Statistical Road-Traffic Noise Mapping Based on Elementary Urban Forms in Two Cities of South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection and Data Preparation
2.2. Representative Values of the Road-Traffic Noise Level and Urban Form Indicators of a Grid Cell
3. Results and Discussion
3.1. ANN and OLS Model Development
3.2. Statistical Noise Mapping by the ANN and OLS Models
3.3. Importance of Urban Form Indicators in the ANN Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
City | Data Type | Parameter | Provider | Production Year | Access Type |
---|---|---|---|---|---|
Gwangju | Topography LiDAR | Elevation Noise barrier Point cloud | National Geographic Information Institute | 2016 2007 | Public Proprietary |
Vehicle | Volume Speed Type | Gwangju Metropolitan Police Agency | 2016 | Proprietary | |
Road | Network | Gwangju Metropolitan City Office | 2016 | Proprietary | |
Building | Footprint Elevation Building use | Gwangju Metropolitan City Office | 2016 | Public | |
Population | Population for “-dong” | Korean National Statistical Office | 2015 | Public | |
Land use | Land-use classification | National Geographic Information Institute | 2017 | Public | |
Cheongju | Topography | Elevation | Chungcheongbuk-do Provincial Government | 2007 | Proprietary |
Vehicle | Volume Speed Type | Cheongju City Police Agency and Cheongju City Government | 2007 | Proprietary | |
Road | Network | Chungcheongbuk-do Provincial Government | 2009 | Proprietary | |
Building | Footprint Elevation Building use | Cheongju City Government | 2009 | Proprietary | |
Population | Population for “-dong” | Korean National Statistical Office and Cheongju City Government | 2009 | Public and Proprietary | |
Land use | Land-use classification | Cheongju City Government | 2007 | Proprietary |
Appendix B
Variable | Estimate | Std. Error | t | Pr (|t|) | |
---|---|---|---|---|---|
(Intercept) | 47.4 | 0.281 | 168.937 | <2 × 10−16 | *** |
P | –1.61 | 10.8 | –1.485 | 0.138 | |
GSI | 1.25 | 0.922 | 1.352 | 0.176 | |
FSI | 2.48 | 0.289 | 8.6 | <2 × 10−16 | *** |
Q | 2.26 × 10−3 | 2.45 × 10−4 | 9.229 | <2 × 10−16 | *** |
PH | 0.366 | 5.17 × 10−2 | 7.093 | 1.42 × 10−12 | *** |
V | 0.141 | 8.35 × 10−3 | 16.932 | <2 × 10−16 | *** |
Ra | 28.1 | 2.12 | 13.246 | <2 × 10−16 | *** |
Wa | 1.4 | 11.3 | 0.124 | 0.902 | |
LR | −1.31 | 0.314 | –4.171 | 3.06 × 10−5 | *** |
LC | −4.56 | 0.44 | –10.375 | <2 × 10−16 | *** |
Appendix C
Model | Prediction Error between Noise Map and Statistical Noise Map (dB(A)) | |||||||
---|---|---|---|---|---|---|---|---|
<−10 | −10~−5 | −5~−3 | −3~0 | 0~3 | 3~5 | 5~10 | <10 | |
ANN | 1.9% | 9.8% | 10.0% | 25.5% | 28.6% | 11.6% | 11.2% | 1.3% |
OLS | 3.1% | 12.1% | 9.9% | 21.5% | 26.6% | 12.5% | 12.7% | 1.5% |
Model | Prediction Error between Noise Map and Statistical Noise Map (dB(A)) | |||||||
---|---|---|---|---|---|---|---|---|
<−10 | −10~−5 | −5~−3 | −3~0 | 0~3 | 3~5 | 5~10 | <10 | |
ANN | 0.4% | 2.9% | 3.1% | 9.4% | 20.2% | 17.5% | 35.6% | 10.9% |
OLS | 2.3% | 8.7% | 6.5% | 14.6% | 23.2% | 16.9% | 23.9% | 4.0% |
References
- Ogryzek, M.; Adamska-Kmieć, D.; Klimach, A. Sustainable transport: An efficient transportation network-case study. Sustainability 2020, 12, 8274. [Google Scholar] [CrossRef]
- Kowalczyk, C.; Kil, J.; Kurowska, K. Dynamics of development of the largest cities—Evidence from Poland. Cities 2019, 89, 26–34. [Google Scholar] [CrossRef]
- Stansfeld, S.A. Noise effects on health in the context of air pollution exposure. Int. J. Environ. Res. Public Health 2015, 12, 12735–12760. [Google Scholar] [CrossRef]
