From Nature-Based to Nature-Driven: Landscape First for the Design of Moeder Zernike in Groningen
Abstract
:1. Introduction
2. Research Problem
2.1. Problem Definition
2.1.1. Ecology
2.1.2. Agriculture
2.1.3. The Soil-Salinity Complex
2.1.4. Health-Problems
2.2. Research Objective and Question
3. Methodology
- The analysis of current impacts and threats resulting from climate change is undertaken through a literature review of the most recent academic results in the Netherlands, such as the climate scenario [113], the national delta-program [114], recent insights into accelerated sea level rise [9], and the novel risk of droughts [115].
- After the preferred viewpoint is chosen, the core question of how to design a campus that could be self-reliant is investigated. Through literature review of the concepts of self-reliant areas [118,119,120,121] and self-sufficiency [122,123,124], the programmatic contours for the design are formulated.
- Once the quantitative consequences of a self-reliant campus become clear, the quest for a holistic design intervention, responding to this long-term view [25], is explored via futuring [128,129] and spatial visioning [130,131]. A design that responds to uncertainties regarding the future and leapfrogs current policy constraint backtracking [132], oriented towards creating a (spatial) tipping point [133], is applied to change path-dependency. Understanding the theory of complexity [19,134] and its processes of self-organisation and emergence [135] in an urban design context is essential. In order to include these concepts, a co-creative working method is chosen, through which collaborative design work can take place in a design charrette [136,137,138,139] approach.
- The final stage of the research takes the integrated spatial view as the starting point for thematic spatial explorations of food-, eco- and waterscapes. The creative process is here mingled with analytical interactions, typical for a research by design method. The spatial propositions are permanently assessed, and new design questions are raised, which in turn lead to adjusted design explorations. In a cyclic process, the designs are tested and modified until satisfied. In the Moeder Zernike project, the thematic aspects are separated from each other using a layered mapping method [140], making it possible to quantitatively and qualitatively investigate the consequences of spatial choices.
4. Results
4.1. Ways to Respond
4.2. Self-Reliance
4.3. Quantifying Potentials
4.3.1. Food
4.3.2. Space
4.3.3. Water
4.4. Holistic Intervention
4.5. Design of Scapes
4.5.1. Foodscape
4.5.2. Waterscape
4.5.3. Ecoscape
5. Discussion
- Breaking the barriers in a way that is acceptable, by means of inspiration, future thinking, and offering a pleasant and plausible future that differs from the known world.
- Experimenting on and developing small novelties in a controlled context that guide the way to what could be possible in the future.
- Waiting for something to go terribly wrong, causing a tipping point for changing course. A disaster could overcome the fear of change, as it becomes clear to everyone existing approaches have caused the devastation.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Crutzen, P.J. Geology of mankind. Nat. Cell Biol. 2002, 415, 23. [Google Scholar] [CrossRef] [PubMed]
- IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Summary for Policymakers; Approved Draft. IPCC: Geneva, Switzerland, 2019. Available online: https://www.ipcc.ch/report/srccl/ (accessed on 10 August 2020).
- Díaz, S.; Settele, J.; Brondizio, E.; Ngo, H.T.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.; et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES-Secretariat: Bonn, Switzerland, 2019. [Google Scholar]
- Roberts, W.O. Climate Change and the Quality of Life for the Earth’s New Millions. Proc. Am. Philos. Soc. 1976, 120, 230–232. Available online: https://www.jstor.org/stable/986562 (accessed on 21 December 2020).
- Mupedziswa, R.; Kubanga, K.P. Climate change, urban settlements and quality of life: The case of the Southern African Development Community region. Dev. S. Afr. 2016, 34, 196–209. [Google Scholar] [CrossRef]
- Liang, L.; Deng, X.; Wang, P.; Wang, Z.; Wang, L. Assessment of the impact of climate change on cities livability in China. Sci. Total Environ. 2020, 726, 138339. [Google Scholar] [CrossRef]
- Lindsey, R. Climate Change: Global Sea Level. Climate.gov, 2018. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level (accessed on 27 July 2020).
