Can Glyphosate-Based Herbicides Contribute to Sustainable Agriculture?
Abstract
:1. Introduction
2. What Is Meant by “Sustainable Agriculture”?
“rapid growth combined with deteriorating income distribution may be worse than slower growth combined with redistribution in favour of the poor. For instance, in many developing countries the introduction of large-scale commercial agriculture may produce revenue rapidly but may also dispossess many small farmers and make income distribution more inequitable. In the long run, such a path may not be sustainable; it impoverishes many people and can increase pressures on the natural resource base through over commercialized agriculture and through the marginalization of subsistence farmers. Relying more on smallholder cultivation may be slower at first, but more easily sustained over the long term.”
- To satisfy human food, feed, and fiber needs, and contribute to biofuel needs.
- To enhance environmental quality and the resource base.
- To sustain the economic viability of agriculture.
- To enhance the quality of life of farmers, farm workers, and society as a whole.
3. Glyphosate and Human Safety
4. Animal Studies of GBHs
“Our study has shown that Roundup has the capacity to induce reproductive toxicity in the male reproductive system of the exposed animal. It is also a potent endocrine disruptor. We can conclude that the disruption in the normal testicular cellular architecture observed in the rats exposed to Roundup in this study, which could probably lead to abnormal hormonal secretion and abnormal sperm properties. may be attributed to the oxidative stress inflicted on the gonad of the exposed rats by the active ingredient in Roundup. This assumes significance and a public health concern considering increasing use of Roundup and presence of its residues in food and drinking water, thereby, increasing possible routes of exposure in humans.”
A. Rodents & Rabbits | Toxic Effects | Sources Reporting Effects |
Rabbit Semen | Toxic effects | Cai et al., 2017 [35] |
Rat uterus | Disrupts uterine development | Schimpf et al., 2016 [36] |
Rat Brain | Toxic effects on | Hernandez-Plata et al., 2015 [37]; de Souza et al., 2019 [38] |
Rats, Endocrine System | Adverse effects on development & endocrine system | Pandey et al., 2015 [33]; Manservisi et al., 2019 [39] |
Rodent Behavior | Neurological effects on rodents | Cattani et al., 2017 [40] |
Rodent Reproduction | Reproductive toxicity | Owagboriaye et al., 2017 [31] |
Rodent Pregnant Female | Epigenetic transgenerational pathologies | Kubsad et al., 2019 [34]; Milesi et al., 2018 [41] |
Rodent, Mammary Gland | Alters development of mammary gland | Gomez et al., 2020 [42]; Zanardi et al., 2019 [43] |
Rodent, Gut Microbiome | Increase of homosysteine; risk of cardiovascular disease | Hu et al., 2020 [44] |
Rat, Intestine & Gut Microbiome | Induces inflammatory responses in small intestine and alters gut microbiome | Tang et al. [45]; Chlopecka et al., 2016 [46] |
Mice oocytes | Induces damage in mice oocytes | Zhang et al., 2019 [47] |
Mice offspring | Induces lipid metabolism Disruption in offspring | Ren et al., 2019 [48] |
Mice, perinatal exposure | Decreased sperm; endocrine effects | Pham et al., 2019 [49] |
B. Soil | Impact on | Source Reporting Effects |
Soil health | Degraded | Silva et al., 2007 [50]; Van Bruggen et al., 2018 [51] |
Microbial population | Reduced growth & activity of soil biota esp; N-fixing bacteria | Zobiole et al., 2010 [52]; Meena et al. [53]; Santos & Flores, 1995 [54] |
Earthworms | Reduced tomato growth with no fruit; increases soil acidity; diminishes earthworm vitality | Owagboriaye et al., 2020 [55]; Garcia-Pérez et al., 2016 [56] |
Soil pseudomonas | Adverse effects on Pseudomonas species | Aristilde et al., 2017 [57] |
C.Beneficial Insects & Non-Target Species | Effects | Studies Reporting Effects |
Bees | Gut microbiota damaged; Navigation disturbed; Reproduction decline | Balbuena et al., 2014 [58]; Vázquez et al., 2018 [59]; Vázquez et al., 2020 [60]; Dai et al., 2018, [61]; Battisti et al., 2021 [62]; Motta et al. [63]; Graffigna et al., 2020 [64]; |
Butterflies (Monarch) | Destruction of food supply | Taylor, 2020 [65]; Pleasants, 2017 [66]; Crone et al., 2019 [67]; Pleasants & Oberhauser 2013 [68]; Flockhart et al., 2015 [69] |
Butterfly, C. Xanthus | Deleterious effects on growth and development | Ferreira-Junior et al., 2017 [70] |
Quails (Japanese) | Delayed plummage | Ruuskanen et al., 2019 [71] |
Herbivores (feeding on non-target crops) | Affects composition of microbiota | Gómez-Gallego et al., 2020 [72] |
Reptiles | Suppression of immune function | Siroski et al., 2016 [73] |
Frog (Amazonian) | Mutagenic and lethal effects | Ferrante et al., 2020 [74] |
Frog, embryos | Teratogenic effects and growth inhibition | Babalola et al., 2019 [75] |
D. Aquatic Species | Effects | Studies Reporting Effects |
Fish | Impairs fish behavior, induces oxidative stress on brain | Faria et al., 2020 [76] |
