Use of Traffic Planning Software Outputs When a New Highway Section Is Put into Operation
Abstract
:1. Introduction
2. Traffic Flow Modeling on the Selected Road Communication
2.1. Road Safety on the Selected Section of Road Network
- -
- N—number of traffic accidents;
- -
- t—time period [year].
- -
- R—relative traffic accident rate;
- -
- N—number of traffic accidents;
- -
- RPDI—annual average of daily intensities;
- -
- t—time period;
- -
- L—length of the selected road section.
- -
- H—density of traffic accidents;
- -
- N—number of traffic accidents;
- -
- L—length of the selected road section;
- -
- t—time period.
2.2. Traffic Simulation Model
- Intensity (or volume)—it is a distribution of vehicles in time (veh/h);
- Density (or concentration)—it is a distribution of vehicles in space (veh/km).
2.3. Calibration and Validation of Model
2.4. Modeling of the Selected Road Section
- Current state of traffic without the influence of D3 motorway;
- Prognosis with the influence of D3 motorway operation.
3. Transport Data Collection
3.1. Results of Dynamic Simulation
3.2. Currant State
3.3. Planned State—Prognosis
4. Results and Discussion
4.1. Comparison of Speed for Every Direction of the Traffic Flow
4.2. Comparison of Delay Time for Every Direction of Traffic Flow
4.3. Comparison of Congestion Length for Every Direction of Traffic Flow
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Road Network Length. Available online: https://www.cdb.sk/sk/Vystupy-CDB/Mapy-cestnej-siete-SR/SR.alej (accessed on 1 January 2020).
- National Project: Modernization of Local Territorial Government. Available online: https://npmodmus.zmos.sk/download_file_f.php?id=1153719 (accessed on 1 January 2020).
- Transport Traffic Indicators by Region. Available online: https://www.mindop.sk/files/statistika_vud/reg_prev_ukazovatele.htm#k3 (accessed on 2 January 2021).
- Buehler, R.; Pucher, J.; Gerike, R.; Götschi, T. Reducing car dependence in the heart of Europe: Lessons from Germany, Austria, and Switzerland. Transp. Rev. 2016, 37, 4–28. [Google Scholar] [CrossRef]
- Poliak, M.; Lakhmetkina, N.; Oleinikov, A. Infrastructure development of international importance for the modern transport system. Arch. Motoryz. 2019, 84, 103–116. [Google Scholar]
- Fowkes, A.S.; Firmin, P.E.; Tweddle, G.; Whiteing, A.E. How highly does the freight transport industry value journey time reliability—and for what reasons? Int. J. Logist. Res. Appl. 2004, 7, 33–43. [Google Scholar] [CrossRef]
- O’Connor, A.; O’Brien, E.J. Traffic load modelling and factors influencing the accuracy of predicted extremes. Can. J. Civ. Eng. 2005, 32, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Palúch, J.; Kalašová, A. Traffic modelling on the roundabout in the town of Hlohovec and using the information from the traffic counter. In International Conference on Transport Systems Telematics; Springer: Cham, Switzerland, 2018; pp. 129–141. [Google Scholar]
- Kalašová, A.; Skřivánek Kubíková, S.; Harantová, V. Modelling of the Traffic Flow Basic Characteristics at the Road Net-work Selected Section. Commun. Sci. Lett. Univ. Zilina 2020, 23, A44–A53. [Google Scholar]
- Leitner, B.; Sventeková, E.; Novák, L. Possibilities of traffic flow parameters testing at losing of the functionality of selected road network element. Perners Contacts 2014, 9, 120–131. [Google Scholar]
- Greenberg, H. An Analysis of Traffic Flow. Oper. Res. 1959, 7, 79–85. [Google Scholar] [CrossRef]
- Gartner, N.H.; Wagner, P. Analysis of Traffic Flow Characteristics on Signalized Arterials. Transp. Res. Rec. J. Transp. Res. Board 2004, 1883, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Elefteriadou, L. Flow, Speed, Density, and Their Relationships. In An Introduction to Traffic Flow Theory. Springer Optimization and Its Applications; Springer: New York, NY, USA, 2014; Volume 84, pp. 61–91. [Google Scholar]
- Kerner, B.S.; Klenov, S.L.; Hiller, A. Empirical test of a microscopic three-phase traffic theory. Nonlinear Dyn. 2007, 49, 525–553. [Google Scholar] [CrossRef]