- Haasnoot, M.; Bouwer, L.; Diermanse, F.; Kwadijk, J.; Van der Spek, A.; Oude Essink, G.; Delsman, J.; Weiler, O.; Mens, M.; Ter Maat, J.; et al. Mogelijke Gevolgen van Versnelde Zeespiegelstijging Voor het Deltaprogramma. Een Verkenning; Deltares: Delft, The Netherlands, 2018. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Schipper, E.L.F.; Burton, I. (Eds.) Adaptation to Climate Change; Earthscan: London, UK, 2009. [Google Scholar]
- Global Commission on Adaptation. Adapt Now: A Global Call for Leadership on Climate Resilience; Global Center on Adaptation: Gronningen/Rotterdam, The Netherlands; Washington, DC, USA; World Resources Institute: Washington, DC, USA, 2019. [Google Scholar]
- Schubert, D. Cities and plans—The past defines the future. Plan. Perspect. 2019, 34, 3–23. [Google Scholar] [CrossRef]
- Molotch, H.; Freudenburg, W.; Paulsen, K.E. History Repeats Itself, But How? City Character, Urban Tradition, and the Accomplishment of Place. Am. Sociol. Rev. 2000, 65, 791–823. [Google Scholar] [CrossRef]
- Lindblom, C.E. The Science of “Muddling Through”. Public Adm. Rev. 1959, 19, 79–88. [Google Scholar] [CrossRef]
- Roggema, R.; Genel Altinkaya, Ö.; Psarra, I. De Toukomst is al Lang Begonnen; Hanze University of Applied Sciences Groningen: Groningen, The Netherlands, 2020. [Google Scholar]
- Roggema, R. Bypassing the Obvious: Implementing Cutting Edge Ideas for Futuring Urban Landscapes. Urban Reg. Plan. 2021, 6, 1–14. [Google Scholar] [CrossRef]
- Horstmann, B. Framing Adaptation to Climate Change: A Challenge for Building Institutions; Deutsches Institut für Entwicklungspolitik: Bonn, Germany, 2008. [Google Scholar]
- Roggema, R. Swarm Planning: The Development of a Methodology to Deal with Climate Adaptation. Ph.D. Thesis, Delft University of Technology and Wageningen University and Research Centre, Delft, The Netherlands, 2012. [Google Scholar]
- United Nations Environment Programme. Adaptation Gap Report 2020; United Nations Environment Programme: Nairobi, Kenya, 2021; Available online: https://www.unep.org/adaptation-gap-report-2020 (accessed on 21 December 2020).
- Rittel, H.W.J.; Webber, M.M. Dilemmas in a General Theory of Planning. Policy Sci. 1973, 4, 155–169. [Google Scholar] [CrossRef]
- Davy, B. Plan It Without a Condom! Plan. Theory 2008, 7, 301–317. [Google Scholar] [CrossRef]
- Merry, U. Coping with Uncertainty. Insights from the New Sciences of Chaos, Self-Organisation and Complexity; Praeger Publishers: Westport, CT, USA, 1995. [Google Scholar]
- Schwarz, P. The Art of the Long View. Planning for the Future in an Uncertain World; Bantam Doubleday Dell Publishing Group Inc.: New York, NY, USA, 1991. [Google Scholar]
- Roggema, R. Adaptation to Climate Change: A Spatial Challenge; Springer International Publishing: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Wrigley, C. Principles and practices of a design-led approach to innovation. Int. J. Des. Creativity Innov. 2017, 5, 235–255. [Google Scholar] [CrossRef]
- Balz, V.E. Regional design: Discretionary approaches to regional planning in The Netherlands. Plan. Theory 2017, 17, 332–354. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Roggema, R. Developing a Design-Led Approach for the Food-Energy-Water Nexus in Cities. Urban Plan. 2019, 4, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Almond, R.E.A.; Grooten, M.; Petersen, T. Living Planet Report 2020—Bending the Curve of Biodiversity Loss; WWF: Gland, Switzerland, 2020. [Google Scholar]
- Provincie Groningen. De Toestand van Natuur en Landschap in de Provincie Groningen Achtergronddocuent. 2017. Available online: https://destaatvangroningen.nl/uploads/toestand-van-natuur-en-landschap-achtergronddocument.pdf (accessed on 15 June 2020).
- CBS; PBL; RIVM; WUR. Boerenlandvogels, 1915–2018 (Indicator 1479, Versie 11, 5 Februari 2020). Centraal Bureau voor de Statistiek (CBS), Den Haag; PBL Planbureau voor de Leefomgeving, Den Haag; RIVM Rijksinstituut voor Volksgezondheid en Milieu, Bilthoven; en Wageningen University and Research, Wageningen. 2020. Available online: www.clo.nl (accessed on 21 December 2020).
- Teunissen, W.; Soldaat, L. Indexen en Trends van een Aantal Weidevogelsoorten uit het Weidevogelmeetnet. Periode 1990–2004; SOVON-Informatie 2005/13; SOVON Vogelonderzoek Nederland: Nijmegen, The Netherlands, 2005. [Google Scholar]
- Available online: www.statline.cbs.nl (accessed on 21 December 2020).