Fish embryos (Odontesthes humensis embryos) | Morphological alterations | Zebral et al., 2017 [77] |
Crayfish | Disruption of homeostasis Altering biochemical & Immunological function | Banaee et al., 2020 [78] |
Rainbow trout | Sublethal effects on liver cells | Santos et al., 2019 [79] |
Zebra fish | Disrupted embryo development & energy metabolism; oxidative stress, cardiovascular toxicity | Lopes et al., 2017 [80]; Panetto et al., 2019 [81]; Roy et al., 2016 [82] |
Crab | Imbalances in male reproductive function Ovarian growth impairment | Canosa et al., 2014 [83]; Avigliano et al., 2018 [84] |
Salamander | Affects natural behavior Exhibits non-monotonic dose responses | Ghandi & Cecala 2016 [85] |
Tadpoles | Lethal effects; Sublethal effects affecting Tadpole mobility | Herek et al., 2020 [86]; Agostini et al., 2020 [87] |
Picoplankton | Structural changes in Picoplankton; decrease in abundance | Sabio y Gracia et al., 2020 [88] |
5. Non-Tillage Agriculture and Weed Resistance
“the net influence of glyphosate on the environment has been generally positive when comparing its use with the weed management methods that it replaced…Adoption of GR (glyphosate-resistant) crops reduced tillage practices, increasing soil retention of carbon and decreasing the use of fossil fuels in agriculture”.[90]
6. Glyphosate and Soil Quality
“…high levels of glyphosate and of its main metabolite AMPA (aminomethylphosphonic acid) have been often detected in agricultural soils across the EU. The presence of glyphosate and AMPA in agricultural soils may not only form a risk for soil health but also a potential risk of further spreading of these compounds across land, water, and air domains. Indeed, besides potential effects on local edaphic communities and on humans, that can be exposed to these substances by inhalation of contaminated dust particles, dermal contact, or ingestion of contaminated surface water, wind and water erosion have the potential to transport contaminants to all the environmental compartments: atmosphere, other soils, and surface waters. This information should be fully accounted for in reconsidering approval and use of GlyBH (glyphoosate-based herbicides). Additional efforts should be made to fully quantify the extent of soil contamination by glyphosate residues in agricultural soils worldwide, and to assess the related risk for humans and the environment.”
7. GBHs, Milkweeds, and Monarch Butterflies
“The milkweed limitation hypothesis is supported by data showing that in the early 2000s the majority of Monarch production came from common milkweed, Asclepias syriaca, in corn and soybean fields in the Midwest ….and that the abundance of those milkweeds declined precipitously due to glyphosate herbicide use in those fields… The loss of the milkweeds from corn and soybean fields began in the late 1990s with the adoption of glyphosate-tolerant crops.”
8. Glyphosate and Honeybees
9. Effects on Aquatic Species
10. Glyphosate Versus Glyphosate Formulations
11. Discussion
Funding
Conflicts of Interest
References
- Zeder, M.M. The origins of agriculture in the Near East. Curr. Anthropol. 2011, 52, S221–S235. [Google Scholar] [CrossRef] [Green Version]
- Kuhlman, T.; Farrington, J. What is sustainability? Sustainability 2010, 2, 3436. [Google Scholar] [CrossRef] [Green Version]
- Krimsky, S.; Wrubel, R. Agricultural Biotechnology and the Environment; University of Illinois: Urbana-Champaign, IL, USA, 1996. [Google Scholar]
- FDA (U.S. Department of Health and Human Services–Food and Drug Administration). Statement of Policy: Foods Derived from New Plant Varieties. Fed. Regist. 1992, 57, 22984–23005. [Google Scholar]
- Qaim, M. Role of new plant breeding technologies for food security and sustainable agricultural development. Appl. Econ. Perspect. Policy 2020, 42, 129–150. [Google Scholar] [CrossRef]
- Wilson, A.K. Will gene-edited and other GM crops fail sustainable food systems? In Rethinking Food and Agriculture; Amir, K., Laila, K., Eds.; Woodhead Publishing Project: Duxford, UK, 2020; pp. 247–285. [Google Scholar] [CrossRef]
- Owen, M.D.K. Current use of transgenic herbicide-resistant soybean and corn in the USA. Crop. Prot. 2000, 19, 765–771. [Google Scholar] [CrossRef]
- World Commission on Environment and Development. Our Common Future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Lichtfouse, E.; Navarrete, M.; Debaeke, P.; Souchère, V.; Alberola, C.; Ménassieu, J. Agronomy for sustainable agriculture: A review. Agron. Sustain. Dev. 2009, 29, 1–6. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering and Medicine. Toward Sustainable Agricultural Systems in the 21st Century; National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Buechs, W. Biotic indicators for biodiversity and sustainable agriculture: Introduction and background. Agric. Ecosyst. Environ. 2003, 98, 1–16. [Google Scholar] [CrossRef]
- Krimsky, S. Glyphosate on Trial: The Search for Toxicological Truth. In The Fight Against Monsanto’s Roundup: The Politics of Pesticides; Mitchel, C., Ed.; Skyhorse Press: New York, NY, USA.
