Spatiotemporal Variations and Risk Analysis of Chinese Typhoon Disasters
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data Sources
2.2. Methods
2.2.1. Typhoon Hazard Index-Kernel Density Estimation (KDE)
2.2.2. Cumulative and Exceeding Probability, and Return Period
3. Results
3.1. Typhoon Hazard Spatiotemporal Patterns
3.2. Typhoon Hazard Index Based on Fixed Exceeding Probability
3.3. Probability Risk Based on Fixed Typhoon Hazard
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iman, R.L.; Johnson, M.E.; Schroeder, T.A. Assessing hurricane effects. Part 1. Sensitivity analysis. Reliab. Eng. Syst. Saf. 2002, 78, 131–145. [Google Scholar] [CrossRef]
- Wu, L.; Wang, B.; Geng, S. Growing typhoon influence on East Asia. Geophys. Res. Lett. 2005, 32, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Peduzzi, P.; Chatenoux, B.; Dao, H.; De Bono, A.; Herold, C. Global trends in tropical cyclone risk. Nat. Clim. Chang. 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Guo, G.Z.; Zhao, F.; Wang, D.D. A Method research of house damage in typhoon-flood disaster chain based on vulnerability curve. J. Catastrophol. 2017, 32, 94–97. [Google Scholar]
- Ding, Y.F.; Liu, J.P.; Chen, S.Z.; Cheng, X.; Zheng, Z.J. Uniqueness of Lekima compared to tropical cyclones landed in the east coast of China during 1979-2019. Acta Oceanol. Sin. 2020, 39, 121–124. [Google Scholar] [CrossRef]
- Shi, D.L.; Chen, G.H.; Wang, K.; Bi, X.X.; Chen, K.X. Evaluation of Two Initialization Schemes for Simulating the Rapid Intensification of Typhoon Lekima (2019). Adv. Atmos. Sci. 2020, 37, 987–1006. [Google Scholar] [CrossRef]
- Ying, M.; Wan, R. The annual frequency prediction of tropical cyclones affecting China (in Chinese). J. Appl. Meteor. Sci. 2011, 22, 66–76. [Google Scholar]
- Yu, H.; Hu, C.M.; Jiang, L.Y. Comparison of three tropical cyclone intensity datasets. Acta Meteor. Sin. 2007, 21, 121–128. [Google Scholar]
- Wang, X.L.; Wu, L.G.; Ren, F.M.; Wang, Y.M.; Li, W.J. Influences of tropical cyclones on China during 1965–2004. Adv. Atmos. Sci. 2008, 25, 417–426. [Google Scholar] [CrossRef]
- Dong, M.Y.; Chen, L.S.; Li, Y.; Lu, C.G. Rainfall reinforcement associated with landfalling tropical cyclones. J. Atmos. Sci. 2010, 67, 3541–3558. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.M.; Tian, B.S.; Li, Z. Extraction of Glacial Lake Outlines in Tibet Plateau Using Landsat 8 Imagery and Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4002–4009. [Google Scholar] [CrossRef]
- Fan, R.Y.; Feng, R.Y.; Wang, L.Z.; Yan, J.N.; Zhang, X.H. Semi-MCNN: A Semisupervised Multi-CNN Ensemble Learning Method for Urban Land Cover Classification Using Submeter HRRS Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4973–4987. [Google Scholar] [CrossRef]
- Huang, N.; Wang, L.; Song, X.P.; Black, T.A.; Jassal, R.S.; Myneni, R.B.; Wu, C.; Wang, L.; Song, W.; Ji, D.; et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 2020, 6, eabb8508. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Chen, F.; Xu, C. Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015. Comput. Geosci. 2020, 135, 104388. [Google Scholar] [CrossRef]
- Read, L.K.; Vogel, R.M. Reliability, return periods, and risk under nonstationarity. Water Resour. Res. 2015, 51, 6381–6398. [Google Scholar] [CrossRef]
- Chen, F.; Jia, H.C.; Pan, D.H. Risk assessment of maize drought in China based on physical vulnerability. J. Food Qual. 2019, 9392769. [Google Scholar] [CrossRef]
- Jia, H.C.; Pan, D.H.; Wang, J.A.; Zhang, W.C. Risk Mapping of Integrated Natural Disasters in China. Nat. Hazards 2016, 80, 2023–2035. [Google Scholar] [CrossRef]