- Van Well, E.; Rougoor, C. Landbouw en Klimaatverandering in Groningen; CLM: Culemborg, The Netherlands, 2016. [Google Scholar]
- Ministerie van LNV. Europese Landbouw-Beleid. Toelichting op de Betalingen in het Kader van het Gemeenschappelijk Landbouwbeleid in het Boekjaar 2019; Ministerie van LNV: Den Haag, The Netherlands, 2019. [Google Scholar]
- Rosegrant, M.W.; Cline, S.A. Global food security: Challenges and policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Food Safety Risk Analysis: A Guide for National Food Safety Authorities; WHO; FAO: Rome, Italy, 2006. [Google Scholar]
- Van Staveren, G.; Velstra, J. Verzilting van Landbouwgronden in Noord-Nederland in het Perspectief van de Effecten van klimaatverandering; Onderzoeksprogramma Klimaat voor Ruimte/Climate Changes Spatial Planning: Den Haag, The Netherlands, 2012. [Google Scholar]
- De Vries, S. Increasing Drought: A New Enemy for The Netherlands. 20 August 2020. Available online: https://www.the-low-countries.com/article/increasing-drought-a-new-enemy-for-the-netherlands (accessed on 21 December 2020).
- Van der Woud, A. Het Landschap de Mensen. Nederland 1850–1940; Prometeus: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Velstra, J.; Groen, J.; De Jong, K. Observations of salinity patterns in shallow groundwater and drainage water from agricultural land in the northern part of The Netherlands. Irrig. Drain. 2011, 60, 51–58. [Google Scholar] [CrossRef]
- Kroes, J.; Supit, I. Impact analysis of drought, water excess and salinity on grass production in The Netherlands using historical and future climate data. Agric. Ecosyst. Environ. 2011, 144, 370–381. [Google Scholar] [CrossRef]
- Raats, P.A. Salinity management in the coastal region of the Netherlands: A historical perspective. Agric. Water Manag. 2015, 157, 12–30. [Google Scholar] [CrossRef]
- Heuff, F.; Mulder, G.; Van Leijen, F.; Samiei Esfahany, S.; Hanssen, R. Dynamics of peat soils in the’Green Heart’of the Netherlands measured by satellite radar interferometry. In Proceedings of the 20th EGU General Assembly, Vienna, Austria, 4–13 April 2018; p. 17443. [Google Scholar]
- Stuyfzand, P.J. The impact of land reclamation on groundwater quality and future drinking water supply in the Netherlands. Water Sci. Technol. 1995, 31, 47–57. [Google Scholar] [CrossRef]
- De Waal, J.; Roest, J.; Fokker, P.; Kroon, I.; Breunese, J.; Muntendam-Bos, A.; Oost, A.; Van Wirdum, G. The effective subsidence capacity concept: How to assure that subsidence in the Wadden Sea remains within defined limits? Neth. J. Geosci. 2012, 91, 385–399. [Google Scholar] [CrossRef] [Green Version]
- Erkens, G.; Van der Meulen, M.; Middelkoop, H. Historical land use caused carbon release in the Dutch coastal peatlands. In Proceedings of the EGU General Assembly 2010, Vienna, Austria, 2–7 May 2010; p. 12386. [Google Scholar]
- Schoonbeek, J.B. Land subsidence as a result of natural gas extraction in the province of Groningen. In Proceedings of the SPE European Spring Meeting, Amsterdam, The Netherlands, 8–9 April 1976. [Google Scholar]
- Van Thienen-Visser, K.; Fokker, P.A. The future of subsidence modelling: Compaction and subsidence due to gas depletion of the Groningen gas field in the Netherlands. Neth. J. Geosci. 2017, 96, s105–s116. [Google Scholar] [CrossRef] [Green Version]
- Pottgens, J.J.; Brouwer, F.J. Land subsidence due to gas extraction in the northern part of the Netherlands. Land Subsid. 1991, 200, 99–108. [Google Scholar]
- Suykerbuyk, W.; Govers, L.L.; Van Oven, W.; Giesen, K.; Giesen, W.B.; De Jong, D.J.; Bouma, T.J.; Van Katwijk, M.M. Living in the intertidal: Desiccation and shading reduce seagrass growth, but high salinity or population of origin have no additional effect. PeerJ 2018, 6, e5234. [Google Scholar] [CrossRef]
- Boogerd, A.; Groenewegen, P.; Hisschemöller, M. Knowledge utilization in water management in The Netherlands related to desiccation. JAWRA J. Am. Water Resour. Assoc. 1997, 33, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Tzemi, D.; Ruto, E.; Gould, I.; Bosworth, G. Economic Impacts of Salinity Induced Soil Degradation. In Baseline Study Final Report; University of Lincoln: Lincoln, UK, 2020; Available online: https://northsearegion.eu/media/14789/chap2-economic-analysis-of-salinization.pdf (accessed on 21 December 2020).
- World Health Organisation. Urban Health. 2015. Available online: www.who.int/topics/urban_health/en/ (accessed on 11 November 2016).