- Krimsky, S. Glyphosate Toxicology: What we can learn from the current controversy. In Environmental Exposures and Human Health Challenges; IGI Global Publishers: Hershey, PA, USA, 2019. [Google Scholar]
- Perry, E.D.; Hennessy, D.A.; Moschini, G. Product concentration and usage: Behavioral effects in the glyphosate market. J. Econ. Behav. Organ. 2019, 158, 543–559. [Google Scholar] [CrossRef] [Green Version]
- Benbrook, C.M. How did the U.S. EPA and IARC reach dramatically opposed conclusions on the genotoxicity of glyphosate-based herbicides? Environ. Sci. Eur. 2019, 31, 1–16. [Google Scholar] [CrossRef]
- Donato, F.; Pira, E.; Ciocan, C.; Boffetta, P. Exposure to glyphosate and risk of non-Hodgkin lymphoma and multiple myeloma: An updated meta-analysis. La Med. Del Lav. 2020, 111, 63. [Google Scholar]
- Williams, G.M.; Berry, C.; Burns, M.; Viana de Camargo, J.L.; Greim, H. Glyphosate rodent carcinogencity bioassay expert panel review. Crit. Rev. Toxicol. 2016, 46 Suppl. 1, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Yang, J.; Chang, L.; Qu, Y.; Wang, S.; Zhang, K.; Xiong, Z.; Zhang, J.; Tan, Y.; Wang, X.; et al. Maternal glyphosate exposure causes autism-like behaviors in offspring through increased expression of soluble epoxide hydrolase. Proc. Natl. Acad. Sci. USA 2020, 117, 11753–11759. [Google Scholar] [CrossRef]
- Cuhra, M.; Bohn, T.; Cuhra., P. Glyphosate: Too much of a good thing. Front. Environ. Sci. 2016, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Myers, J.P.; Antoniou, M.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Langphear, B.P.; Mesnage, P.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, J.P.; Bleak, T.C.; Calaf, G.M. Glyphosate and the key characteristics of an endocrine disruptor: A review. Chemosphere 2020, 128619, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Rana, I.; Shaffer, R.M.; Taioli, E.; Sheppard, L. Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. Mutat. Res. 2019, 781, 186–206. [Google Scholar] [CrossRef] [PubMed]
- Parvez, C.; Gerona, R.R.; Proctor, C.; Frieson, M.; Ashby, J.L.; Reiter, J.L.; Lui, Z.; Winchester, P.D. Glyphosate exposure in pregnancy and shortened gestational length: A prospective Indiana birth cohort study. Environ. Health 2018, 17, 23–35. [Google Scholar] [CrossRef]
- Anifandis, G.; Amiridis, G.; Dafopoulos, K.; Daponte, A.; Dovolou, E.; Gavril, E.; Gorgogietas, V.; Kochpani, E.; Mamuris, Z.; Messihi, C.; et al. The in vitro impact of the herbicide Roundup on human sperm motility and sperm mitochondria. Toxics 2018, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woźniak, E.; Siciŕiska, P.; Michalowicz., J. The mechanism of DNA change induced by Roundup 360 Plus, glyphosate and AMPA in human peripheral blood mononuclear cells—genotoxic risk assessment. Food Chem. Toxicol. 2018, 120, 510–522. [Google Scholar]
- Hao, Y.; Zhang, Y.; Cheng, J.; Xu, W.; Xu, Z.; Gao, J.; Tao, L. Adjuvant contributes Roundup’s unexpected effects on AS49 cells Adjuvant contributes Roundup’s unexpected effects on AS49 cells. Environ. Res. 2020, 184, 109306. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Chen, H.; Xu, W.; Gao, J.; Yang, Y.; Zhang, Y.; Tao, L. Roundup confers cytotoxicity through DNA damage and mitochondria-associated apoptosis induction. Environ. Pollut. 2019, 252 Pt A, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Defarge, N.; Takács, E.; Lozano, V.L.; Mesnage, R.; Spiroux de Vendômois, J.; Gilles-Eric Séralini, J.G.; Székács, A. Formulants in glyphosate-based herbicides disrupt aromatase activity in human cells below toxic levels. Int. J. Environ. Res. Public Health 2016, 13, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostini, L.P.; Dettogni, R.S.; Dos Reis, R.S.; Stur, E.; Dos Santos, E.V.W.; Ventorim, D.P.; Garcia, F.M.; Cardoso, R.C.; Graceli, J.B.; Louro, L.D. Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. Sci. Total Environ. 2020, 705, 1–16. [Google Scholar] [CrossRef]
