Degradation of Nitrogen, Phosphorus, and Organic Matter in Urban River Sediments by Adding Microorganisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Pretreatment
2.2. Experiment Design and Execution
2.3. Microbial Agent Inoculation
2.4. High-Throughput Sequencing Data Analysis
3. Results
3.1. Nitrogen (N) Removal Efficiency
3.2. Phosphorus (P) Removal Efficiency
3.3. Variations in OM and PAH Contents during Microbial Treatment
3.4. Microbial Community Structure in Sediments
4. Discussion
4.1. Removal of TN and TP by Denitrifying Bacteria
4.2. Removal of PAHs by Denitrifying Bacteria
4.3. Effect of Added Bacteria on Original Community Structure
5. Conclusions
- (1)
- Yeast was not effective in removing nitrogen or phosphorus from sediments. The best comprehensive removal rates of TN reached 27.65% and 20.88% when 5 mg nitrifying bacteria and 10 mg Bacillus respectively, were used. The ideal TP removal rates were as high as 24.70% and 39.67% respectively, when 5 mg of nitrifying bacteria and 10 mg of Bacillus were used. Nitrifying bacteria provided the best total nitrogen removal and Bacillus exhibited the best total phosphorus removal.
- (2)
- The overall best efficiency in remediating organically contaminated sediment and removing nutrient pollutants and polycyclic aromatic hydrocarbons (PAHs) was obtained when using a 5 mg dose of nitrifying bacteria.
- (3)
- Up to 1203 OTUs remained in the sediments after remediation using Bacillus, and there were no significant variations in the microbial community structures among the sediment samples. Following remediation using nitrifying bacteria, Syntrophus sp. became the dominant bacteria in the sample, which may have had a certain effect on the removal of certain PAHs within the sediment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.-H.; Li, X.-Y.; Hong, Y.; Jiang, M.-R.; Lu, S.-L. Use of microalgae for the treatment of black and odorous water: Purification effects and optimization of treatment conditions. Algal Res. 2020, 47, 101851. [Google Scholar] [CrossRef]
- Cao, J.; Sun, Q.; Zhao, D.; Xu, M.; Shen, Q.; Wang, D.; Wang, Y.; Ding, S. A critical review of the appearance of black-odorous waterbodies in China and treatment methods. J. Hazard. Mater. 2020, 385, 121511. [Google Scholar] [CrossRef] [PubMed]
- Muyzer, G.; Stams, A.J.M. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Genet. 2008, 6, 441–454. [Google Scholar] [CrossRef]
- Rixen, T.; Baum, A.; Pohlmann, T.; Balzer, W.; Samiaji, J.; Jose, C. The Siak, a tropical black water river in central Sumatra on the verge of anoxia. Biogeochem. 2008, 90, 129–140. [Google Scholar] [CrossRef]
- Hua, A.K.; Marsuki, M.Z. Public perception towards environmental awareness. Case study: Malacca River. Int. J. Acad. Res. Environ. Geogr. 2014, 1, 53–61. [Google Scholar] [CrossRef]
- Khan, A.R.; Akif, M.; Khan, M.; Riaz, M. Impact of Industrial discharges on the quality of Kabul River water at Amangarh, Nowshera (Pakistan). J. Chem. Soc. Pak. 1999, 21, 97–105. Available online: https://jcsp.org.pk/ArticleUpload/1778-7971-1-PB.pdf (accessed on 27 February 2021).
- Handa, S.; Jadhav, R. Status of Heavy metal pollution in Mithi river: Then and Now. Int. J. Res. Eng. Sci. 2016, 4, 62–68. Available online: https://www.researchgate.net/publication/305905116_Status_of_Heavy_metal_pollution_in_Mithi_river_Then_and_Now (accessed on 27 February 2021).
- Le, T.N. Rethinking Urban Streams: Opportunities for the Nhieu Loc—Thi Nghe River, Urban Studies and Planning; Massachusetts Institute of Technology: Cambridge, MA, USA, 2008; Available online: https://dspace.mit.edu/handle/1721.1/44331 (accessed on 27 February 2021).
- Zhang, X. Discussion on typical cases and technical routes of black-odor river regulation in foreign countries. China Munic. Eng. 2018, 1, 36–39. (In Chinese) [Google Scholar] [CrossRef]
- Chinese Ministry of Housing and Urban-Rural Development. Available online: http://www.hcstzz.com/ (accessed on 27 February 2021).