- WHO. Health Effects and Risks of Transport Systems: The HEARTS Project; WHO: Copenhagen, Denmark, 2006. [Google Scholar]
- WHO. Burden of Disease from Environmental Noise: Quantification of Healthy Life Years Lost in Europe; WHO: Copenhagen, Denmark, 2011. [Google Scholar]
- EC. 2002/49/EC of the European parliament and the Council of 25 June 2002 relating to the assessment and management of environmental noise. Off. J. Eur. Commun. L 2002, 189, 2002. [Google Scholar]
- Arana, M.; San Martin, R.; San Martin, M.L.; Aramendía, E. Strategic noise map of a major road carried out with two environmental prediction software packages. Environ. Monit. Assess. 2010, 163, 503–513. [Google Scholar] [CrossRef]
- Bunn, F.; Zannin, P.H.T. Assessment of railway noise in an urban setting. Appl. Acoust. 2016, 104, 16–23. [Google Scholar] [CrossRef]
- Iglesias-Merchan, C.; Diaz-Balteiro, L.; Soliño, M. Transportation planning and quiet natural areas preservation: Aircraft overflights noise assessment in a National Park. Transp. Res. Part D Transp. Environ. 2015, 41, 1–12. [Google Scholar] [CrossRef]
- Gagliardi, P.; Fredianelli, L.; Simonetti, D.; Licitra, G. ADS-B system as a useful tool for testing and redrawing noise management strategies at Pisa Airport. Acta Acust. 2017, 103, 543–551. [Google Scholar] [CrossRef]
- Nastasi, M.; Fredianelli, L.; Bernardini, M.; Teti, L.; Fidecaro, F.; Licitra, G. Parameters affecting noise emitted by ships moving in port areas. Sustainability 2020, 12, 8742. [Google Scholar] [CrossRef]
- Licitra, G.; Ascari, E.; Fredianelli, L. Prioritizing process in action plans: A review of approaches. Curr. Pollut. Rep. 2017, 3, 151–161. [Google Scholar] [CrossRef]
- Ministry of Environment. Noise and Vibration Control Act; Ministry of Environment: Sejong City, Korea, 2020.
- The Korea Transport Institute. 2017 National Traffic Survey and Database System Operation and Maintenance; The Korea Transport Institute: Sejong City, Korea, 2017. (In Korean) [Google Scholar]
- Ruiz-Padillo, A.; Ruiz, D.P.; Torija, A.J.; Ramos-Ridao, Á. Selection of suitable alternatives to reduce the environmental impact of road traffic noise using a fuzzy multi-criteria decision model. Environ. Impact Assess. Rev. 2016, 61, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, I.; Foraster, M.; Basagaña, X.; Corradi, E.; Deltell, A.; Morelli, X.; Phuleria, H.C.; Ragettli, M.S.; Rivera, M.; Thomasson, A.; et al. Application of land use regression modelling to assess the spatial distribution of road traffic noise in three European cities. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 97–105. [Google Scholar] [CrossRef]
- Han, X.; Huang, X.; Liang, H.; Ma, S.; Gong, J. Analysis of the relationships between environmental noise and urban. Environ. Pollut. 2018, 233, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Liu, Y.; Chen, J. Mapping Urban environmental noise: A land use regression method. Environ. Sci. Technol. 2011, 45, 7358–7364. [Google Scholar] [CrossRef]
- Sieber, C.; Ragettli, M.S.; Brink, M.; Toyib, O.; Baatjies, R.; Saucy, A.; Probst-Hensch, N.; Dalvie, M.A.; Röösli, M. Land use regression modeling of outdoor noise exposure in informal settlements in Western Cape, South Africa. Int. J. Environ. Res. Public Health 2017, 14, 1262. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.Y.; Liang, C.H.; Wu, C.F.; Chang, L. Te Application of land-use regression models to estimate sound pressure levels and frequency components of road traffic noise in Taichung, Taiwan. Environ. Int. 2019, 131, 104959. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Goudreau, S.; Oiamo, T.; Rainham, D.; Hatzopoulou, M.; Chen, H.; Davies, H.; Tremblay, M.; Johnson, J.; Bockstael, A.; et al. Comparison of land use regression and random forests models on estimating noise levels in five Canadian cities. Environ. Pollut. 2020, 256, 113367. [Google Scholar] [CrossRef] [PubMed]