- Hurtado, D.; Velez-Torres, I. Toxic dispossession: On the social impacts of the aerial use of glyph osate on the sugarcane agroindustry in Columbia. Crit. Criminol. 2020, 28, 1–20. [Google Scholar] [CrossRef]
- Owagboriaye, F.O.; Dedeke, G.A.; Ademolu, K.O.; Olujimi, O.O.; Ashidi, J.S.; Adeyinka, A.A. Reproductive toxicity of Roundup herbicide exposure in male albino rat. Exp. Toxicol. Pathol. 2017, 69, 461–468. [Google Scholar] [CrossRef]
- Lozano, V.L.; Defarge, N.; Rocque, L.-M.; Mesnage, R.; Hennequin, D.; Cassier, R.; Spiroux de Vendômois, J.; Panoff, J.-M.; Séralini, G.-E.; Amiel, C. Sex dependent impact of Roundup on the rat gut microbiome. Toxicol. Rep. 2018, 5, 96–107. [Google Scholar] [CrossRef]
- Pandey, A.; Rudraiah, M. Analysis of endocrine disruption effect of Roundup in adrenal gland of male rats. Toxicol. Rep. 2015, 2, 1075–1085. [Google Scholar] [CrossRef] [Green Version]
- Kubsad, D.; Nilsson, E.E.; King, S.E.; Sadler-Riggleman, I.; Beck, D.; Skinner, M.K. Assessment of glyphosate induced epigenetic transgenerational inheritance of pathologies and sperm epimutations: Generational toxicology. Sci. Rep. 2019, 9, 6372–6389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.; Ji, Y.; Song, X.; Guo, H.; Han, L.; Zhang, F.; Liu, X.; Zhang, H.; Zhu, B.; Xu, M. Effects of glyphosate exposure on sperm concentration in rodents: A systematic review and meta-analysis. Environ. Toxicol. Pharmacol. 2017, 55, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Schimpf, M.G.; Milesi, M.M.; Ingaramo, P.I.; Luque, E.H.; Varayoud, J. Neonatal exposure to a glyphosate-based herbicide alters the development of the rat uterus. Toxicology 2017, 376, 2–14. [Google Scholar] [CrossRef]
- Hernandez-Plata, I.; Giordano, M.; Dıaz-Muñoz, M.; Rodriguez, V.M. The herbicide glyphosate causes behavioral changes and alterations in dopaminergic markers in male Sprague-Dawley rat. NeuroToxicology 2015, 46, 79–91. [Google Scholar] [CrossRef] [PubMed]
- de Souza, J.S.; Laureano-Melo, R.; Herai, R.H.; da Conceição, R.R.; Oliveira, K.C.; da Silva, I.D.C.G.; Dias-da-Silva, M.R.; Romano, R.M.; Romano, M.A.; Maciel, R.M.B.; et al. Material glyphosate-based herbicide exposure affects antioxidant-related genes in the brain and serum metabolites of male rat offspring. NeuroToxicology 2019, 74, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Manservisi, F.; Lesseur, C.; Panzacchi, S.; Mandriole, D.; Falcioni, L.; Bua, L.; Manservigi, M.; Spinaci, M.; Galeati, G.; Montovani, A.; et al. The Ramazzini Institute 13-week pilot study glyphosate-based herbicides administered at human equivalent dose to Sprague Dawley rats: Effects on development and endocrine system. Environ. Health 2019, 18, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Cattani, D.; Cesconetto, P.A.; Tavares, M.K.; Parisotto, E.B.; De Oliveira, P.A.; Rieg, C.E.H.; Leite, M.C.; Prediger, R.D.S.; Wendt, N.C.; Razerra, G.; et al. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress. Toxicology 2017, 387, 67–80. [Google Scholar] [CrossRef]
- Milesi, M.M.; Lorenz, V.; Beldomenico, P.M.; Vaira, S.; Varayoud, J.; Luque, E.H. Prenatal exposure to glyphosate-based herbicide on female rat reproductive outcomes and induces second generation adverse effects in Wistar rats. Arch. Toxicol. 2018, 92, 2629–2643. [Google Scholar] [CrossRef]
- Gomez, A.L.; Altamirano, G.A.; Tschopp, M.V.; Bosquiazzo, V.L.; Muñoz-de-Toro, M.; Kass, L. Exposure to glyphosate-based herbicide alters the expression of key regulators of mammary gland development on pre-pubertal male rats. Toxicology 2020, 439, 152377–152487. [Google Scholar] [CrossRef]
- Zanardi, M.V.; Schimpf, M.G.; Gastiazoro, M.P.; Milesi, M.M.; Muñoz-de-Toro, M.; Varayoud, J.; Durando, M. Glyphosate-based herbicide induces hyperplastic ducts in the mammary gland of aging Wistar rats. Molecular & Cellular. Endocrinology 2019, 501, 110658. [Google Scholar]