- Dye, C. Health and Urban Living. Science 2008, 319, 766–769. [Google Scholar] [CrossRef]
- Cox, D.T.C.; Shanahan, D.F.; Hudson, H.L.; Plummer, K.E.; Siriwardena, G.M.; Fuller, R.A.; Anderson, K.; Hancock, S.; Gaston, K.J. Doses of Neighborhood Nature: The Benefits for Mental Health of Living with Nature. BioScience 2017, 67, 147–155. [Google Scholar] [CrossRef]
- Cox, D.T.; Shanahan, D.F.; Hudson, H.L.; Fuller, R.A.; Gaston, K.J. The impact of urbanisation on nature dose and the implications for human health. Landsc. Urban Plan. 2018, 179, 72–80. [Google Scholar] [CrossRef]
- Epstein, L.H.; Wing, R.R.; Penner, B.C.; Kress, M.J. Effect of diet and controlled exercise on weight loss in obese children. J. Pediatr. 1985, 107, 358–361. [Google Scholar] [CrossRef]
- Epstein, L.H.; Paluch, R.A.; Consalvi, A.; Riordan, K.; Scholl, T. Effects of manipulating sedentary behavior on physical activity and food intake. J. Pediatr. 2002, 140, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Epstein, L.; Raja, S.; Gold, S.; Paluch, R.; Pak, Y.; Roemmich, J. Reducing sedentary behavior the relationship between park area and the physical activity of youth. Psychol. Sci. 2006, 17, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Epstein, L.H.; Paluch, R.A.; Roemmich, J.N.; Beecher, M.D. Family-based obesity treatment, then and now: Twen-ty-five years of pediatric obesity treatment. Health Psychol. 2007, 26, 381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dovey, R. Can Parks Make Kids Better at Math? Next City, 11 September 2018. Available online: https://nextcity.org/daily/entry/can-parks-make-kids-better-at-math (accessed on 21 December 2020).
- Flouri, E.; Papachristou, E.; Midouhas, E. The role of neighbourhood greenspace in children’s spatial working memory. Br. J. Educ. Psychol. 2018, 89, 359–373. [Google Scholar] [CrossRef]
- Louv, R. Vitamin, N. The Essential Guide to a Nature-Rich Life: 500 Ways to Enrich Your Family’s Health & Happiness; Atlantic Books: London, UK, 2016. [Google Scholar]
- Shore, R. Kids Need Access to Nature for Mental Health. Vancouver Sun. 17 April 2017. Available online: https://vancouversun.com/health/local-health/kids-need-access-to-nature-for-mental-health (accessed on 21 December 2020).
- Li, D.; Sullivan, W.C. Impact of views to school landscapes on recovery from stress and mental fatigue. Landsc. Urban Plan. 2016, 148, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, W.; Chang, C. Mental Health and the Built Environment. In Making Healthy Places; Dannenberg, A., Frumkin, H., Jackson, R., Eds.; Island Press/Center for Resource Economics: Washington, DC, USA, 2011; pp. 106–116. [Google Scholar]
- Taylor, A.F.; Kuo, F.E.; Sullivan, W.C. Views of nature and self-discipline: evidence from inner city children. J. Environ. Psychol. 2002, 22, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk-Wesselius, J.; Maas, J.; Hovinga, D.; Van Vugt, M.; Van den Berg, A.E. The impact of greening schoolyards on the appreciation, and physical, cognitive and social-emotional well-being of schoolchildren: A prospective intervention study. Landsc. Urban Plan. 2018, 180, 15–26. [Google Scholar] [CrossRef]
- Husqvarna Group. Global Green Space Report 2013. Exploring Our Relationship to Forests, Parks and Gardens around the Globe; Husqvarna AB: Stockholm, Sweden, 2013. [Google Scholar]
- Mennis, J.; Mason, M.; Ambrus, A. Urban greenspace is associated with reduced psychological stress among adolescents: A Geographic Ecological Momentary Assessment (GEMA) analysis of activity space. Landsc. Urban Plan. 2018, 174, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.W.; Roe, J.; Aspinall, P.; Mitchell, R.; Clow, A.; Miller, D. More green space is linked to less stress in deprived communities: Evidence from salivary cortisol patterns. Landsc. Urban Plan. 2012, 105, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Bureau of Crime Statistics and Research. Mapping Rates of Apprehended Domestic Violence Orders (ADVOs). NSW Government. Available online: www.bocsar.nsw.gov.au/Pages/bocsar_news/ADVO-Rates.aspx (accessed on 21 December 2020).
