Sustainable Architecture Creating Arches Using a Bamboo Grid Shell Structure: Numerical Analysis and Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Material Properties
2.2. Comparison between Bamboo Scrimber, Natural Bamboo, and Timber
2.3. Model
2.3.1. Three Initial Designs
2.3.2. Initial Structure: Design 1
2.3.3. Initial Structure: Design 2
2.3.4. Initial Structure: Design 3
2.3.5. Improved, New Design
2.3.6. Loads
- 470 kPa for the weight of roofing material, which is glass roofing.
- 9.9 kN/m3 for the weight of the selected bamboo scrimber.
- 0.25 kPa for the proposed live load on the floor.
- The Australian standard was considered for calculation of wind pressures; an Australian metropolitan area was chosen as the proposed location of the structure. The standard suggestion of a 500-year recurrence interval was adopted. More specifically, a combination of AS1170.2 [22,23,24] and Eurocode 1 [25,26] was used since the structure was a curved shape.
- Ultimate limiting state:
- 1.35 G
- 1.2 G + 1.5 Q
- 1.2 G + W + Q
- Serviceability limiting state:
- G + Q
- G + 0.7 Q + W
2.3.7. Numerical Analysis
3. Results
3.1. Buckling Evaluation in the Curved Beams
3.2. Static Load Analysis of Three Initial Designs
3.2.1. Displacement
3.2.2. Axial Stress
3.2.3. Total Fiber Stress
3.2.4. Bending Stress
3.3. Static Load Analysis of the Proposed New Design
3.3.1. Axial Stress
3.3.2. Total Fiber Stress
3.3.3. Bending Stress
3.3.4. Summary of Static Load Analysis
3.4. Dynamic Wind Load Analysis
3.4.1. Wind Speed Calculations
Assumptions
Calculating Wind Speed
- = the gust wind speed= turbulence Intensity,
- , the natural frequency of the first mode
- n is the frequency (Hz)
- , mean wind velocity )
- k is surface roughness (taken as 0.05 for terrain category 2)
- The drag coefficient, = 1.2 (semi-cylindrical roof shape)
- Density of the air, = 1.2 kg/m3
- The projected area,
3.5. Discussion of Dynamic Wind Load
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habibi, S. Design concepts for the integration of bamboo in contemporary vernacular architecture. Archit. Eng. Des. Manag. 2019, 15, 475–489. [Google Scholar]
- De Flander, K. The Role of Bamboo in Global Modernity: From Traditional to Innovative Construction Material. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2005. [Google Scholar]
- Maikol, S.M.Y.; Maksimovich, S.V.; Ivanovna, B.G.; Ainur, S. Bamboo Structures for Modern Sustainable Architecture. ISVS e-J. 2020, 7, 27–39. [Google Scholar]
- Yu, Y.L.; Zhu, R.; Wu, B.; Hu, Y. Fabrication, material properties, and application of bamboo scrimber. Wood Sci. Technol. 2015, 49, 83–98. [Google Scholar] [CrossRef]
- Strand7 Computer Software (Version 2.4.6). Available online: https://www.strand7.com/ (accessed on 20 February 2021).
- Wei, Y.; Ji, X.; Duan, M.; Li, G. Flexural performance of bamboo scrimber beams strengthened with fiber-reinforced polymer. Constr. Build. Mater. 2017, 142, 66–82. [Google Scholar] [CrossRef]
- Escamilla, E.Z.; Habert, G. Environmental impacts of bamboo-based construction materials representing global production diversity. J. Clean. Prod. 2014, 69, 117–127. [Google Scholar] [CrossRef]
- Sharma, B.; Gatóo, A.; Ramage, M.H. Effect of processing methods on the mechanical properties of engineered bamboo. Constr. Build. Mater. 2015, 83, 95–101. [Google Scholar] [CrossRef]