- Hu, J.; Lesseur, C.; Yu, M.; Manservisi, F.; Panzacchi, S.; Mandrioli, D.; Belpoggi, F.; Chen, J.; Petrick, L. Disruption of urine metabiome and its interaction with gut microbiome by low-dose exposure of glyphosate-based herbicide in a rodent model. Sci. Rep. 2021, 11, 3265. [Google Scholar]
- Tang, Q.; Tang, J.; Ren, X.; Li, C. Glyphosate exposure induces inflammatory responses to the small intestine and alters gut microbial composition in rats. Environ. Pollut. 2020, 261, 114129. [Google Scholar] [CrossRef]
- Chlopecka, M.; Mendel, M.; Dziekan, N.; Karlik, W. The effect of glyphosate-based herbicide Roundup and its co-formulant POEA on the motoric activity of the rat intestine, in-vitro study. Environ. Toxicol. Pharmacol. 2017, 49, 156–162. [Google Scholar] [CrossRef]
- Zhang, J.W.; Xu, D.Q.; Fang, X.Z. The toxic effects and possible mechanisms of glyphosate on mouse oocytes. Chemosphere 2019, 237, 124435. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Dai, P.; Perveen, A.; Tang, Q.; Zhao, L.; Jia, X.; Li, Y.; Li, C. Effects of chronic exposure to pregnant mice on hepatic lipid metabolism in offspring. Environ. Pollut. 2019, 254, 112906. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.H.; Derian, L.; Kervarrec, C.; Kernanec, P.-Y.; Jégou, B.; Smagyulova, F.; Gely-Pernot, A. Perinatal exposure to glyphosate and glyphosate-based herbicide affect spermatogenesis in mice. Toxicol. Sci. 2019, 169, 260–271. [Google Scholar] [CrossRef]
- Silva, V.; Montanarella, L.; Jones, A.; Fernández-Ugalde, O.; Mol, H.G.J.; Coen, J.R.; Geissen, V. Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Sci. Total Environ. 2019, 621, 1259–1352. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G., Jr. Review: Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 2018, 616, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Zobiole, L.H.S.; Kremer, R.J.; Oliveira, R.S., Jr.; Constantin, J. Glyphosate affects micro-organisms in rhizospheres of glyphosate-resistant soybeans J. Appl. Microbiol. 2010, 110, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Meena, R.S.; Kumar, S.; Datta, R.; Lai, R.; Vijayakumar, V.; Brtnicky, M.; Sharma, M.P.; Yadav, G.S.; Jhariya, M.K.; Jangir, C.K.; et al. Impact of agrochemicals on soil microbiota and management: A review. Land 2020, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.; Flores, M. Effects of glyphosate on nitrogen fixation of free-living heterotrophic bacteria. Lett. Appl. Microbiol. 1995, 20, 349–352. [Google Scholar] [CrossRef]
- Owagboriaye, F.; Dedeke, G.; Bamidele, J.; Bankole, A.; Aladesida, A.; Feyisola, R.; Adelke, M.; Adekunie, O. Wormcasts produced by three earthworm species (Alma millsoni, cudrilus eugeniae and Libyodrilus violaceus) exposed to glyphosate-based herbicide reduce growth, fruit yield and quality of tomato (Lycopersicon esculentum). Chemosphere 2020, 250, 126270. [Google Scholar] [CrossRef]
- Garcia-Pérez, J.A.; Alarcón, E.; Hernández, Y.; Hernández, C. Impact of litter contaminated with glyphosate-based herbicide on the performance of Pontoscolex corethrurus, soil phosphatase activities and soil pH. Appl. Soil Ecol. 2016, 104, 31–41. [Google Scholar]
- Aristilde, L.; Reed, M.L.; Wilkes, R.A.; Youngster, T.; Kukurugya, M.A.; Katz, V.; Sasaki, C.R.S. Glyphosate-induced specific and widespread perturbations in the metabolome of soil pseudomonas species. Front. Environ. Sci. 2017, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Balbuena, M.S.; Tison, L.; Hahn, M.-L.; Greggers, U.; Menzel, R.; Farina, W.M. Effects of sublethal doses of glyphosate on honeybee navigation. J. Exp. Biol. 2015, 218, 2799–2805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez, D.E.; Ilina, N.; Pagano, E.A.; Zavala, J.A.; Farina, W.M. Glyphosate affects the larval development of honeybees depending on the susceptibility of colonies. PLoS ONE 2018. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, D.E.; Balbuena, M.S.; Chaves, F.; Gora, J.; Menzel, R.; Farina, W. Sleep in honeybees is affected by the herbicide glyphosate. Sci. Rep. 2020, 10, 10516. [Google Scholar]