- Margaritis, E.; Kang, J.; Aletta, F.; Axelsson, Ö. On the relationship between land use and sound sources in the urban environment. J. Urban Des. 2020, 25, 626–642. [Google Scholar] [CrossRef]
- Salomons, E.M.; Berghauser Pont, M. Urban traffic noise and the relation to urban density, form, and traffic elasticity. Landsc. Urban Plan. 2012, 108, 2–16. [Google Scholar] [CrossRef]
- Silva, L.T.; Oliveira, M.; Silva, J.F. Urban form indicators as proxy on the noise exposure of buildings. Appl. Acoust. 2014, 76, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Ryu, H.; Park, I.K.; Chun, B.S.; Chang, S.I. Spatial statistical analysis of the effects of urban form indicators on road-traffic noise exposure of a city in South Korea. Appl. Acoust. 2017, 115, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Kang, J.; Zhu, P.; Cai, J.; Guo, F.; Zhang, Y. Influence of urban road characteristics on traffic noise. Transp. Res. Part D Transp. Environ. 2019, 75, 136–155. [Google Scholar] [CrossRef]
- Wang, B.; Kang, J. Effects of urban morphology on the traffic noise distribution through noise mapping: A comparative study between UK and China. Appl. Acoust. 2011, 72, 556–568. [Google Scholar] [CrossRef]
- Hao, Y.; Kang, J. Influence of mesoscale urban morphology on the spatial noise attenuation of flyover aircrafts. Appl. Acoust. 2014, 84, 73–82. [Google Scholar] [CrossRef]
- Margaritis, E.; Kang, J. Relationship between urban green spaces and other features of urban morphology with traffic noise distribution. Urban For. Urban Green 2016, 15, 174–185. [Google Scholar] [CrossRef]
- Margaritis, E.; Kang, J. Relationship between green space-related morphology and noise pollution. Ecol. Indic. 2017, 72, 921–933. [Google Scholar] [CrossRef]
- Kumar, P.; Nigam, S.P.; Kumar, N. Vehicular traffic noise modeling using artificial neural network approach. Transp. Res. Part C Emerg. Technol. 2014, 40, 111–122. [Google Scholar] [CrossRef]
- Garg, N.; Mangal, S.K.; Saini, P.K.; Dhiman, P.; Maji, S. Comparison of ANN and Analytical Models in Traffic Noise Modeling and Predictions. Acoust. Aust. 2015, 43, 179–189. [Google Scholar] [CrossRef]
- Hamad, K.; Ali Khalil, M.; Shanableh, A. Modeling roadway traffic noise in a hot climate using artificial neural networks. Transp. Res. Part D Transp. Environ. 2017, 53, 161–177. [Google Scholar] [CrossRef]
- Mansourkhaki, A.; Berangi, M.; Haghiri, M.; Haghani, M. A neural network noise prediction model for Tehran urban roads. J. Environ. Eng. Landsc. Manag. 2018, 26, 88–97. [Google Scholar] [CrossRef]
- Ali Khalil, M.; Hamad, K.; Shanableh, A. Developing Machine Learning Models to Predict Roadway Traffic Noise: An Opportunity to Escape Conventional Techniques. Transp. Res. Rec. 2019, 2673, 158–172. [Google Scholar] [CrossRef]
- Nourani, V.; Gökçekuş, H.; Umar, I.K. Artificial intelligence based ensemble model for prediction of vehicular traffic noise. Environ. Res. 2020, 180, 108852. [Google Scholar] [CrossRef] [PubMed]
- Park, T.; Kim, M.; Jang, C.; Choung, T.; Sim, K.; Seo, D.; Chang, S.I. The Public Health Impact of Road-Traffic Noise in a Highly-Populated City, Republic of Korea: Annoyance and Sleep Disturbance. Sustainability 2018, 10, 2947. [Google Scholar] [CrossRef] [Green Version]
- SoundPLAN. Available online: https://www.soundplan.eu/en/software/soundplannoise/ (accessed on 17 December 2020).