- Min, K.-B.; Kim, H.-J.; Kim, H.-J.; Min, J.-Y. Parks and green areas and the risk for depression and suicidal indicators. Int. J. Public Health 2017, 62, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Wright, T. Western Sydney, Where Pollies Would have you Think Crime Control is at Sea; Sydney Morning Herald: Sydney, Australia, 2013. [Google Scholar]
- Jackson, L.E. The relationship of urban design to human health and condition. Landsc. Urban Plan. 2003, 64, 191–200. [Google Scholar] [CrossRef]
- Gidlöf-Gunnarsson, A.; Öhrström, E. Noise and well-being in urban residential environments: The potential role of perceived availability to nearby green areas. Landsc. Urban Plan. 2007, 83, 115–126. [Google Scholar] [CrossRef]
- Kaplan, S. The restorative effects of nature—Toward an integrative framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Maas, J.; Verheij, R.; Groenewegen, P.; De Vries, S.; Spreeuwenberg, P. Green space urbanity, and health: How strong is the relation? J. Epidemiol. Community Health 2006, 60, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Maas, J.; Verheij, R.; De Vries, S.; Spreeuwenberg, P.; Schellevis, F.G.; Groenewegen, P.P. Morbidity is related to a green living environment. J. Epidemiol. Community Health 2009, 63, 967–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maller, C.; Townsend, M.; Pryor, A.; Brown, P.; St Leger, L. Healthy nature healthy people: ‘contact with nature’ as an upstream health promotion intervention for populations. Health Promot. Int. 2006, 21, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, C.W.; Aspinall, P.; Roe, J. Access to Green Space in Disadvantaged Urban Communities: Evidence of Salutogenic Effects Based on Biomarker and Self-report Measures of Wellbeing. Procedia Soc. Behav. Sci. 2014, 153, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Bird, W. Natural Thinking, Investigating the Links between the Natural Environment, Biodiversity and Mental Health; Royal Society for the Protection of Birds: Sandy, UK, 2007. [Google Scholar]
- Carrus, G.; Scopelliti, M.; Lafortezza, R.; Colangelo, G.; Ferrini, F.; Salbitano, F.; Agrimi, M.; Portoghesi, L.; Semenzato, P.; Sanesi, G. Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas. Landsc. Urban Plan. 2015, 134, 221–228. [Google Scholar] [CrossRef]
- Marselle, M.; Irvine, K.; Warber, S. Examining group walks in nature and multiple aspects of well-Being: A large-scale study. Ecopsychology 2014, 6, 134–147. [Google Scholar]
- Pretty, J.; Peacock, J.; Sellens, M.; Griffin, M. The mental and physical health outcomes of green exercise. Int. J. Environ. Health Res. 2005, 15, 319–337. [Google Scholar] [CrossRef] [PubMed]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.; Popham, F. Greenspace, urbanity and health: Relationships in England. J. Epidemiol. Community Health 2007, 61, 681–683. [Google Scholar] [CrossRef] [Green Version]
- Gascon, M.; Triguero-Mas, M.; Martínez, D.; Dadvand, P.; Rojas-Rueda, D.; Plasència, A.; Nieuwenhuijsen, M.J. Residential green spaces and mortality: A systematic review. Environ. Int. 2016, 86, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Söderback, I.; Söderström, M.; Schälander, E. Horticultural therapy: The ‘healing garden’ and gardening in reha-bilitation measures at Danderyd Hospital Rehabilitation Clinic, Sweden. Pediatric Rehabil. 2004, 7, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Marcus, C. Healing gardens in hospitals. Interdiscip. Des. Res. e-J. 2007, 1, 1–27. [Google Scholar]
- Lau, S.S.Y.; Yang, F. Introducing Healing Gardens into a Compact University Campus: Design Natural Space to Create Healthy and Sustainable Campuses. Landsc. Res. 2009, 34, 55–81. [Google Scholar] [CrossRef]
- Lottrup, L.; Grahn, P.; Stigsdotter, U.K. Workplace greenery and perceived level of stress: Benefits of access to a green outdoor environment at the workplace. Landsc. Urban Plan. 2013, 110, 5–11. [Google Scholar] [CrossRef]
- Krasny, M. and Tidball, K. Civic Ecology: Adaptation and Transformation from the Ground Up; MIT Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Pudup, M.B. It takes a garden: Cultivating citizen-subjects in organized garden projects. Geoforum 2008, 39, 1228–1240. [Google Scholar] [CrossRef]
- Kuo, F.; Sullivan, W. Environment and Crime in the Inner City: Does Vegetation Reduce Crime? Environ. Behav. 2001, 33, 343–367. [Google Scholar] [CrossRef] [Green Version]
- Kuo, F.; Bacaicoa, M.; Sullivan, W. Transforming inner-city landscapes: Trees, sense of safety and preference. Environ. Behav. 1998, 30, 28–59. [Google Scholar] [CrossRef]