- Dai, P.; Yan, Z.; Ma, S.; Yang, Y.; Wang, Q.; Hou, C.; Wu, Y.; Liu, Y.; Diao, Q. The herbicide glyphosate negatively affects midgut bacterial communities and survival of honeybee during larvae reared in vitro. J. Agric. Food Chem. 2018, 66, 7786–7793. [Google Scholar] [CrossRef] [PubMed]
- Battisti, L.; Potrich, M.; Sampaio, A.R.; de Castilhos Ghisi, N.; Costa-Maia, F.M.; Abati, R.; dos Reis Martinez, C.B.; Sofia, S.H. Is glyphosate toxic to bees? A meta-analytical review. Sci. Total Environ. 2021, 767, 145397. [Google Scholar] [CrossRef]
- Motta, E.V.S.; Mak, M.; De Jong, T.K.; Powell, J.E.; O’Donnell, A.; Suhr, K.J.; Riddington, I.M.; Moran, N.A. Oral and topical exposure to glyphosate in herbicide formulation impact the gut microbiota and survival rates of honeybees. Appl. Environ. Microbiol. 2020, 86, 1–21. [Google Scholar] [CrossRef]
- Graffigna, S.; Marrero, H.J.; Torretta, J.P. Glyphosate commercial formulation negatively affects the reproductive success of solitary wild bees in a Pampean agroecosystem. Apidologie 2020, 1–10. [Google Scholar] [CrossRef]
- Taylor, O.R., Jr.; Pleasants, J.M.; Grundel, R.; Pecoraro, S.D.; Lovett, J.P.; Ryan, A. Evaluating the migration mortality hypothesis using Monarch tagging data. Front. Ecol. Evol. 2020, 8, 1–13. [Google Scholar] [CrossRef]
- Pleasants, J.M.; Williams, E.H.; Brower, L.P.; Oberhauser, K.S.; Taylor, O.R. Conclusion of no decline in summer Monarch population not supported. Ann. Entomol. Soc. Am. 2016, 109, 169–171. [Google Scholar] [CrossRef] [Green Version]
- Crone, E.E.; Pelton, E.M.; Brown, L.M.; Thomas, C.C.; Schultz, C.B. Why are monarch butterflies declining in the West? Understanding the importance of multiple correlated drivers. Ecol. Appl. 2019, 29, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pleasants, J.M.; Oberhauser, K.S. Milkweed loss in agricultural fields because of herbicide use: Effect on the monarch butterfly population. Insect Conserv. Divers. 2013, 6, 135–144. [Google Scholar] [CrossRef]
- Flockhart, D.T.T.; Pichancourt, J.-B.; Norris, D.R.; Martin, T.G. Unravelling the annual cycle in a migratory animal breeding-season habitat loss drives population declines of monarch butterflies. J. Anim. Ecol. 2015, 84, 155–165. [Google Scholar] [CrossRef]
- Ferreira-Junior, D.F.; Sarmento, R.A.; de Souza Saraiva, A.; Pereira, R.R.; Picanco, M.C.; Pestana, J.L.T.; Soares, A.M.V.M. Low concentrations of glyphosate-based herbicide affect the development of Chironomus xanthus. Waterair Soil Pollut. 2017, 228, 390. [Google Scholar] [CrossRef]
- Ruuskanen, S.; Rainio, M.J.; Kuosmanen, V.; Laihonen, M.; Saikkonen, K.; Saloniemi, I.; Helander, M. Female preference and adverse development effects of glyphosate-based herbicide on ecologically relevant traits in Japanese quails. Environ. Sci. Technol. 2019, 54, 1128–1135. [Google Scholar] [CrossRef]
- Gómez-Gallego, C.; Raino, M.J.; Collado, M.C.; Montziari, A.; Salminen, S.; Saikkonen, K.; Helander, M. Glyphosate-based herbicide affects the composition of microbes associated with Colorado potato beetle (Leptinotarsa decemlineata). FEMS Microbiol. Lett. 2020, 367, 1–9. [Google Scholar]
- Siroski, P.A.; Poletta, G.L.; Latorre, M.A.; Merchant, M.E.; Ortega, H.H.; Mudry, M.D. Immunotoxicity of commercial-mixed glyphosate in broad snouted caiman (Caiman latirostris). Chem. -Biol. Interact. 2016, 244, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, L.; Fearnside, P.M. Evidence of mutagenic and lethal effects of herbicides on Amazonian frogs. Acta Amaz. 2020, 50, 363–366. [Google Scholar] [CrossRef]
- Babalola, O.O.; Truter, J.C.; van Wyk, J.H. Mortality, teratogenicity and growth inhibition of three glyphosate formulants using frog embryo teratogenesis assay—Xenopus. J. Appl. Toxicol. 2019, 39, 1257–1266. [Google Scholar] [CrossRef]
