analysis of Henan farmers’ income structure. J. Henan Coll. Financ. Tax. 2015, 29, 9–15. [Google Scholar] [CrossRef]
- Duan, Y.H.; Wang, G. Dynamic Econometrics Analysis of Influential Factors for the Fluctuation of Farmers’ Cash Income in Sichuan: Based on VEC Model. J. Sichuan Agric. Univ. 2013, 31, 110–114. [Google Scholar] [CrossRef]
- Xie, J.J. Research on the Cost Benefit of the Whole Industry Chain of Wheat. Master’s Thesis, Southwest University, Chongqing, China, 2014. [Google Scholar]
- Zhang, H.Y. Farmers’ income under the new normal of China’s economy. Issues Agric. Econ. 2015, 36, 4–11. [Google Scholar] [CrossRef]
- FPO. Available online: https://www.freepatentsonline.com/y2002/0138397.html (accessed on 1 February 2021).
- Feng, S. Land rental, off-farm employment and technical efficiency of farm households in Jiangxi Province, China. NJAS-Wagening. J. Life Sci. 2008, 55, 363–378. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.; Heerink, N.; Kuyvenhoven, A.; Qu, F. Impact of land fragmentation on rice producers’ technical efficiency in South-East China. 2010, 57, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Yan, L. Theoretical and Empirical Analysis of Farmers’ Fertilizer Application Behavior and Influencing Factors: A Case Study of Farmer Survey in the Southern Part of Xinjiang. Ph.D. Thesis, Xinjiang Agricultural University, Xinjiang, China, 2013. [Google Scholar]
- Shanghai Municipal Tax Service. Available online: http://shanghai.chinatax.gov.cn/zcfw/zcfgk/zzs/200506/t287853.html (accessed on 5 February 2021).
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Available online: http://www.moa.gov.cn/ztzl/15jssh/200504/t20050415_357185.htm (accessed on 5 February 2021).
- The Central People’s Government of the People’s Republic of China. Available online: http://www.gov.cn/gzdt/2012-07/30/content_2194733.htm (accessed on 1 February 2021).
- National Development and Reform Commission. National Agricultural Product Cost-Benefit Data Collection—2019, 1st ed.; China Statistical Publishing House: Beijing, China, 2019; pp. 119–140. [Google Scholar]
- National Bureau of Statistics of China. People’s Living Condition in China Statistical Yearbook-2019, 1st ed.; China Statistical Publishing House: Beijing, China, 2019; pp. 180–181. [Google Scholar]
- National Bureau of Statistics of China. China Rural Statistical Yearbook-2019, 1st ed.; China Statistical Publishing House: Beijing, China, 2019; pp. 273–291. [Google Scholar]
- Jing, Q. Study on the Fluctuation of Agricultural Product Price in China under the Influence of Financial Crisis: Based on the Analysis of 2007-2009 Panel-data. Jiangsu Commer. Forum 2012. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Zhang, Q. Study on identification of risk areas for natural disasters in Maize in China. J. Nat. Disasters 2013, 1, 29–37. [Google Scholar]
Crop | Main Planting Provinces |
---|---|
Wheat | Anhui, Gansu, Hebei, Henan, Heilongjiang, Hubei, Jiangsu, Inner Mongolia, Ningxia, Shandong, Shaanxi, Shanxi, Sichuan, Xinjiang, Yunnan |
Maize | Anhui, Gansu, Guangxi, Guizhou, Hebei, Henan, Heilongjiang, Hubei, Jilin, Jiangsu, Liaoning, Inner Mongolia, Ningxia, Shandong, Shanxi, Shaanxi, Sichuan, Xinjiang, Yunnan, Chongqing |
Rice (japonica) | Anhui, Hebei, Henan, Heilongjiang, Hubei, Jilin, Jiangsu, Liaoning, Inner Mongolia, Ningxia, Shandong, Yunnan, Zhejiang |
Variable | Mean | Std. Dev. | Min | Max | Observations |
---|---|---|---|---|---|
Output | 918.45 | 387.423 | 213.77 | 2091.11 | 716 |
Fertilizer Input | 119.285 | 35.869 | 12.02 | 241.96 | 716 |
Labor Input | 343.707 | 231.96 | 27.93 | 1310.11 | 717 |
Mach Input | 87.16 | 55.894 | 0.05 | 276.2 | 712 |
Other Input | 123.405 | 51.606 | 0 | 335.48 | 644 |
Q | 288.178 | 126.324 | 12.8 | 688.91 | 717 |
Sales | 601.725 | 351.75 | 18.1 | 1832 | 717 |
DPI | 7373.397 | 4135.51 | 1721.55 | 27,302.4 | 717 |
Price | 101.648 | 27.156 | 45.47 | 169.33 | 717 |
Cashcost | 43.934 | 16.032 | 15.23 | 110.98 | 717 |