- Wang, G.; Li, X.; Fang, Y.; Huang, R. Analysis on the formation condition of the algae-induced odorous black water agglomerate. Saudi J. Biol. Sci. 2014, 21, 597–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Z.; Siegert, M.; Fang, W.; Sun, Y.; Jiang, F.; Lu, H.; Chen, G.-H.; Wang, S. Blackening and odorization of urban rivers: A bio-geochemical process. FEMS Microbiol. Ecol. 2018, 94, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Xie, P.; Zeng, C.; Xie, L.; Chen, J. In Situ enclosure experiments on the occurrence, development and decline of black bloom and the dynamics of its associated taste and odor compounds. Ecol. Eng. 2016, 87, 246–253. [Google Scholar] [CrossRef]
- Caraco, N.F.; Cole, J.J.; Likens, G.E. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nat. Cell Biol. 1989, 341, 316–318. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Jürgens, M.D.; Williams, R.J.; Neal, C.; Davies, J.J.; Barrett, C.; White, J. Role of river bed sediments as sources and sinks of phosphorus across two major eutrophic UK river basins: The Hampshire Avon and Herefordshire Wye. J. Hydrol. 2005, 304, 51–74. [Google Scholar] [CrossRef]
- Nykänen, A.; Kontio, H.; Klutas, O.; Penttinen, O.-P.; Kostia, S.; Mikola, J.; Romantschuk, M. Increasing lake water and sediment oxygen levels using slow release peroxide. Sci. Total. Environ. 2012, 429, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.D.; Wu, C.X.; Liu, J.T.; Wang, H.G.; Ao, H.Y. The effects of dredging on nitrogen balance in sediment-water microcosms and implications to dredging projects. Ecol. Eng. 2013, 52, 167–174. [Google Scholar] [CrossRef]
- Yin, H.; Wang, J.; Zhang, R.; Tang, W. Performance of physical and chemical methods in the co-reduction of internal phosphorus and nitrogen loading from the sediment of a black odorous river. Sci. Total. Environ. 2019, 663, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tao, Y.; Zhou, K.; Zhang, Q.; Chen, G.; Zhang, X. Effect of water quality improvement on the remediation of river sediment due to the addition of calcium nitrate. Sci. Total. Environ. 2017, 575, 887–894. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Yang, P.; Kong, M. Effects of nitrate dosing on the migration of reduced sulfur in black odorous river sediment and the influencing factors. Chem. Eng. J. 2019, 371, 516–523. [Google Scholar] [CrossRef]
- Fabiano, M.; Marrale, D.; Misic, C. Bacteria and organic matter dynamics during a bioremediation treatment of organic-rich harbour sediments. Mar. Pollut. Bull. 2003, 46, 1164–1173. [Google Scholar] [CrossRef]
- Liu, M.; Ran, Y.; Peng, X.; Zhu, Z.; Liang, J.; Ai, H.; Li, H.; He, Q. Sustainable modulation of anaerobic malodorous black water: The interactive effect of oxygen-loaded porous material and submerged macrophyte. Water Res. 2019, 160, 70–80. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Y.; Liu, J.; Yang, X.; Ren, Y.; Miao, H.; Pan, Y.; Lv, J.; Yan, G.; Ding, L.; et al. Exploring the mechanisms of organic matter degradation and methane emission during sewage sludge composting with added vesuvianite: Insights into the prediction of microbial metabolic function and enzymatic activity. Bioresour. Technol. 2019, 286, 121397. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Li, X.; Li, G.; Li, J.; Li, C.; Che, L.; Zhang, L. Enhanced bioenergy production in rural areas: Synthetic urine as a pre-treatment for dry anaerobic fermentation of wheat straw. J. Clean. Prod. 2020, 260, 121164. [Google Scholar] [CrossRef]
- Revsbech, N.P.; Jacobsen, J.P.; Nielsen, L.P. Nitrogen transformations in microenvironments of river beds and riparian zones. Ecol. Eng. 2005, 24, 447–455. [Google Scholar] [CrossRef]
- Schauser, I.; Chorus, I.; Lewandowski, J. Effects of nitrate on phosphorus release: Comparison of two Berlin lakes. Clean Soil Air Water 2006, 34, 325–332. [Google Scholar] [CrossRef]
- Yamada, T.M.; Sueitt, A.P.E.; Beraldo, D.A.S.; Botta, C.M.R.; Fadini, P.S.; Nascimento, M.R.L.; Faria, B.M.; Mozeto, A.A. Calcium nitrate addition to control the internal load of phosphorus from sediments of a tropical eutrophic reservoir: Microcosm experiments. Water Res. 2012, 46, 6463–6475. [Google Scholar] [CrossRef]