- Faria, M.; Bedrossiantz, J.; Ramírez, J.R.R.; Mayol, M.; García, G.H.; Bellot, M.; Prats, E.; Garcia-Reyero, N.; Gómez-Canela, C.; Gómez-Oliván, L.M.; et al. Glyphosate targets fish monoaminergic systems leading to oxidative stress and anxiety. Environ. Int. 2020, 146, 106253. [Google Scholar] [CrossRef] [PubMed]
- Zebral, Y.D.; Costa, P.G.; de Castro Knopp, B.; Lansini, L.R.; Zafalon-Silva, B.; Biancini, A.; Robaldo, R.B. Effects of a glyphosate-based herbicide in pejerrey Odontesthes humensis embryonic development. Chemosphere 2017, 185, 860–867. [Google Scholar] [CrossRef]
- Banaee, M.; Akhlaghi, M.; Soltanian, S.; Sureda, A.; Gholamhosseini, A.; Rakhshaninejad, M. Combined effects of exposure to sub-lethal concentration of the insecticide chlorpyrifos and the herbicide glyphosate on the biochemical changes in the freshwater crayfish Pontastacus leptodactylus. Ecotoxicology 2020, 29, 1500–1515. [Google Scholar] [CrossRef]
- Santos, S.W.; Gonzalez, P.; Cormier, B.; Mazzella, N.; Bonnaud, B.; Morin, S.N.C.; Costa, E.P.d.C.; Marin, B.; Cachot, J. A glyphosate-based herbicide induces sub- lethal effects in early life stages and liver cell line of rainbow trout, Oncorhynchus mykiss. Toxicology 2019, 216, 105291. [Google Scholar] [CrossRef] [PubMed]
- Lopes, F.M.; Caldas, S.S.; Primel, E.G.; da Rosa, C.E. Glyphosate adversely affects Danio rerio males: Acetylcholinesterase modulation and oxidative stress. Zebrafish 2017, 14, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Panetto, O.S.; Gomes, H.F.; Gomes, D.S.F.; Campos, E.; Romeiro, N.C.; Costa, E.P.; do Carmo, P.R.L.; Feitosa, N.M.; Moraes, J. The effects of Roundup in embryo development and energy metabolism in the zebrafish (Danio rerio). Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2019, 222, 74–81. [Google Scholar] [CrossRef]
- Roy, N.M.; Ochs, J.; Zambrzycka, E.; Anderson, A. Glyphosate induces cardiovascular toxicity in Danio reno. Environ. Toxicol. Pharmacol. 2016, 46, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Canosa, I.S.; Zanitti, M.; Lonné, N.; Medesani, D.A. Imbalances in the male reproductive function of the estuarine crab Neohelice granulata, caused by glyphosate. Ecotoxicol. Environ. Saf. 2019, 30, 1–7. [Google Scholar] [CrossRef]
- Avigliano, L.; Alvarez, N.; MacLoughlin, C.; Rodriguez, E.M. Effects of glyphosate on egg incubation, larvae hatching, and ovarian rematuration in the estuarine crab Neohelice granulata. Environ. Toxicol. Chem. 2014, 8, 1879–1884. [Google Scholar] [CrossRef] [PubMed]
- Ghandi, J.S.; Cecala, K.K. Interactive effects of temperature and glyphosate on the behavior of blue ridge two-lined salamanders, Eurycea wilderae. Environ. Toxicol. Chem. 2016, 35, 2297–2303. [Google Scholar]
- Herek, J.S.; Vargas, L.; Trindade, S.A.R.; Rutkoski, C.F.; Macagnan, N.; Hartman, D.A.; Hartman, M.T. Can environmental concentrations of glyphosate affect survival and cause malformation in amphibians? Effects from a glyphosate-based herbicide on Physalaemus cuvieri and P. gracilis (Anura: Leptodactylidae). Environ. Sci. Pollut. Res. 2020, 27, 22619–22630. [Google Scholar] [CrossRef]
- Agostini, M.G.; Roesler, I.; Bonetto, C.; Ronco, A.E.; Bilenca, D. Pesticides in the real world: The consequences of GMO-based intensive agriculture on native amphibians. Biol. Conserv. 2020, 241, 108355. [Google Scholar] [CrossRef]
- Sabio y Garcia, C.A.; Schiaffino, M.R.; Lozano, V.L.; Vera, M.S.; Ferraro, M.; Izaguirre, I.; Pizarro, H. New findings on the effect of glyphosate on autotrophic and heterotrophic picoplankton structure: A microcosm approach. Aquat. Toxicol. 2020, 222, 105463. [Google Scholar] [CrossRef] [PubMed]
- Powles, S.B. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest. Manag. Sci. 2008, 64, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O. Glyphosate: Environmental fate and impact. Weed Sci. 2020, 68, 201–207. [Google Scholar]
- Kudsk, P.; Mathiassen, S.K. Pesticide regulation in the European Union and the glyphosate controversy. Weed Sci. 2020, 68, 214–222. [Google Scholar] [CrossRef]