- Okvat, H.; Zautra, A. Community gardening: A parsimonious path to individual, community, and environmental resilience. Am. J. Community Psychol. 2011, 47, 374–387. [Google Scholar] [CrossRef] [PubMed]
- Abhijith, K.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Kumar, P.; Druckman, A.; Gallagher, J.; Gatersleben, B.; Allison, S.; Eisenman, T.S.; Hoang, U.; Hama, S.; Tiwari, A.; Sharma, A.; et al. The nexus between air pollution, green infrastructure and human health. Environ. Int. 2019, 133, 105181. [Google Scholar] [CrossRef] [PubMed]
- Zupancic, T.; Westmacott, C.; Bulthuis, M. The Impact of Green Space on Heat and Air Pollution in Urban Communities: A Meta-Narrative Systemic Review; David Suzuki Foundation: Vancouver, ON, Canada, 2015. [Google Scholar]
- Hewitt, C.N.; Ashworth, K.; MacKenzie, A.R. Using green infrastructure to improve urban air quality (GI4AQ). Ambio 2020, 49, 62–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conversano, I.; del Conte, L.; Mulder, I. Research through Design for accounting values in design. In Proceedings of the 4th Biennial Research through Design Conference, Delft, Rotterdam, The Netherlands, 19–22 March 2019. [Google Scholar]
- De Jong, T.M. Kleine Methodologie voor Ontwerpend Onderzoek; BOOM Uitgevers: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Hauberg, J. Research by Design—A research strategy. Rev. Lusófona Arquit. Educ. Archit. Educ. J. 2011, 5, 46–56. [Google Scholar]
- Milburn, L.-A.S.; Brown, R.D. The relationship between research and design in landscape architecture. Landsc. Urban Plan. 2003, 64, 47–66. [Google Scholar] [CrossRef] [Green Version]
- Roggema, R. Research by Design: Proposition for a Methodological Approach. Urban Sci. 2016, 1, 2. [Google Scholar] [CrossRef]
- Rosemann, J. The Conditions of Research by Design in Practice. In Proceedings of the Research by Design: International Conference Faculy of Architecture Delft University of Technology in Co-Operation with the EAASE/AEEA, Delft, The Netherlands, 1–3 November 2000; Delft University Press: Delft, The Netherlands, 2001; pp. 63–68. [Google Scholar]
- Swann, C. Action Research and the Practice of Design. Des. Issues 2002, 18, 49–61. [Google Scholar] [CrossRef]
- Chamberlain, P.; Bonsiepe, G.; Cross, N.; Keller, I.; Frens, J.; Buchanan, R.; Meroni, A.; Krippendorff, K.; Stappers, P.J.; Jonas, W.; et al. Design Research Now. In Design Research Now; Springer International Publishing: Berlin/Heidelberg, Germany, 2007; pp. 41–54. [Google Scholar]
- Hocking, V.T. Designerly ways of knowing: What does design have to offer. In Tackling Wicked Problems through the Transdisciplinary Imagination; Brown, V.A., Harris, J.A., Russell, J.Y., Eds.; Earthscan: London, UK, 2010; pp. 242–250. [Google Scholar]
- Van den Hurk, B.; Siegmund, P.; Klein Tank, A. KNMI’14: Climate Change Scenarios for the 21st Century—A Netherlands Perspective; Scientific Report WR2014-01; KNMI: De Bilt, The Netherlands, 2014. [Google Scholar]
- Ministerie van Infrastructuur en Milieu. Deltaporgramma 2021. 2020. Available online: https://dp2021.deltaprogramma.nl (accessed on 21 December 2020).
- INFRAM. Rapport Eerste Fase Beleidstafel Droogte; Ministerie van Infrastructuur en Milieu: Den Haag, The Netherlands, 2019. [Google Scholar]
- Van de Vijver, F.; Leung, K. Methods and Data Analysis of Comparative Research; Allyn & Bacon: Boston MA, USA, 1997. [Google Scholar]
- Denk, T. Comparative multilevel analysis: Proposal for a methodology. Int. J. Soc. Res. Methodol. 2010, 13, 29–39. [Google Scholar] [CrossRef]
- Barton, H. Eco-neighbourhoods: A review of projects. Local Environ. 1998, 3, 159–177. [Google Scholar] [CrossRef]
- Mougeot, L.J.A. For self-reliant cities: Urban food production in a globalizing South. In For Hunger-Proof Cities: Sustainable Urban Food Systems; Koc, M., MacRae, R., Mougeot, L.J.A., Welsh, J., Eds.; International Development Research Centre: Ottawa, ON, Canada, 1999; pp. 11–25. [Google Scholar]
- Morris, D. Self-Reliant Cities; The New Rules Project: Minneapolis, MN, USA, 2008. [Google Scholar]
- Shuman, M. Going Local: Creating Self-Reliant Communities in a Global Age; Routledge: London, UK, 2013. [Google Scholar]
- Storey, J.B.; Baird, G. Towards the Self-Sufficient City Building. Trans. Inst. Prof. Eng. N. Z. 1999, 26, 1–8. [Google Scholar]
- Tait, M. Urban villages as self-sufficient, integrated communities: A case study in London’s Docklands. Urban Des. Int. 2003, 8, 37–52. [Google Scholar] [CrossRef]