- Environmental Policy Division of Gwangju Metropolitan City. Development of Noise Map of Gwangju Metropolitan Vity and Construction of Management System. 2017. (In Korean). Available online: http://www.prism.go.kr/homepage/entire/retrieveEntireDetail.do;jsessionid=0D1120636A3E2B1D5D45CD2083309810.node02?cond_research_name=&cond_research_start_date=&cond_research_end_date=&research_id=6290000-201800019&pageIndex=3&leftMenuLevel=160.
- Chun, B.; Guldmann, J.M. Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc. Urban Plan. 2014, 125, 76–88. [Google Scholar] [CrossRef]
- Ryu, H. Spatial statistical Analysis of Road-traffic noise for supporting urban planning in strategic stage. Ph.D. Thesis, University of Seoul, Seoul, Korea, 2017. (In Korean). [Google Scholar]
- Seong, J.C.; Park, T.H.; Ko, J.H.; Chang, S.I.; Kim, M.; Holt, J.B.; Mehdi, M.R. Modeling of road traffic noise and estimated human exposure in Fulton County, Georgia, USA. Environ. Int. 2011, 37, 1336–1341. [Google Scholar] [CrossRef] [PubMed]
- Gulliver, J.; Morley, D.; Vienneau, D.; Fabbri, F.; Bell, M.; Goodman, P.; Beevers, S.; Dajnak, D.; Kelly, F.J.; Fecht, D. Development of an open-source road traffic noise model for exposure assessment. Environ. Model. Softw. 2015, 74, 183–193. [Google Scholar] [CrossRef] [Green Version]
- ESRI World Topographic Map. Available online: https://www.arcgis.com/home/item.html?id=30e5fe3149c34df1ba922e6f5bbf808f (accessed on 21 January 2021).
- ESRI World Hillshade. Available online: https://www.arcgis.com/home/item.html?id=1b243539f4514b6ba35e7d995890db1d (accessed on 20 January 2021).
- CadnaA. Available online: https://www.datakustik.com/products/cadnaa/cadnaa/ (accessed on 17 December 2020).
- Ullrich, S. Annahmen zu den Fahrzeugemissionen in den Richtlinien für den Lärmschutz an Straßen (RLS-90). Str. Autob. 1991, 42, 189–191. [Google Scholar]
- Besnard, F.; Hamet, J.-F.; Duc, E.; Guizard, V.; Fürst, N.; Doisy, S.; Lelong, J.; Dutilleux, G. Road Noise Prediction—1 Calculating Sound Emissions from Road Traffic; Setra: Bagneux, France, 2011. [Google Scholar]
- Traffic Noise Model. Available online: https://www.fhwa.dot.gov/environment/noise/traffic_noise_model/ (accessed on 16 December 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
Urban FormIndicators | P | GSI | FSI | Q | PH | V | Dt | Ra | Wa | LR | LC | LI | LG |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VIF (Variance Inflation Factors) | 3.94 | 2.41 | 5.00 | 1.57 | 3.46 | 4.98 | - | 2.46 | 1.09 | 1.71 | 1.48 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, P.; Ryu, H.; Jeon, J.-J.; Chang, S.I. Statistical Road-Traffic Noise Mapping Based on Elementary Urban Forms in Two Cities of South Korea. Sustainability 2021, 13, 2365. https://doi.org/10.3390/su13042365
Kim P, Ryu H, Jeon J-J, Chang SI. Statistical Road-Traffic Noise Mapping Based on Elementary Urban Forms in Two Cities of South Korea. Sustainability. 2021; 13(4):2365. https://doi.org/10.3390/su13042365
Chicago/Turabian StyleKim, Phillip, Hunjae Ryu, Jong-June Jeon, and Seo Il Chang. 2021. "Statistical Road-Traffic Noise Mapping Based on Elementary Urban Forms in Two Cities of South Korea" Sustainability 13, no. 4: 2365. https://doi.org/10.3390/su13042365
APA StyleKim, P., Ryu, H., Jeon, J. -J., & Chang, S. I. (2021). Statistical Road-Traffic Noise Mapping Based on Elementary Urban Forms in Two Cities of South Korea. Sustainability, 13(4), 2365. https://doi.org/10.3390/su13042365