- Wechsler, S.; McFaddersand, J.; Smith, D. A structural model of herbicide demand and glyphosate resistance on U.S. cornfields. In Proceedings of the Agricultural & Applied Economics Association. No. 235998. Annual Meeting, Boston, MA, USA, 31 July–2 August 2016; 2016. [Google Scholar]
- Alcάntara, R.; de Oliveira, G.M.; Carvalho, L.B. Herbicide resistance in Brazil: Status, impacts, and future challenges. In Herbicides—Current Research and Case Studies in Use.; Price, A., Kelton, J., Eds.; IntechOpen: London, UK, 2020. [Google Scholar]
- Ravet, K.; Sparks, C.; Dixon, A.; Küpper, A.; Westra, E.; Pettinga, D.; Tranel, P.; Felix, J.; Morishita, D.; Jha, P.; et al. Genomic-based epidemiology reveals gene flow and independent origins of glyphosate resistance in Bassiria scoparia populations across North America; Authorea preprints; Atypon: Santa Clara, CA, USA, 2020. [Google Scholar]
- Loddo, D.; Imperatore, G.; Milani, A.; Panozzo, S.; Farinati, S.; Sattin, M.; Zanin, G. First report of glyphosate-resistant biotype of Eleusine Indica (L.) Gaertn in Europe. Agronomy 2020, 1692. [Google Scholar] [CrossRef]
- Gaines, T.; Slavov, G.; Hughes, D.; Kuepper, A.; Sparks, C.; Oliva, J.; Vila-Aiub, M.; Garcia, M.; Merotto, A., Jr.; Neve, P. Investigating the origins and evolution of a glyphosate-resistant weed invasion in South America. Authorea Prepr. 2020. [Google Scholar] [CrossRef]
- Owen, M.; Dixon, P.; Shaw, D.; Weller, S.C.; Young, B.G.; Wilson, R.G.; Jordan, D.L. Sustainability of glyphosate-based weed management: The Benchmark study. Iowa State University Digital Repository. 2010. Available online: https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1045&context=stat_las_pubs (accessed on 10 February 2021).
- Price, A.J.; Balkcom, K.S.; Culpepper, S.A.; Kelton, J.A.; Nichols, R.L.; Schomberg, H. Glyphosate-resistant Palmer amaranth: A threat to conservation tillage. J. Soil Water Conserv. 2011, 66, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Motta, E.V.S.; Raymann, K.; Moran, N.A. Glyphosate perturbs the gut microbiota of honeybees. PNAS 2018, 115, 10305–10310. [Google Scholar] [CrossRef] [Green Version]
- Mesnage, R.; Benbrook, C.; Antoniou, M.N. Insight into the confusion over surfactant co-formulants in glyphosate-based herbicides. Food Chem. Toxicol. 2019, 128, 137–145. [Google Scholar] [CrossRef]
- Séralini, G.-E.; Jungers, G. Toxic compounds in herbicides without glyphosate. Food Chem. Toxicol. 2020, 146, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tóth, G.; Háhn, J.; Radó, J. Cytotoxicity and hormonal activity of glyphosate-based herbicides. Environ. Pollut. 2020, 265, 115027. [Google Scholar]
- Tsui, M.T.K.; Chu, L.M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere 2003, 52, 1189–1197. [Google Scholar] [CrossRef]
- Weise, A.; Steinmann, H.-H. Yield effects associated with glyphosate use in non-GMO arable farming: A review. Crop. Prot. 2020, 134, 105148. [Google Scholar] [CrossRef]
- Iocola, I.; Angevin, F.; Bockstaller, C.; Catarino, R.; Curran, M.; Messéan, A.; Schader, C.; Stilmant, D.; van Stappen, F.; Vanhove, P.; et al. An actor-oriented multi-criteria assessment framework to support a transition towards, sustainable agricultural systems based on crop diversification. Sustainability 2020, 12, 5434. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krimsky, S. Can Glyphosate-Based Herbicides Contribute to Sustainable Agriculture? Sustainability 2021, 13, 2337. https://doi.org/10.3390/su13042337
Krimsky S. Can Glyphosate-Based Herbicides Contribute to Sustainable Agriculture? Sustainability. 2021; 13(4):2337. https://doi.org/10.3390/su13042337
Chicago/Turabian StyleKrimsky, Sheldon. 2021. "Can Glyphosate-Based Herbicides Contribute to Sustainable Agriculture?" Sustainability 13, no. 4: 2337. https://doi.org/10.3390/su13042337
APA StyleKrimsky, S. (2021). Can Glyphosate-Based Herbicides Contribute to Sustainable Agriculture? Sustainability, 13(4), 2337. https://doi.org/10.3390/su13042337