- Escamilla, E.Z.; Habert, G.; Daza, J.F.C.; Archilla, H.F.; Fernández, J.S.E.; Trujillo, D. Industrial or traditional bamboo construction? Comparative life cycle assessment (LCA) of bamboo-based buildings. Sustainability 2018, 10, 3096. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; van der Vegte, A. Engineered bamboo for structural applications. In Nonconventional and Vernacular Construction Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 597–623. [Google Scholar]
- Chen, M.; Ye, L.; Li, H.; Wang, G.; Chen, Q.; Fang, C.; Dai, C.; Fei, B. Flexural strength and ductility of moso bamboo. Constr. Build. Mater. 2020, 246, 118418. [Google Scholar] [CrossRef]
- Correal, F.F. Bamboo design and construction. In Nonconventional and Vernacular Construction Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 521–559. [Google Scholar]
- Lorenzo, R.; Mimendi, L.; Godina, M.; Li, H. Digital analysis of the geometric variability of Guadua, Moso and Oldhamii bamboo. Constr. Build. Mater. 2020, 236, 117535. [Google Scholar] [CrossRef]
- Sun, X.; He, M.; Li, Z. Novel engineered wood and bamboo composites for structural applications: State-of-art of manufacturing technology and mechanical performance evaluation. Constr. Build. Mater. 2020, 249, 118751. [Google Scholar] [CrossRef]
- Lin, Q.; Huang, Y.; Li, X.; Yu, W. Effects of shape, location and quantity of the joint on bending properties of laminated bamboo lumber. Constr. Build. Mater. 2020, 230, 117023. [Google Scholar] [CrossRef]
- Sharma, B.; Gatóo, A.; Bock, M.; Mulligan, H.; Ramage, M. Engineered bamboo: State of the art. Proc. Inst. Civ. Eng. Constr. Mater. 2015, 168, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Putri, A.H.; Dewi, O.C. Overview of Bamboo Preservation Methods for Construction Use in Hot Humid Climate. Int. J. Built. Environ. Sci. Res. 2020, 4, 1–10. [Google Scholar]
- Vogtländer, J.; Van der Lugt, P.; Brezet, H. The sustainability of bamboo products for local and Western European applications. LCAs and land-use. J. Clean. Prod. 2010, 18, 1260–1269. [Google Scholar] [CrossRef]
- Bonilla, S.H.; Guarnetti, R.L.; Almeida, C.; Giannetti, B. Sustainability assessment of a giant bamboo plantation in Brazil: Exploring the influence of labour, time and space. J. Clean. Prod. 2010, 18, 83–91. [Google Scholar] [CrossRef]
- Dai, Y.; Hwang, S.-H. Technique, creativity, and sustainability of bamboo craft courses: Teaching educational practices for sustainable development. Sustainability 2019, 11, 2487. [Google Scholar] [CrossRef] [Green Version]
- Trujillo, E.; Moesen, M.; Osorio, L.; Van Vuure, A.W.; Ivens, J.; Verpoest, I. Bamboo fibres for reinforcement in composite materials: Strength Weibull analysis. Compos. Part A Appl. Sci. Manuf. 2014, 61, 115–125. [Google Scholar] [CrossRef]
- Pham, L. Actions on Structures: Regulations and Standards. Available online: https://wenku.baidu.com/view/33714931f705cc175427096b.html (accessed on 20 February 2021).
- Sivanerupan, S.; Wilson, J.L.; Gad Swinburne, E. Structural analysis and design of glazed curtain wall systems. Aust. J. Struct. Eng. 2011, 12, 57–67. [Google Scholar]
- Buttenshaw, S.; Mullard, J. Dynamic Analysis of Mine Blasting using the Spectral Response Analysis Methods of AS1170.4. In Proceedings of the Australian Earthquake Engineering Society 2019 Conference, Newcastle, UK, 29 November–1 December 2019. [Google Scholar]
- Standard, B. Eurocode 1: Actions on Structures. Available online: http://www.hwa.uk.com/site/wp-content/uploads/2018/02/CD.POL_.24B-BS-EN-1991-Part-1-1-20021.pdf (accessed on 20 February 2021).