- Núñez-Ríos, J.E.; Aguilar-Gallegos, N.; Sánchez-García, J.Y.; Cardoso-Castro, P.P. Systemic Design for Food Self-Sufficiency in Urban Areas. Sustainability 2020, 12, 7558. [Google Scholar] [CrossRef]
- Karnib, A. A Quantitative Assessment Framework for Water, Energy and Food Nexus. Comput. Water Energy Environ. Eng. 2017, 6, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; Goodrich, J.A. Toward quantitative analysis of water-energy-urban-climate nexus for urban adaptation planning. Curr. Opin. Chem. Eng. 2014, 5, 22–28. [Google Scholar] [CrossRef]
- Soininen, J. Spatial structure in ecological communities–a quantitative analysis. Oikos 2016, 125, 160–166. [Google Scholar] [CrossRef]
- Fry, T. Design Futuring; Zed Books: London, UK, 2009; pp. 71–77. [Google Scholar]
- Cornish, E. Futuring: The Exploration of the Future; World Future Society: Chicago IL, USA, 2004. [Google Scholar]
- Shipley, R.; Newkirk, R. Vision and visioning in planning: What do these terms really mean? Environ. Plan. B Plan. Des. 1999, 26, 573–591. [Google Scholar] [CrossRef]
- Gaffikin, F.; Sterrett, K. New Visions for Old Cities: The Role of Visioning in Planning. Plan. Theory Pract. 2006, 7, 159–178. [Google Scholar] [CrossRef]
- Roggema, R. Adaptation to climate change: Does spatial planning help? Swarm planning does! Manag. Nat. Resour. Sustain. Dev. Ecol. Hazards II 2009, 127, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Gladwell, M. The Tipping Point: How Little Things Can Make a Big Difference; Little, Brown and Company: New York, NY, USA, 2000. [Google Scholar]
- Roggema, R. Swarming Landscapes: The Art of Designing for Climate Adaptation; Springer: Berlin/Heidelberg, Germany, 2012; p. 260. [Google Scholar]
- Portugali, J. Self-Organisation and the City; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Condon, P.M. Design Charrettes for Sustainable Communities; Island Press: Washington, DC, USA, 2008. [Google Scholar]
- Lennertz, B.; Lutzenhiser, A. The Charrette Handbook. The Essential Guide for Accelerated Collaborative Community Planning; The American Planning Association: Chicago, IL, USA, 2006. [Google Scholar]
- Roggema, R.; Martin, J.; Horne, R. Sharing the climate adaptive dream: The benefits of the charrette approach. In Proceedings of the ANZRSAI Conference, Canberra, Australia, 6–9 December 2011; AERU Research Unit: Canterburry, UK, 2011. [Google Scholar]
- Roggema, R. The Design Charrette: Ways to Envision Sustainable Futures; Springer: Berlin/Heidelberg, Germany, 2013; p. 335. [Google Scholar]
- McHarg, I.L. Design with Nature; Natural History Press: New York, NY, USA, 1969. [Google Scholar]
- Reumer, J. Wildpark Rotterdam. De stad als Natuurgebied; Historische Uitgeverij: Groningen, The Netherlands, 2014. [Google Scholar]
- Roggema, R. Landscape First! Nature-Based Design for Sydney’s Third City. In Nature-Driven Urbanism. Contemporary Urban Design Thinking; Springer: Berlin/Heidelberg, Germany, 2020; Volume 2, pp. 81–110. [Google Scholar]
- Girardet, H. Creating Regenerative Cities; Routledge: Boca Raton, FL, USA, 2014. [Google Scholar]
- Girardet, H. Regenerative Cities. In Studies in Ecological Economics; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 183–204. [Google Scholar]
- Du Plessis, C. Towards a regenerative paradigm for the built environment. Build. Res. Inf. 2012, 40, 7–22. [Google Scholar] [CrossRef]
- Thompson, G.; Newman, P. Urban fabrics and urban metabolism–from sustainable to regenerative cities. Resour. Conserv. Recycl. 2018, 132, 218–229. [Google Scholar] [CrossRef]
- Roggema, R. ReciproCity, Giving Instead of Taking. Inaugural Lecture; Hanze University of Applied Sciences: Groningen, The Netherlands, 2019. [Google Scholar]
- Sijmons, D. Contrast, Contact & Contract, Pathways to Pacify Urbanization and Nature. In Nature-Driven Urbanism. Contemporary Urban Design Thinking; Roggema, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 2, pp. 9–42. [Google Scholar]
- Rouse, W.B. Design for Success: A Human-Centered Approach to Designing Successful Products and Systems; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Harland, R.G.; Santos, M.C. From greed to need: Notes on human-centred design. In Proceedings of the AHRC Postgraduate Conference 2009, Loughborough, UK, 1–2 July 2009; pp. 141–158. [Google Scholar]
- Brennan, A.; Yeuk-Sze, L. Environmental Ethics. In The Stanford Encyclopedia of Philosophy (Fall Edition); Zalta, E.N., Ed.; Stanford University: Stanford CA, USA, 2011; Available online: http://plato.stanford.edu/archives/fall2011/entries/ethics-environmental (accessed on 21 December 2020).