- Dablanc, L. Goods transport in large European cities: Difficult to organize, difficult to modernize. Transp. Res. Part A Policy Pr. 2007, 41, 280–285. [Google Scholar] [CrossRef]
- Lindholm, M.; Behrends, S. Challenges in urban freight transport planning—A review in the Baltic Sea Region. J. Transp. Geogr. 2012, 22, 129–136. [Google Scholar] [CrossRef]
- Mostert, M.; Caris, A.; Limbourg, S. Road and intermodal transport performance: The impact of operational costs and air pollution external costs. Res. Transp. Bus. Manag. 2017, 23, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Schandl, H.; Hatfield-Dodds, S.; Wiedmann, T.; Geschke, A.; Cai, Y.; West, J.; Newth, D.; Baynes, T.; Lenzen, M.; Owen, A. Decoupling global environmental pressure and economic growth: Scenarios for energy use, materials use and carbon emissions. J. Clean. Prod. 2016, 132, 45–56. [Google Scholar] [CrossRef]
- Wang, D.D. Assessing road transport sustainability by combining environmental impacts and safety concerns. Transp. Res. Part D Transp. Environ. 2019, 77, 212–223. [Google Scholar] [CrossRef]
- Mandžuka, S.; Ivanjko, E.; Vujić, M.; Škorput, P.; Gregurić, M. The Use of Cooperative ITS in Urban Traffic Management. Intell. Transp. Syst. 2015, 272–288. [Google Scholar] [CrossRef]
- Zeng, J.; Qian, Y.; Wang, B.; Wang, T.; Wei, X. The Impact of Traffic Crashes on Urban Network Traffic Flow. Sustainability 2019, 11, 3956. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Hu, Y.; Li, S.; Li, Z.; Zhang, X.; Mao, C. Simulation and analysis of road construction traffic flow in urban road networks. Adv. Mech. Eng. 2015, 7, 1687814015618176. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Zhou, X.; Su, G.; Liu, S. Model and Simulation of the Heterogeneous Traffic Flow of the Urban Signalized Intersection with an Island Work Zone. IEEE Trans. Intell. Transp. Syst. 2019, 20, 1719–1727. [Google Scholar] [CrossRef]
- Sun, J.; Liu, H.; Ma, Z. Modelling and simulation of highly mixed traffic flow on two-lane two-way urban streets. Simul. Model. Pr. Theory 2019, 95, 16–35. [Google Scholar] [CrossRef]
- Palúch, J.; Čulík, K.; Kalašová, A. Modeling of Traffic Conditions at the Circular Junction in the City of Hlohovec. Comput. Devices Commun. 2019, 52, 65–76. [Google Scholar] [CrossRef]
- Gnap, J.; Konečný, V. The impact of a demographic trend on the demand for scheduled bus transport in the Slovak Republic. Commun. Sci. Lett. Univ. Zilina 2008, 10, 55–59. [Google Scholar]
- Harantová, V.; Hájnik, A.; Kalašová, A. Comparison of the Flow Rate and Speed of Vehicles on a Representative Road Section before and after the Implementation of Measuresin Connection with COVID-19. Sustainability 2020, 12, 7216. [Google Scholar] [CrossRef]
- Méline, J.; Wicherek, S.; Julien-Laferrière, B.; Oudinet, J.P. Assessment of exposure to air pollution from road traffic: Use of air dispersion model CALINE4 at a fine scale in Cracow. Prace Geogr. 2011, 127. [Google Scholar]
- Michniak, D.; Więckowski, M.; Stępniak, M.; Rosik, P. The impact of selected planned motorways and expressways on the potential accessibility of the Polish-Slovak borderland with respect to tourism development. Morav. Geogr. Rep. 2015, 23, 13–20. [Google Scholar] [CrossRef] [Green Version]
- One of the Reasons May Be the Numbers, in: My Kysuce. Available online: https://www.mojekysuce.sk/spravodajstvo/podvod-na-kysucanov-dostavba-dialnica-d3-sa-odsúva (accessed on 15 January 2020).
- Key Days for the Construction of the D3 in Kysuce. Waiting for What to Do Next. Available online: https://www.mojekysuce.sk/spravodajstvo/klucove-dni-pre-vystavbu-d3-na-kysuciach (accessed on 16 January 2020).
- Webster, C. Pricing accessibility: Urban morphology, design and missing markets. Prog. Plan. 2010, 73, 77–111. [Google Scholar] [CrossRef]
- Slovenská Správa Ciest. Available online: https://www.ssc.sk/files/documents/dopravneinzinierstvo/csd_2015/za/scitanie_tabulka_za-2015.pdf (accessed on 16 January 2020).