- Jia, H.C.; Wang, J.A.; Cao, C.X.; Pan, D.H.; Shi, P.J. Maize drought disaster risk assessment of China based on EPIC model. Int. J. Digit. Earth 2012, 5, 488–515. [Google Scholar] [CrossRef]
- Li, F.P.; Feng, R.Y.; Han, W.; Wang, L.Z. An Augmentation Attention Mechanism for High-Spatial-Resolution Remote Sensing Image Scene Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3862–3878. [Google Scholar] [CrossRef]
- Tong, W.; Chen, W.T.; Han, W.; Li, X.J.; Wang, L.Z. Channel-Attention-Based DenseNet Network for Remote Sensing Image Scene Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4121–4132. [Google Scholar] [CrossRef]
- Zandbergen, P.A. Exposure of US counties to Atlantic tropical storms and hurricanes, 1851–2003. Nat. Hazards 2009, 48, 83–99. [Google Scholar] [CrossRef]
- Bender, M.A.; Knutson, T.R.; Tuleya, R.E.; Sirutis, J.J.; Vecchi, G.A.; Garner, S.T.; Held, I.M. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 2010, 327, 454–458. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.; Ravela, S.; Vivant, E.; Risi, C. A statistical deterministic approach to hurricane risk assessment. Bull. Am. Meteorol. Soc. 2006, 87, 299–314. [Google Scholar] [CrossRef]
- Li, H.; Luo, J.Y.; Xu, M.T. Ensemble data assimilation and prediction of typhoon and associated hazards using TEDAPS: Evaluation for 2015-2018 seasons. Front. Earth Sci. 2019, 13, 733–743. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, W.J.; Zhang, Y.J.; Feng, J.N.; Xu, L.T. Application of Lightning Data Assimilation to Numerical Forecast of Super Typhoon Haiyan (2013). J. Meteorol. Res. 2020, 34, 1052–1067. [Google Scholar] [CrossRef]
- Niu, H.Y.; Liu, M.; Lu, M.; Quan, R.S.; Zhang, L.J.; Wang, J.J. Risk Assessment of Typhoon Disasters in China Coastal Area During Last 20 Years. Sci. Geogr. Sin. 2011, 31, 764–768. [Google Scholar]
- Nguyen, K.A.; Liou, Y.A.; Terry, J.P. Vulnerability of Vietnam to typhoons: A spatial assessment based on hazards, exposure and adaptive capacity. Sci. Total Environ. 2019, 682, 31–46. [Google Scholar] [CrossRef]
- Chen, C.J.; Lee, T.Y.; Chang, C.M.; Lee, J.Y. Assessing typhoon damages to Taiwan in the recent decade: Return period analysis and loss prediction. Nat. Hazards 2018, 91, 759–783. [Google Scholar] [CrossRef]
- Liu, Y.; Li, N.; Zhang, Z.T.; Chen, X. Indirect economic loss and its dynamic change assessment of typhoon Ewiniar in Guangdong. J. Catastrophol. 2019, 34, 178–183. [Google Scholar]
- Yu, J.; Zhao, Q.S.; Chin, C.S. Extracting Typhoon Disaster Information from VGI Based on Machine Learning. J. Mar. Sci. Eng. 2019, 7, 318. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wang, J.A. A review on development of vulnerability curve of natural disaster. Adv. Earth Sci. 2012, 27, 435–442. [Google Scholar]
- Yu, B.; Yang, L.; Chen, F. Semantic segmentation for high spatial resolution remote sensing images based on convolution neural network and pyramid pooling module. J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 9, 3252–3261. [Google Scholar] [CrossRef]
- Chen, F.; Yu, B.; Li, B. A practical trial of landslide detection from single-temporal Landsat8 images using contour-based proposals and random forest: A case study of national Nepal. Landslides 2018, 15, 453–464. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An Overview of the China Meteorological Administration Tropical Cyclone Database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef] [Green Version]
- China Typhoon Network. Best-Track Tropical Cyclone (TC) Data Set. 2019. Available online: http://tcdata.typhoon.org.cn/zjljsjj_sm.html (accessed on 20 December 2019).