- Cook, N. Designers’ Guide to EN 1991-1-4 Eurocode 1: Actions on Structures, General Actions Part 1–4. Wind Actions; Thomas Telford Publishing: London, UK, 2007. [Google Scholar]
- Blackmore, P.; Tsokri, E. Wind loads on curved roofs. J. Wind Eng. Ind. Aerodyn. 2006, 94, 833–844. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Elastic modulus (E) | 13.5–32.3 GPa |
Poisson’s ratio | 0.26–0.52 |
Density (p) | 720–1300 kg/m3 |
Material | Density kg/m3 | Compression (Mpa) | Tension (Mpa) | Shear (Mpa) | Flexural (Mpa) |
---|---|---|---|---|---|
Bamboo scrimber | 1010 | 134.9 | 296.2 | 15 | 119 |
Raw bamboo | 666 | 53 | 153 | 16 | 135 |
Sitka spruce | 383 | 36 | 59 | 9 | 67 |
Douglas-fir | 520 | 57 | 49 | 11 | 68 |
Property | Value |
---|---|
Elastic modulus (E) | 2.29 × 1010 Pa |
Poisson’s ratio | 0.39 |
Density (p) | 1010 kg/m3 |
Length (a) | 0.045 m |
Property | Ultimate Strength Capacity (MPa) |
---|---|
Tensile stress | 296.2 |
Compressive stress | 134.9 |
Shear stress | 15.0 |
Bending stress | 119.0 |
Fiber stress | 54.3 |
Values | Design 1 | Design 2 | Design 3 | New Design (Bottom) |
---|---|---|---|---|
3.43 m | 3.00 m | 4.71 m | 2.5 m | |
Critical buckling Load |
Model 1 | 6.08772 | 11.9478 | 12.9541 | 14.1401 |
Model 2 | 6.08232 | 8.37319 | 8.63187 | 13.0552 |
Model 3 | 6.37322 | 7.11168 | 8.90585 | 9.72662 |
New Model | 5.91085 | 11.7663 | 11.8231 | 13.4578 |
Natural Frequency of First Mode, | Peak Factor | Gust Factor | Mean Wind Speed, (ms−1) | |
---|---|---|---|---|
Model 1 | 6.088 | 4.603 | 1.902 | 21.527 |
Model 2 | 6.082 | 4.603 | 1.902 | 21.528 |
Model 3 | 6.373 | 4.613 | 1.904 | 21.505 |
New Design | 2.931 | 4.442 | 1.871 | 21.892 |
Scrimber | DX (mm) | DY (mm) | DZ (mm) |
---|---|---|---|
Model 1 | 1.72 | 77.96 | 169.50 |
Model 2 | 0.16 | 58.62 | 113.20 |
Model 3 | 42.65 | 123.80 | 193.50 |
New Model | 0.46 | 3.45 | 8.42 |
Natural Bamboo | DX (mm) | DY (mm) | DZ (mm) |
---|---|---|---|
Model 1 | 0.71 | 32.13 | 69.95 |
Model 2 | 0.07 | 24.32 | 47.00 |
Model 3 | 17.55 | 51.02 | 79.86 |
New Model | 0.87 | 1.68 | 4.09 |
Model 1 | 0.37 | 67.77 | 69.09 | 0.62 | 0.41 |
Model 2 | 0.29 | 55.06 | 55.12 | 0.52 | 0.35 |
Model 3 | 0.39 | 65.22 | 97.52 | 0.53 | 0.35 |
New Model | 0.91 | 17.52 | 18.33 | 0.39 | 0.26 |
Model 1 | 28.75 | 0.26 | 28.59 | 0.56 | 0.29 |
Model 2 | 23.35 | 0.21 | 23.31 | 0.47 | 0.25 |
Model 3 | 30.72 | 0.28 | 27.55 | 0.48 | 0.25 |
New Model | 8.56 | 0.69 | 8.12 | 0.36 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahmasebinia, F.; Ma, Y.; Joshua, K.; Sepasgozar, S.M.E.; Yu, Y.; Li, J.; Sepasgozar, S.; Marroquin, F.A. Sustainable Architecture Creating Arches Using a Bamboo Grid Shell Structure: Numerical Analysis and Design. Sustainability 2021, 13, 2598. https://doi.org/10.3390/su13052598
Tahmasebinia F, Ma Y, Joshua K, Sepasgozar SME, Yu Y, Li J, Sepasgozar S, Marroquin FA. Sustainable Architecture Creating Arches Using a Bamboo Grid Shell Structure: Numerical Analysis and Design. Sustainability. 2021; 13(5):2598. https://doi.org/10.3390/su13052598
Chicago/Turabian StyleTahmasebinia, Faham, Yuanchen Ma, Karl Joshua, Saleh Mohammad Ebrahimzadeh Sepasgozar, Yang Yu, Jike Li, Samad Sepasgozar, and Fernando Alonso Marroquin. 2021. "Sustainable Architecture Creating Arches Using a Bamboo Grid Shell Structure: Numerical Analysis and Design" Sustainability 13, no. 5: 2598. https://doi.org/10.3390/su13052598
APA StyleTahmasebinia, F., Ma, Y., Joshua, K., Sepasgozar, S. M. E., Yu, Y., Li, J., Sepasgozar, S., & Marroquin, F. A. (2021). Sustainable Architecture Creating Arches Using a Bamboo Grid Shell Structure: Numerical Analysis and Design. Sustainability, 13(5), 2598. https://doi.org/10.3390/su13052598