- Astarita, V.; Giofré, V.P. From traffic conflict simulation to traffic crash simulation: Introducing traffic safety indicators based on the explicit simulation of potential driver errors. Simul. Model. Pr. Theory 2019, 94, 215–236. [Google Scholar] [CrossRef]
- Length of Road Network. Available online: https://www.cdb.sk/sk/Vystupy-CDB/Mapy- (accessed on 1 January 2020).
- Synák, F.; Gaňa, J.; Rievaj, V.; Mokričková, L. Ways of reducing carbon dioxide from road transport. Arch. Motoryz. 2019, 86, 41–54. [Google Scholar]
- Harantová, V.; Kubíková, S.; Rumanovský, L. Traffic Accident Occurrence, Its Prediction and Causes. Commun. Comput. Inf. Sci. 2019, 1049, 123–136. [Google Scholar] [CrossRef]
- There Are More Cars in Kysuce, with Them also Columns and Delays. Available online: https://spravy.pravda.sk/regiony/clanok/305297-aut-na-kysuciach-pribuda-s-nimi-aj-kolony-a-zdrzania/ (accessed on 15 January 2020).
- Shortle, J.F.; Thompson, J.M.; Gross, D.; Harris, C.M. Fundamentals of Queueing Theory; John Wiley & Sons: Hoboken, NJ, USA, 2018; Volume 399. [Google Scholar]
- Kalašová, A.; Mikulski, J.; Kubíková, S. The Impact of Intelligent Transport Systems on an Accident Rate of the Chosen Part of Road Communication Network in the Slovak Republic. In Communications in Computer and Information Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 47–58. [Google Scholar]
- Małecki, K. A computer simulation of traffic flow with on-street parking and drivers’ behaviour based on cellular automata and a multi-agent system. J. Comput. Sci. 2018, 28, 32–42. [Google Scholar] [CrossRef]
- Lopez, P.A.; Wiessner, E.; Behrisch, M.; Bieker-Walz, L.; Erdmann, J.; Flotterod, Y.-P.; Hilbrich, R.; Lucken, L.; Rummel, J.; Wagner, P. Microscopic Traffic Simulation using SUMO. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), IEEE, Maui, HI, USA, 4–7 November 2018; pp. 2575–2582. [Google Scholar]
- Thonhofer, E.; Palau, T.; Kuhn, A.; Jakubek, S.; Kozek, M. Macroscopic traffic model for large scale urban traffic network design. Simul. Model. Pr. Theory 2018, 80, 32–49. [Google Scholar] [CrossRef]
- Shafiei, S.; Gu, Z.; Saberi, M. Calibration and validation of a simulation-based dynamic traffic assignment model for a large-scale congested network. Simul. Model. Pr. Theory 2018, 86, 169–186. [Google Scholar] [CrossRef]
- Lee, G.; Kim, W.; Oh, H.; Youn, B.D.; Kim, N.H. Review of statistical model calibration and validation—from the perspective of uncertainty structures. Struct. Multidiscip. Optim. 2019, 60, 1619–1644. [Google Scholar] [CrossRef]
- Casas, J.; Ferrer, J.L.; Garcia, D.; Perarnau, J.; Torday, A. Traffic simulation with Aimsun. In Fundamentals of Traffic Simulation; Springer: New York, NY, USA, 2010; pp. 173–232. [Google Scholar]
- Palúch, J.; Veterník, M.; Kalašová, A. November. Impact of Public Transport Priority on Traffic in Chosen Part of the City of Martin. In First International Conference on Intelligent Transport Systems; Springer: Cham, Switzerland, 2017; pp. 3–11. [Google Scholar]
- Slovenská Správa Ciest. Available online: https://www.ssc.sk/files/documents/technicke-predpisy/tp/tp_070.pdf (accessed on 26 August 2020).