- Davoudi, S. Climate Change, Securitisation of Nature, and Resilient Urbanism. Environ. Plan. C Gov. Policy 2014, 32, 360–375. [Google Scholar] [CrossRef] [Green Version]
- Stoltz, J. Perceived Sensory Dimensions: A Human-Centred Approach to Environmental Planning and Design. Ph.D. Thesis, Stockholm University, Stockholm, Sweden, 2019. [Google Scholar]
- Mccormick, K. Cities, Nature and Innovation: New Directions; Lund University: Lund, Sweden, 2020. [Google Scholar]
- European Commission. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities; Final Report of the Horizon 2020 Expert Group on ‘Nature-Based Solutions and Re-Naturing Cities’; Publications Office of the European Union: Luxemburg, 2015. [Google Scholar]
- Simpson, S.; Marshall, P.; Crumley, C.L. Nature’s Web: Rethinking Our Place on Earth. Environ. Hist. 1996, 1, 106–108. [Google Scholar] [CrossRef]
- Capra, F. The Web of Life: A New Synthesis of Mind and Matter; HarperCollins: New York, NY, USA, 1996. [Google Scholar]
- Roggema, R.; Tillie, N.; Keeffe, G. Landscape first: Thriving nature-based urbanism in Western Sydney. Land. forthcoming.
- Roggema, R. (Ed.) Nature-Driven Urbanism; Contemporary Urban Design Thinking, Volume 2; Springer: Dordrecht, Switzerland; Berlin/Heidelberg, Germany; London, UK, 2020; 359p. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Schuetze, T.; Chelleri, L. Integrating Decentralized Rainwater Management in Urban Planning and Design: Flood Resilient and Sustainable Water Management Using the Example of Coastal Cities in The Netherlands and Taiwan. Water 2013, 5, 593–616. [Google Scholar] [CrossRef] [Green Version]
Current Climate (1981–2010) | 2085 Wl Scenario Based on 2019 Weather (+3.5 Degrees/No Changes in Currents) | 2085 Wl Scenario Based on 2019 Weather (+3.5 Degrees/No Changes in Currents) | 2085 Wh Scenario Based on Climate Data (+3.5 Degrees, +Changes in Currents) | 2085 Wh Scenario Based on 2019 Weather (+3.5 Degrees, +Changes in Currents) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Month | Rain (In Olympic Pools) | Cumulative | ||||||||
Jan | 710 | 710 | 580 | 807.2 | 660.3 | 660,3 | 937 | 937 | 768 | 768 |
Feb | 400 | 1110 | 210 | 1269.7 | 247.8 | 908.1 | 550 | 1487 | 303 | 1071 |
Mar | 390 | 1500 | 880 | 1732.8 | 1016.8 | 1924.9 | 571 | 2058 | 1208 | 2279 |
Apr | −130 | 1370 | −280 | 1635.5 | −269.8 | 1655.1 | −134 | 1924 | −302 | 1977 |
May | −240 | 1130 | −560 | 1436 | −567.5 | 1087.6 | −251.8 | 1672.2 | −610.2 | 13,668 |
Jun | −110 | 1020 | −200 | 1389.6 | −149.9 | 937.7 | −105.4 | 1566.8 | −206.2 | 1160.6 |
Jul | −140 | 880 | −750 | 1123.6 | −845.5 | 92.2 | −468.8 | 1098 | −938.5 | 222.1 |
Aug | 10 | 890 | −140 | 1022.5 | −243.6 | −151.4 | −292.5 | 805.5 | −408 | −185.9 |
Sep | 340 | 1230 | 1020 | 1275.5 | 899 | 747.6 | 71.8 | 877.3 | 595.4 | 409.5 |
Oct | 550 | 1780 | 820 | 1862.6 | 874.65 | 1622.25 | 621.4 | 1498.7 | 923.8 | 1333.3 |
Nov | 740 | 2520 | 550 | 2651.25 | 586.3 | 2208.55 | 831 | 2329.7 | 618.2 | 1951.5 |
Dec | 760 | 3280 | 520 | 3460.9 | 554.05 | 2762.6 | 852.2 | 3181.9 | 583.4 | 2534.9 |
3280 | 3460.9 | 2762.6 | 3181.9 | 2534.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roggema, R. From Nature-Based to Nature-Driven: Landscape First for the Design of Moeder Zernike in Groningen. Sustainability 2021, 13, 2368. https://doi.org/10.3390/su13042368
Roggema R. From Nature-Based to Nature-Driven: Landscape First for the Design of Moeder Zernike in Groningen. Sustainability. 2021; 13(4):2368. https://doi.org/10.3390/su13042368
Chicago/Turabian StyleRoggema, Rob. 2021. "From Nature-Based to Nature-Driven: Landscape First for the Design of Moeder Zernike in Groningen" Sustainability 13, no. 4: 2368. https://doi.org/10.3390/su13042368
APA StyleRoggema, R. (2021). From Nature-Based to Nature-Driven: Landscape First for the Design of Moeder Zernike in Groningen. Sustainability, 13(4), 2368. https://doi.org/10.3390/su13042368