Cashben | 57.743 | 19.577 | −8.43 | 113.33 | 717 |
Variable | Mean | Std. Dev. | Min | Max | Observations |
---|---|---|---|---|---|
Wheat | 0.5105465 | 0.0309461 | 0.3780085 | 0.5671189 | 168 |
Maize | 0.3006699 | 0.0280272 | 0.2500580 | 0.3569950 | 227 |
Rice (japonica) | 0.5139477 | 0.0150456 | 0.4637380 | 0.5486770 | 192 |
Wheat | Maize | Rice (Japonica) | |
---|---|---|---|
Northeast China (Heilongjiang, Jilin, Liaoning) | -- | 28.17% | 51.14% |
Huang-Huai-Hai region (Shandong, Henan, Hebei) | 51.83% | 28.90% | 50.92% |
Yangtze River region (Jiangsu, Anhui, Hubei, Zhejiang) | 51.15% | 30.52% | 51.42% |
Northern Plateau (Shanxi, Shaanxi, Inner Mongolia, Ningxia) | 51.32% | 29.89% | 52.70% |
Southwest China (Sichuan, Chongqing, Yunnan, Guizhou) | 49.48% | 32.34% | 50.91% |
Northwest China (Gansu, Xinjiang) | 51.26% | 30.33% | -- |
Type of Equation | Generalized Method of Moments (GMM)-Type | Standard |
---|---|---|
Difference equation | L(2/.).FE L(1/.).L5.DPI L(1/.).L5.Price L(2/.).L5.Q/Sales/Cashcost | D.Q D. Sales D. DPI D. Price D.Cashben |
Level equation | LD.FE L5D.DPI L5D.Price L6D. Q/Sales/Cashcost | _cons |
Variable | Wheat | Maize | Rice (Japonica) |
---|---|---|---|
L.1 | 0.188 ** (2.41) | 0.78 *** (6.1) | 0.389 *** (3.62) |
L.3 | -- | -- | 0.29 *** (7.5) |
L.4 | 0.57 *** (6.61) | 0.319 * (1.91) | -- |
L.5 | -- | −0.635 *** (−2.95) | -- |
L.6 | -- | 0.342 ** (1.96) | -- |
Cashben | -- | -- | −0.001 *** (−2.77) |
L.1 | -- | 0.000 *** (−3.69) | -- |
L.2 | 0.001 *** (3.12) | 0.001 *** (2.89) | -- |
L.3 | -- | −0.001 *** (−4.15) | -- |
Price | -- | -- | 0.0005 * (1.73) |
L.1 | -- | 0.001 *** (3.44) | -- |
L.2 | -- | 0.000 *** (−3.63) | -- |
L.3 | −0.001 ** (−2.44) | -- | -- |
L.4 | -- | −0.001 *** (−6.05) | -- |
L.5 | -- | 0.001 *** (6.07) | -- |
DPI | 0.00001 *** (2.71) | 0.000 *** (−2.91) | -- |
L.1 | -- | 0.000 *** (3.41) | 0.000 * (−1.6) |
L.2 | 0.005 * (2.39) | 0.000 *** (−2.99) | 0.000 * (1.8) |
L.4 | −0.004 *** (−3.19) | −0.001 *** (−6.05) | -- |
L.5 | -- | 0.001 *** (6.07) | -- |
Cashcost | -- | -- | -- |
L.1 | −0.001 *** (−3.12) | -- | −0.0005 *** (−2.66) |
L.3 | -- | −0.001 *** (−2.95) | -- |
L.4 | 0.001 *** (5.45) | 0.002 ** (2.66) | -- |
L.5 | 0.001 *** (5.71) | 0.001 *** (−5.97) | |
Q | -- | 0.000 *** (1.68) | -- |
L.1 | -- | 0.000 * (2.64) | -- |
L.3 | −0.0003 * (−3.33) | -- | -- |
L.5 | -- | 0.000 * (1.95) | -- |
Sales | 0.000 *** (3.36) | -- | |
L.1 | 0.0001 ** (2.16) | 0.000 *** (−2.57) | -- |
L.2 | −0.0001 ** (−2.08) | -- | -- |
L.3 | 0.0001 *** (2.63) | -- | -- |
L.4 | −0.0001 ** (−2.25) | -- | -- |
L.5 | -- | 0.000 ** (−2.02) | -- |
L.6 | −0.003 * (−2.25) | 0.000 * (1.8) | -- |
C | 0.126 ** (2.27) | −0.069 * (1.68) | 0.167 *** (3.14) |
Obs | 70 | 87 | 147 |
Mean dependent | 0.523 | 0.314 | 0.518 |
SD dependent | 0.024 | 0.019 | 0.013 |
AR(1) | [0.0106] | [0.0114] | [0.0177] |
AR(2) | [0.2244] | [0.5948] | [0.1768] |
Sargan test | [0.9999] | [1.0000] | [0.8819] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; Dan, E.; Lu, Y.; Guo, Y. Exploratory Research on Overfertilization in Grain Production and Its Relationship with Financial Factors: Evidence from China. Sustainability 2021, 13, 2176. https://doi.org/10.3390/su13042176
Shen J, Dan E, Lu Y, Guo Y. Exploratory Research on Overfertilization in Grain Production and Its Relationship with Financial Factors: Evidence from China. Sustainability. 2021; 13(4):2176. https://doi.org/10.3390/su13042176
Chicago/Turabian StyleShen, Jianfei, Erli Dan, Yalin Lu, and Yiwei Guo. 2021. "Exploratory Research on Overfertilization in Grain Production and Its Relationship with Financial Factors: Evidence from China" Sustainability 13, no. 4: 2176. https://doi.org/10.3390/su13042176
APA StyleShen, J., Dan, E., Lu, Y., & Guo, Y. (2021). Exploratory Research on Overfertilization in Grain Production and Its Relationship with Financial Factors: Evidence from China. Sustainability, 13(4), 2176. https://doi.org/10.3390/su13042176