- Konečný, V.; Berežný, R.; Kostolná, M.; Šaradín, P. Comparative Analysis of the Importance of the Requirements of Passengers and Evaluating the Quality of Air and Bus Transport. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; pp. 1–8. [Google Scholar]
- Dombalyan, A.; Kocherga, V.; Semchugova, E.; Negrov, N. Traffic Forecasting Model for a Road Section. Transp. Res. Procedia 2017, 20, 159–165. [Google Scholar] [CrossRef]
- Vitkūnas, R.; Meidutė, I. Evaluation of bypass influence on reducing air pollution in Vilnius city. Transport 2011, 26, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Coloma Miró, J.; García García, M.; Guzmán Caballero, R.F. Effects of bypass in small and non-congested cities: A case study of the city of Badajoz. Promet-Traffic Transp. 2018, 30, 479–489. [Google Scholar] [CrossRef] [Green Version]
- Turoń, K.; Kubik, A.; Chen, F. Operational Aspects of Electric Vehicles from Car-Sharing Systems. Energies 2019, 12, 4614. [Google Scholar] [CrossRef] [Green Version]
- Stansfeld, S.A.; Haines, M.M.; Berry, B.; Burr, M. Reduction of road traffic noise and mental health: An intervention study. Noise Health 2009, 11, 169. [Google Scholar] [CrossRef]
- Rosca, M.; Oprea, C.; Petrescu, R.; Burciu, S.; Stere, A. Improving Safety and Traffic Conditions on National Roads Passing through Towns without Bypass. Procedia Manuf. 2020, 46, 217–224. [Google Scholar] [CrossRef]
- Nyongesa, C.B. Assessing Functions of Bypass Roads in Cities and Towns: A Case Study of Eastern Bypass in the City of Nairobi. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya, 2019. [Google Scholar]
Section | RPDI [veh/24 h] | L [km] | N [Number of TA/month] | R [%] | H [Number of TA */km/month] |
---|---|---|---|---|---|
D3-Žilina | 28,541 | 14.5 | 4 | 0.32 | 0.28 |
I/11—Čadca, Kysucké Nové Mesto | 18,559 | 35.15 | 41 | 2.09 | 1.17 |
I/11—Čadca | 16,620 | 15.07 | 4 | 0.53 | 0.27 |
I/12—Čadca | 3027 | 15.48 | 1 | 0.71 | 0.06 |
Current State | Planned State | Comparison [%] | ||||||
---|---|---|---|---|---|---|---|---|
Section/Direction | Speed [km/h] | Speed [km/h] | ||||||
Avrg | St. dev | Max | Avrg | St. Dev | Max | Avrg * | * Max | |
Svrčinovec—Čadca | 20.93 | 0.49 | 50 | 51.31 | 0.69 | 52.53 | +59.21 | +4.82 |
Krásno nad Kysucou—Kysucké Nové Mesto | 30.98 | 0.39 | 55 | 26.13 | 0.56 | 55 | −18.56 | 0.00 |
Current State | Planned State | Comparison [%] | ||||||
---|---|---|---|---|---|---|---|---|
Section/Direction | Delay Time [s] | Delay Time [s] | ||||||
Avrg | St. dev | Max | Avrg | St. dev | Max | Avrg | Max | |
Svrčinovec—Čadca | 288.67 | 2.61 | 520 | 4.71 | 2.93 | 5.25 | −98.37 | −98.99 |
Krásno nad Kysucou—Kysucké Nové Mesto | 101 | 2.54 | 265 | 139.83 | 2.76 | 274 | +27.77 | +3.28 |
Current State | Planned State | Comparison [%] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Section/ Direction | Max Queue [veh] | Length [m] | Max Queue [veh] | Length [m] | ||||||||
Avrg | St. dev | Max | Avrg | Max | Avrg | St. dev | Max | Avrg | Maxi | Avrg | Max | |
Svrčinovec—Čadca | 78.5 | 3.23 | 114 | 471 | 684 | 0.005 | 4.01 | 0.033 | 0.033 | 0.199 | −99.99 | −99.97 |
Krásno nad Kysucou—Kysucké Nové Mesto | 24.85 | 2.97 | 49.5 | 149.1 | 297 | 31.17 | 3.77 | 57 | 187 | 342 | +20.28 | +13.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harantová, V.; Kalašová, A.; Kubíková, S. Use of Traffic Planning Software Outputs When a New Highway Section Is Put into Operation. Sustainability 2021, 13, 2467. https://doi.org/10.3390/su13052467
Harantová V, Kalašová A, Kubíková S. Use of Traffic Planning Software Outputs When a New Highway Section Is Put into Operation. Sustainability. 2021; 13(5):2467. https://doi.org/10.3390/su13052467
Chicago/Turabian StyleHarantová, Veronika, Alica Kalašová, and Simona Kubíková. 2021. "Use of Traffic Planning Software Outputs When a New Highway Section Is Put into Operation" Sustainability 13, no. 5: 2467. https://doi.org/10.3390/su13052467
APA StyleHarantová, V., Kalašová, A., & Kubíková, S. (2021). Use of Traffic Planning Software Outputs When a New Highway Section Is Put into Operation. Sustainability, 13(5), 2467. https://doi.org/10.3390/su13052467