- Cai, W.; Li, Y.; Shen, Y.; Wang, C.; Wang, P.; Wang, L.; Niu, L.; Zhang, W. Vertical distribution and assemblages of microbial communities and their potential effects on sulfur metabolism in a black-odor urban river. J. Environ. Manag. 2019, 235, 368–376. [Google Scholar] [CrossRef]
- Ibekwe, A.M.; Ma, J.; Murinda, S.E. Bacterial community composition and structure in an Urban River impacted by different pollutant sources. Sci. Total. Environ. 2016, 566, 1176–1185. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-H.; Wang, Y.; Fan, P.; Chen, L.-F.; Chai, B.-H.; Zhao, J.-C.; Sun, L.-Q. Effect of calcium peroxide on the water quality and bacterium community of sediment in black-odor water. Environ. Pollut. 2019, 248, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Wu, L.; Li, X.; Li, G.; Li, J.; Li, C.; Zhao, C.; Wang, F.; Du, C.; Deng, C.; et al. Effects of ambient temperature on the redistribution efficiency of nutrients by desert cyanobacteria- Scytonema javanicum. Sci. Total. Environ. 2020, 737, 139733. [Google Scholar] [CrossRef]
- Li, W.; Zhang, S.; Zhang, L.; Li, X.; Wang, F.; Li, G.; Li, J.; Li, W. In-situ remediation of sediment by calcium nitrate combined with composite microorganisms under low-DO regulation. Sci. Total. Environ. 2019, 697, 134109. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Sun, W.; Xie, S.; Liu, Y. Nonylphenol biodegradation in river sediment and associated shifts in community structures of bacteria and ammonia-oxidizing microorganisms. Ecotoxicol. Environ. Saf. 2014, 106, 1–5. [Google Scholar] [CrossRef]
- Guo, Q.; Yan, J.; Wen, J.; Hu, Y.; Chen, Y.; Wu, W. Rhamnolipid-enhanced aerobic biodegradation of triclosan (TCS) by indigenous microorganisms in water-sediment systems. Sci. Total. Environ. 2016, 571, 1304–1311. [Google Scholar] [CrossRef]
- Pringault, O.; Viret, H.; Duran, R. Influence of microorganisms on the removal of nickel in tropical marine sediments (New Caledonia). Mar. Pollut. Bull. 2010, 61, 530–541. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Wang, B.; Wang, W.; Li, W.-C.; Huang, J.; Deng, S.-B.; Wang, Y.-J.; Yu, G. Occurrence and source apportionment of Per- and poly-fluorinated compounds (PFCs) in North Canal Basin, Beijing. Sci. Rep. 2016, 6, 36683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinese Ministry of Ecology and Environment. Soil-Determination of Ammonium, Nitrite and Nitrate by Extraction with Potassium Chloride Solution—Spectrophotometric Methods, 2012. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201203/t20120307_224381.shtml (accessed on 27 February 2021). (In Chinese)
- Chinese Ministry of Ecology and Environment. Soil-Determination of Total Phosphorus by Alkali Fusion–Mo-Sb Anti Spectrophotometric Method. 2011. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201112/t20111213_221313.shtml (accessed on 27 February 2021). (In Chinese)
- Chinese Ministry of Ecology and Environment. Soil—Determination of Organic Carbon—Combustion Oxidation-Titration Method. 2013. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201308/t20130820_257715.shtml (accessed on 27 February 2021). (In Chinese)
- Chinese Ministry of Ecology and Environment. Soil and Sediment—Determination of Polycyclic Aromatic Hydrocarbons—High Performance Liquid Chromatography. 2016. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201602/t20160217_330303.shtml (accessed on 27 February 2021). (In Chinese)
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Goebel, B.M. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int. J. Syst. Evol. Microbiol. 1994, 44, 846–849. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.-Y.; Li, B.; Zhang, T.; Fang, H.H. Enhanced anoxic bioremediation of PAHs-contaminated sediment. Bioresour. Technol. 2012, 104, 51–58. [Google Scholar] [CrossRef]
- Chang, S. Bio-Remediation Technology Used on Remediating the Urban River, Tianjin University, 2011. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFD1214&filename=1012007423.nh&v=cussKEt61d3S1xm0brUYdqE7aFCKdNLTp8zItBLDDUzGSRkhZdh2kAhn%25mmd2Be%25mmd2BrqlrA (accessed on 27 February 2021). (In Chinese).