- Fokas, A.S.; Pelloni, B. A transform method for linear evolution PDEs on a finite interval. IMA J. Appl. Math. 2005, 70, 564–587. [Google Scholar] [CrossRef]
- Heidenreich, N.B.; Schindler, A.; Sperlich, S. Bandwidth selection for kernel density estimation: A review of fully automatic selectors. Asta-Adv. Stat. Anal. 2013, 97, 403–433. [Google Scholar] [CrossRef] [Green Version]
- Colbrook, M.J.; Botew, Z.I.; Kuritz, K.; MacNamara, S. Kernel density estimation with linked boundary conditions. Stud. Appl. Math. 2020, 145, 357–396. [Google Scholar] [CrossRef]
- Trogdon, T.; Deconinck, B. The solution of linear constant-coefficient evolution PDEs with periodic boundary conditions. Appl. Anal. 2012, 91, 529–544. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.Z.; Liu, W.T.; Jin, P.; Hu, R.W. Fuzzy and random method for estimating probability density and its parameters. Acta Aeronaut. Astronaut. Sin. 1999, 20, 462–465. [Google Scholar]
- Deng, G.; Wang, A.S.; Zhou, Y.S. Grain Yield Risk Level Calculated by Probability Distribution. Trans. Atm. Sci. 2002, 25, 481–488. [Google Scholar]
- Jia, H.C.; Wang, J.A.; Pan, D.H.; Cao, C. Maize drought disaster risk assessment based on EPIC Model: A case study of maize region in northern China. Acta Geogr. Sin. 2011, 66, 643–652. [Google Scholar]
- Yang, H.J.; Li, N.; Lei, Y. Features of typhoon in southeast coastal regions of China in the recent 54 years. Sci. Meteor. Sin. 2007, 27, 413–418. [Google Scholar]
- Xu, H.; Xu, K.; Bin, L.; Lian, J.; Ma, C. Joint risk of rainfall and storm surges during typhoons in a coastal city of Haidian Island, China. Int. J. Environ. Res. Public Health 2018, 15, 1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, P.J.; Holland, G.J.; Curry, J.A.; Chang, H.-R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 2005, 309, 1844–1846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Chen, F.; Yu, B.; Qin, Y. Segmentation of large-scale remotely sensed images on a Spark Platform: A strategy for handling massive image tiles with the MapReduce model. Isprs J. Photogramm. Remote Sens. 2020, 162, 137–147. [Google Scholar] [CrossRef]
- Fuchs, S.; Heiss, K.; Hübl, J. Towards an empirical vulnerability function for use in debris flow risk assessment. Nat. Hazards Earth Syst. Sci. 2007, 7, 495–506. [Google Scholar] [CrossRef] [Green Version]
- Colombi, M.; Borzi, B.; Crowley, H.; Onida, M.; Meroni, F.; Pinho, R. Deriving vulnerability curves using Italian earthquake damage data. Bull. Earthq. Eng. 2008, 6, 485–504. [Google Scholar] [CrossRef]
- Guo, H.D. Big data drives the development of Earth science. Big Earth Data 2017, 1, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A.; Landsea, C.W. Normalized hurricane damages in the United States: 1925–95. Weather Forecast. 1988, 13, 621–631. [Google Scholar] [CrossRef]
- Lander, M.A.; Guard, C.P. A Look at Global Tropical Cyclone Activity during 1995: Contrasting High Atlantic Activity with Low Activity in Other Basins. Mon. Weather Rev. 2010, 126, 1163–1173. [Google Scholar] [CrossRef]
- Guo, H.D. Big Earth data: A new frontier in Earth and information sciences. Big Earth Data 2017, 1, 4–20. [Google Scholar] [CrossRef] [Green Version]
Database | Contents | Data Sources | Data Period |
---|---|---|---|
CMA TC database | Year, typhoon number, English name, date of creation, end date, minimum central pressure, maximum wind speed, landing longitude and latitude, landing location, affected area, maximum wind force, maximum wind speed, and extreme wind value | Shanghai Typhoon Institute, CMA http://tcdata.typhoon.org.cn/zjljsjj_sm.html | 1949–2018 |
Typhoon disaster database | Year, typhoon number, wind power, starting time, affected population, number killed, emergency resettlement population, affected area, disaster area, number of collapsed houses, and direct economic losses. | Ministry of Emergency Management of the People’s Republic of China | 2000–2018 |
Return Period | Exceeding Probability | Cumulative Probability | Occurrence Probability |
---|---|---|---|
2 | 0.50 | 0.50 | 0.50 |
5 | 0.20 | 0.80 | 0.30 |
10 | 0.10 | 0.90 | 0.10 |
25 | 0.04 | 0.96 | 0.06 |
50 | 0.02 | 0.98 | 0.02 |
100 | 0.01 | 0.99 | 0.01 |
0 | 1.00 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Jia, H.; Du, E.; Wang, L.; Wang, N.; Yang, A. Spatiotemporal Variations and Risk Analysis of Chinese Typhoon Disasters. Sustainability 2021, 13, 2278. https://doi.org/10.3390/su13042278
Chen F, Jia H, Du E, Wang L, Wang N, Yang A. Spatiotemporal Variations and Risk Analysis of Chinese Typhoon Disasters. Sustainability. 2021; 13(4):2278. https://doi.org/10.3390/su13042278
Chicago/Turabian StyleChen, Fang, Huicong Jia, Enyu Du, Lei Wang, Ning Wang, and Aqiang Yang. 2021. "Spatiotemporal Variations and Risk Analysis of Chinese Typhoon Disasters" Sustainability 13, no. 4: 2278. https://doi.org/10.3390/su13042278
APA StyleChen, F., Jia, H., Du, E., Wang, L., Wang, N., & Yang, A. (2021). Spatiotemporal Variations and Risk Analysis of Chinese Typhoon Disasters. Sustainability, 13(4), 2278. https://doi.org/10.3390/su13042278