Wind Resource and Wind Power Generation Assessment for Education in Engineering
Abstract
:1. Introduction
2. Characterization of Wind Resource and Wind Power Generation
3. Description of the Synthetic and Field Data
4. Practical Exercises in GNU Octave
4.1. Practical Exercise 1: Wind Speed Characterization
- To adjust the Weibull distribution to different synthetic data sets (proper fit and non-proper fit) and obtain the scale () and shape () parameters.
- To obtain the wind speed values at the G80 wind turbine hub height (set to 90 m for academic purposes) for three different terrains: flat, medium and complex, using both the logarithmic and power laws.
- To obtain instantaneous values of using the field data set.
- Obtain scale and factor Weibull parameters for the data set.
- Jointly plot the data using a histogram and the Weibull curve obtained.
- Assess graphically whether the Weibull curve fits the histogram data.
4.2. Practical Exercise 2: Calculation of the AEP
- To plot in the same figure the distribution of wind (both measured and fitted) and the G80 wind turbine power curve to discuss the importance of relative changes in the wind distribution and in the characteristics of the power curve (cut-in and cut-out speeds, rotor area, maximum power, …).
- To estimate the AEP using the fitted Weibull function and the measured data. To discuss the differences between both estimations.
- To calculate the CF and EFLH.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
P | Power production |
Power coefficient | |
Air density | |
A | Rotor swept area |
v | Wind speed |
H | Height |
z | Roughness length |
Shear Exponent | |
Weibull shape parameter | |
Weibull scale parameter | |
Hours in a year | |
Annual Energy Production | |
Capacity Factor | |
Equivalent Full Load Hours | |
Rated power of wind power plant |
Appendix A. Scripts in GNU Octave
References
- United Nations. Kyoto Protocol to the United Nations Framework Convention on Climate Change; Framework Convention on Climate Change: Kyoto, Japan, 1998. [Google Scholar]
- Honrubia-Escribano, A.; Gomez-Lazaro, E.; Fortmann, J.; Sorensen, P.; Martin-Martinez, S. Generic dynamic wind turbine models for power system stability analysis: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 81, 1939–1952. [Google Scholar] [CrossRef]
- Joyce Lee, F.Z. Global Wind Report 2019; Technical Report; Global Wind Energy Council: Brussels, Belgium, 2020. [Google Scholar]
- Komusanac, I.; Brindley, G.; Fraile, D. Wind Energy in Europe in 2019; Technical Report; Wind Europe: Brussels, Belgium, 2020. [Google Scholar]
- Asociación Empresarial Eólica. Technical Report Eólica 19; Technical Report; AEE: Madrid, Spain, 2020. [Google Scholar]
- Artigao, E.; Martin-Martinez, S.; Ceña, A.; Honrubia-Escribano, A.; Gomez-Lazaro, E. Failure rate and downtime survey of wind turbines located in Spain. IET Renew. Power Gener. 2020. [Google Scholar] [CrossRef]
- Ramirez, F.J.; Honrubia-Escribano, A.; Gomez-Lazaro, E.; Pham, D.T. The role of wind energy production in addressing the European renewable energy targets: The case of Spain. J. Clean. Prod. 2018, 196, 1198–1212. [Google Scholar] [CrossRef]
- Rosales-Asensio, E.; Borge-Diez, D.; Blanes-Peiró, J.J.; Pérez-Hoyos, A.; Comenar-Santos, A. Review of wind energy technology and associated market and economic conditions in Spain. Renew. Sustain. Energy Rev. 2019, 101, 415–427. [Google Scholar] [CrossRef]
- Edmunds, C.; Martín-Martínez, S.; Browell, J.; Gómez-Lázaro, E.; Galloway, S. On the participation of wind energy in response and reserve markets in Great Britain and Spain. Renew. Sustain. Energy Rev. 2019, 115, 109360. [Google Scholar] [CrossRef]
- El Sistema Eléctrico Español 2019; Technical Report; Red Eléctrica de España: Alcobendas, Spain, 2019.
- Zhang, M. Wind Resource Assessment and Micro-Siting: Science and Engineering; John Wiley & Sons Singapore Pte. Ltd.: Singapore, 2015. [Google Scholar]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application; Wiley: Chichester, UK, 2009. [Google Scholar]
- Wang, L.; Liu, J.; Qian, F. Frequency Distribution Model of Wind Speed Based on the Exponential Polynomial for Wind Farms. Sustainability 2019, 11, 665. [Google Scholar] [CrossRef] [Green Version]
- Ulazia, A.; Ibarra-Berastegi, G.; Sáenz, J.; Carreno-Madinabeitia, S.; González-Rojí, S.J. Seasonal correction of offshore wind energy potential due to air density: Case of the Iberian Peninsula. Sustainability 2019, 11, 3648. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y. Long-Term Wind Power Variability; Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2012.