- McIlroy, S.J.; Starnawska, A.; Starnawski, P.; Saunders, A.M.; Nierychlo, M.; Nielsen, P.H.; Nielsen, J.L. Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems. Environ. Microbiol. 2014, 18, 50–64. [Google Scholar] [CrossRef] [PubMed]
- Bichoff, A.; Osório, N.C.; Ruwer, D.T.; Dunck, B.; Rodrigues, L. Trait structure and functional diversity of periphytic algae in a floodplain conservation area. Braz. J. Bot. 2018, 41, 601–610. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.-Y.; Liu, S.-J.; Hu, J.-Y.; He, Y.; Zhou, H.-W.; Zhang, X.-H. Profiling of microbial community during in situ remediation of volatile sulfide compounds in river sediment with nitrate by high throughput sequencing. Int. Biodeterior. Biodegrad. 2013, 85, 429–437. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Y.; Huang, H.; Mou, L.; Ru, J.; Zhao, J.; Xiao, S. Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments. Sci. Total. Environ. 2018, 1400–1412. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Xie, Y.; Zhang, Q.; Wang, A.; Yu, Y.; Yang, L. Intensified nitrate and phosphorus removal in an electrolysis -integrated horizontal subsurface-flow constructed wetland. Water Res. 2017, 108, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Fan, C.; Huang, W.; Ding, S. Microorganisms and typical organic matter responsible for lacustrine “black bloom”. Sci. Total. Environ. 2014, 470, 1–8. [Google Scholar] [CrossRef]
- Wu, J.-H.; Chen, W.-Y.; Kuo, H.-C.; Li, Y.-M. Redox fluctuations shape the soil microbiome in the hypoxic bioremediation of octachlorinated dibenzodioxin and dibenzofuran-contaminated soil. Environ. Pollut. 2019, 248, 506–515. [Google Scholar] [CrossRef]
- Zhang, B.; Fang, F.; Guo, J.; Chen, Y.; Li, Z.; Guo, S. Phosphorus fractions and phosphate sorption-release characteristics relevant to the soil composition of water-level-fluctuating zone of Three Gorges Reservoir. Ecol. Eng. 2012, 40, 153–159. [Google Scholar] [CrossRef]
- Duan, H.; Ma, R.; Loiselle, S.A.; Shen, Q.; Yin, H.; Zhang, Y. Optical characterization of black water blooms in eutrophic waters. Sci. Total. Environ. 2014, 482, 174–183. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, Q.; Xia, C.; Zhong, Y.; Sun, G.; Guo, J.; Yuan, T.; Zhou, J.; He, Z. Erratum: Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. ISME J. 2015, 9, 532. [Google Scholar] [CrossRef] [Green Version]
- Haritash, A.; Kaushik, C. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. J. Hazard. Mater. 2009, 169, 1–15. [Google Scholar] [CrossRef]
- Bahuguna, A.; Lily, M.K.; Dangwal, K.; Munjal, A.; Singh, R.N. Degradation of Naphthalene by a novel strain Bacillus licheniformis BMIT5ii (MTCC 9446). J. Pharm. Res. 2012, 5, 1600–1604. Available online: http://jprsolutions.info/newfiles/journal-file-56af61151f8987.99790745.pdf (accessed on 27 February 2021).
- Li, L.; Zhong, M.; Zhou, Q.; Li, K.; Yang, Z.; Jiang, S. Study on Characteristics of Bacillus subtilis strainII for the Degradation of Polycyclic Aromatic Hydrocarbons. J. Henan Agric. Sci. 2007, 4, 62–64. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2007&filename=HNNY200704021&v=aH6uvbAChXNhGxlv6vXgqQh8%25mmd2FJ4tK93LnHChpMvT5b6v5LuO%25mmd2BYTUrWiTa6tLA40D (accessed on 27 February 2021). (In Chinese).