- Alharthi, Y.Z.; Siddiki, M.K.; Chaudhry, G.M. Resource assessment and techno-economic analysis of a grid-connected solar PV-wind hybrid system for different locations in Saudi Arabia. Sustainability 2018, 10, 3690. [Google Scholar] [CrossRef] [Green Version]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Masters, G. Renewable and Efficient Electric Power Systems; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Lavidas, G.; K Kaldellis, J. Assessing Renewable Resources at the Saronikos Gulf for the Development of Multi-Generation Renewable Systems. Sustainability 2020, 12, 9169. [Google Scholar] [CrossRef]
- Hennessey, J.P., Jr. Some aspects of wind power statistics. J. Appl. Meteorol. 1977, 16, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Conradsen, K.; Nielsen, L.; Prahm, L. Review of Weibull statistics for estimation of wind speed distributions. J. Clim. Appl. Meteorol. 1984, 23, 1173–1183. [Google Scholar] [CrossRef]
- Lun, I.Y.; Lam, J.C. A study of Weibull parameters using long-term wind observations. Renew. Energy 2000, 20, 145–153. [Google Scholar] [CrossRef]
- Justus, C.; Hargraves, W.; Mikhail, A.; Graber, D. Methods for estimating wind speed frequency distributions. J. Appl. Meteorol. 1978, 17, 350–353. [Google Scholar] [CrossRef]
- Gualtieri, G.; Secci, S. Extrapolating wind speed time series vs. Weibull distribution to assess wind resource to the turbine hub height: A case study on coastal location in Southern Italy. Renew. Energy 2014, 62, 164–176. [Google Scholar] [CrossRef]
- Carta, J.; Ramirez, P. Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions. Renew. Energy 2007, 32, 518–531. [Google Scholar] [CrossRef]
- Akpinar, S.; Akpinar, E.K. Estimation of wind energy potential using finite mixture distribution models. Energy Convers. Manag. 2009, 50, 877–884. [Google Scholar] [CrossRef]
- Akdağ, S.; Bagiorgas, H.; Mihalakakou, G. Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterranean. Appl. Energy 2010, 87, 2566–2573. [Google Scholar] [CrossRef]
- Chang, T.P. Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application. Appl. Energy 2011, 88, 272–282. [Google Scholar] [CrossRef]
- Chang, T.P. Estimation of wind energy potential using different probability density functions. Appl. Energy 2011, 88, 1848–1856. [Google Scholar] [CrossRef]
- IEC 61400-12-1:2017. Wind Energy Generation Systems—Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines; International Electrotechnical Commission: Geneva, Switzerland, 2017. [Google Scholar]
- Villena-Ruiz, R.; Ramirez, F.J.; Honrubia-Escribano, A.; Gomez-Lazaro, E. A techno-economic analysis of a real wind farm repowering experience: The Malpica case. Energy Convers. Manag. 2018, 172, 182–199. [Google Scholar] [CrossRef]
- Eaton, J.W.; Bateman, D.; Hauberg, S.; Wehbring, R. GNU Octave Version 4.4.0 Manual: A High-Level Interactive Language for Numerical Computations; Eaton, J.W., Ed.; The Free Software Foundation: Boston, MA, USA, 2018. [Google Scholar]
- Davis, N.; Badger, J.; Hahmann, A.N.; Hansen, B.O.; Olsen, B.T.; Mortensen, N.G.; Heathfield, D.; Onninen, M.; Lizcano, G.; Lacave, O. Global Wind Atlas v3. DTU Wind Energy: Roskilde, Denmark, 2019. [Google Scholar] [CrossRef]
- Mortensen, N.G. Wind Resource Assessment Using the WAsP Software; DTU Wind Energy: Roskilde, Denmark, 2018. [Google Scholar]
- Morgan, E.C.; Lackner, M.; Vogel, R.M.; Baise, L.G. Probability distributions for offshore wind speeds. Energy Convers. Manag. 2011, 52, 15–26. [Google Scholar] [CrossRef]
Roughness | Terrain Characteristics | Roughness |
---|---|---|
Class | Length z | |
0 | Water surface | 0.0002 |
1 | Open areas with a few windbreaks | 0.03 |
2 | Farm land with some windbreaks more than 1 km apart | 0.1 |
3 | Urban districts and farm land with many windbreaks | 0.4 |
4 | Dense urban or forest | 1.6 |
Terrain Characteristics | Shear Exponent |
---|---|
Smooth hard ground, calm water | 0.10 |
Tall grass on level ground | 0.15 |
High crops, hedges and shrubs | 0.20 |
Wooded countryside, many trees | 0.25 |
Small town with trees and shrubs | 0.30 |
Large city with tall buildings | 0.30 |
AEP | CF | EFLH | |
---|---|---|---|
Measured data | 7.66 GWh | 0.442 | 3831 h |
Weibull Distribution | 7.68 GWh | 0.439 | 3842 h |
AEP | CF | EFLH | |
---|---|---|---|
Measured data | 8.36 GWh | 0.482 | 4181 h |
Weibull Distribution (bad fit) | 9.05 GWh | 0.517 | 4525 h |
Weibull Distribution (per sectors) | 8.43 GWh | 0.486 | 4214 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artigao, E.; Vigueras-Rodríguez, A.; Honrubia-Escribano, A.; Martín-Martínez, S.; Gómez-Lázaro, E. Wind Resource and Wind Power Generation Assessment for Education in Engineering. Sustainability 2021, 13, 2444. https://doi.org/10.3390/su13052444
Artigao E, Vigueras-Rodríguez A, Honrubia-Escribano A, Martín-Martínez S, Gómez-Lázaro E. Wind Resource and Wind Power Generation Assessment for Education in Engineering. Sustainability. 2021; 13(5):2444. https://doi.org/10.3390/su13052444
Chicago/Turabian StyleArtigao, Estefania, Antonio Vigueras-Rodríguez, Andrés Honrubia-Escribano, Sergio Martín-Martínez, and Emilio Gómez-Lázaro. 2021. "Wind Resource and Wind Power Generation Assessment for Education in Engineering" Sustainability 13, no. 5: 2444. https://doi.org/10.3390/su13052444
APA StyleArtigao, E., Vigueras-Rodríguez, A., Honrubia-Escribano, A., Martín-Martínez, S., & Gómez-Lázaro, E. (2021). Wind Resource and Wind Power Generation Assessment for Education in Engineering. Sustainability, 13(5), 2444. https://doi.org/10.3390/su13052444