- Hesham, A.E.-L.; Khan, S.; Tao, Y.; Li, D.; Zhang, Y.; Yang, M. Biodegradation of high molecular weight PAHs using isolated yeast mixtures: Application of meta-genomic methods for community structure analyses. Environ. Sci. Pollut. Res. 2012, 19, 3568–3578. [Google Scholar] [CrossRef]
- Tam, N.; Ke, L.; Wang, X.; Wong, Y. Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps. Environ. Pollut. 2001, 114, 255–263. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Chen, C.; Ding, J.-Q.; Hou, A.; Li, Y.; Niu, Z.-B.; Su, X.-Y.; Xu, Y.-J.; Laws, E.A. The 2007 water crisis in Wuxi, China: Analysis of the origin. J. Hazard. Mater. 2010, 182, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Regar, R.K.; Manickam, N. Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresour. Technol. 2018, 254, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Al-Hawash, A.B.; Dragh, M.A.; Li, S.; Alhujaily, A.; Abbood, H.A.; Zhang, X.; Ma, F. Principles of microbial degradation of petroleum hydrocarbons in the environment. Egypt. J. Aquat. Res. 2018, 44, 71–76. [Google Scholar] [CrossRef]
- Ma, Q.; Qu, Y.; Shen, W.; Zhang, Z.; Wang, J.; Liu, Z.; Li, D.; Li, H.; Zhou, J. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresour. Technol. 2015, 179, 436–443. [Google Scholar] [CrossRef]
- Fernández, N.; Sierra-Alvarez, R.; Field, J.A.; Amils, R.; Sanz, J.L. Microbial community dynamics in a chemolithotrophic denitrification reactor inoculated with methanogenic granular sludge. Chemosphere 2008, 70, 462–474. [Google Scholar] [CrossRef]
Group | Control Group | Nitrifying Bacteria Treatment | Yeast Treatment | Bacillus Treatment | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Serial name Dosage (mg) | 0# | S1 | S2 | S3 | S4 | J1 | J2 | J3 | J4 | K1 | K2 | K3 | K4 |
0 | 5 | 10 | 20 | 50 | 5 | 10 | 20 | 50 | 5 | 10 | 20 | 50 |
Microbial Agents | Phenanthrene | Fluorene | Fluoranthene | Benzo(a)anthracene |
---|---|---|---|---|
Control group (%) | 2.92 | 1.95 | 1.50 | 1.02 |
5 mg of nitrifying bacteria (%) | 6.34 | 4.21 | 1.82 | 1.55 |
10 mg of yeast (%) | 5.12 | 3.98 | 1.74 | 1.20 |
10 mg of Bacillus (%) | 5.59 | 4.56 | 1.80 | 1.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Bai, Y.; Yang, F.; Zhu, Q.; Zhao, Q.; Zhang, X.; Wei, Y.; Liao, H. Degradation of Nitrogen, Phosphorus, and Organic Matter in Urban River Sediments by Adding Microorganisms. Sustainability 2021, 13, 2580. https://doi.org/10.3390/su13052580
Wang F, Bai Y, Yang F, Zhu Q, Zhao Q, Zhang X, Wei Y, Liao H. Degradation of Nitrogen, Phosphorus, and Organic Matter in Urban River Sediments by Adding Microorganisms. Sustainability. 2021; 13(5):2580. https://doi.org/10.3390/su13052580
Chicago/Turabian StyleWang, Fan, Yangwei Bai, Fang Yang, Qiuheng Zhu, Qianyu Zhao, Xiaojiao Zhang, Yimei Wei, and Haiqing Liao. 2021. "Degradation of Nitrogen, Phosphorus, and Organic Matter in Urban River Sediments by Adding Microorganisms" Sustainability 13, no. 5: 2580. https://doi.org/10.3390/su13052580
APA StyleWang, F., Bai, Y., Yang, F., Zhu, Q., Zhao, Q., Zhang, X., Wei, Y., & Liao, H. (2021). Degradation of Nitrogen, Phosphorus, and Organic Matter in Urban River Sediments by Adding Microorganisms. Sustainability, 13(5), 2580. https://doi.org/10.3390/su13052580