The Role of Anaerobic Digestion in Reducing Dairy Farm Greenhouse Gas Emissions
Abstract
:1. Introduction
1.1. The Context of Livestock Farming
1.2. Anaerobic Digestion
1.3. Aims and Objectives
2. Method and Materials for Estimating Emissions
2.1. Model Development
2.2. Energy Requirement and Forage Provision
2.3. Modelling Methane Emissions
2.4. Modelling Nitrous Oxide Emissions
2.5. Modelling the Anaerobic Digester
3. Results and Discussion
3.1. Case Study Farm (Reference Scenario)
3.1.1. Methane Emissions
3.1.2. Nitrous Oxide Emissions
3.2. Slurry and Silage Results
3.3. Results and Discussion of Systems Modelling before and after AD
3.3.1. Systems Comparison before AD
3.3.2. Systems Comparison after AD
3.3.3. Sensitivity Analysis
3.3.4. Discussion
3.4. Creating Value from Biogas
3.4.1. Environmental Considerations
3.4.2. Financial Considerations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Farm Description
Appendix B. Grass and Silage Production
Appendix C. Anaerobic Digester Input Assumptions
Slurry Characteristics Kg/cow/day | AD Feedstock Characteristics | ||
Manure excretions | 53 | BMP slurry | 251 L CH4/kg VS |
Water additions | 8 | Average VS content of slurry | 66.4 g/kg |
Sawdust bedding | 0.7 | BMP grass silage | 414 L CH4/kg VS |
Slurry volume | 61.7 | VS content of silage | 220 g/kg |
References
- United Nations Framework Convention on Climate Change (UNFCCC); Paris Agreement: Paris, France, December 2015.
- Near-Term Climate Protection and Clean Air Benefits: Actions for Controlling Short-Lived Climate Forcers; UNEP: Nairobi, Kenya, 2011; p. 78.
- Myhre, D.G.; Shindell, F.-M.; Bréon, W.; Collins, J.; Fuglestvedt, J.; Huang, D.; Koch, J.-F.; Lamarque, D.; Lee, B.; Mendoza, T.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Monteny, G.; Groenestein, C.; Hilhorst, M. Interactions and coupling between emissions of methane and nitrous oxide from animal husbandry. Nutr. Cycl. Agroecosyst. 2001, 60, 123–132. [Google Scholar] [CrossRef]
- Brown, L.; Syed, B.; Jarvis, S.; Sneath, R.; Phillips, V.; Goulding, K.; Li, C. Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture. Atmos. Environ. 2002, 36, 917–928. [Google Scholar] [CrossRef]
- Oenema, O.; Oudendag, D.; Velthof, G.L. Nutrient losses from manure management in the European Union. Livest. Sci. 2007, 112, 261–272. [Google Scholar] [CrossRef]
- Chadwick, D.; Sommer, S.; Thorman, R.; Fangueiro, D.; Cardenas, L.; Amon, B.; Misselbrook, T. Manure Management: Implications for Greenhouse Gas Emissions. Anim. Feed Sci. Technol. 2011, 166–167, 514–531. [Google Scholar] [CrossRef]
- Burchill, W.; Reville, F.; Misselbrook, T.H.; O’Connell, C.; Lanigan, G.J. Ammonia emissions and mitigation from a concrete yard used by cattle. Biosyst. Eng. 2019, 184, 181–189. [Google Scholar] [CrossRef]
- Sajeev, E.P.M.; Winiwarter, W.; Amon, B. Greenhouse gas and ammonia emissions from different stages of liquid manure management chains: Abatement options and emission interactions. J. Environ. Qual. 2018, 47, 30–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, S.G.; Petersen, S.O.; Sørensen, P.; Poulsen, H.D.; Møller, H.B. Methane and carbon dioxide emissions and nitrogen turnover during liquid manure storage. Nutr. Cycl. Agroecosyst. 2007, 78, 27–36. [Google Scholar] [CrossRef]
- Sommer, S.; Petersen, S.; Møller, H. Algorithms for calculating methane and nitrous oxide emissions from manure management. Nutr. Cycl. Agroecosyst. 2004, 69, 143–154. [Google Scholar] [CrossRef]
- Misselbrook, T.H.; Smith, K.A.; Johnson, R.A.; Pain, B.F. Slurry Application Techniques to Reduce Ammonia Emissions: Results of Some UK Field-Scale Experiments. Biosyst. Eng. 2002, 81, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, I.K.; Pedersen, A.R.; Nyord, T.; Petersen, S.O. Effects of slurry pre-treatment and application technique on short-term N2O emissions as determined by a new non-linear approach. Agric. Ecosyst. Environ. 2010, 136, 227–235. [Google Scholar] [CrossRef]
- Clemens, J.; Trimborn, M.; Weiland, P.; Amon, B. Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric. Ecosyst. Environ. 2006, 112, 171–177. [Google Scholar] [CrossRef]
- Murphy, J.; Thamsirioj, T. Chapter 5—Fundamental Science and Engineering of the Anaerobic Digestion Process for Biogas Production. In The Biogas Handbook: Science, Production and Applications; Wellinger, A., Murphy, J., Baxter, D., Eds.; Woodhead Publishing: Oxford, UK, 2013; pp. 104–130. [Google Scholar]
- Weiland, P. Biomass digestion in agriculture: A successful pathway for the energy production and waste treatment in Germany. Eng. Life Sci. 2006, 6, 302–309. [Google Scholar] [CrossRef]
- Frost, P.; Gilkinson, S. Interim Technical Report—27 Month Performance Summary for Anaerobic Digestion of Dairy Cow Slurry at AFBI Hillsborough; Agri-Food and Biosciences: Hillsborough, UK, March 2010. [Google Scholar]
- Domínguez, I.P.; Fellmann, T.; Witzke, P.; Weiss, F.; Hristov, J.; Himics, M.; Barreiro-Hurle, J.; Barbero, M.G.; Leip, A. Economic Assessment of GHG Mitigation Policy Options for EU Agriculture: A Closer Look at Mitigation Options and Regional Mitigation Costs (EcAMPA 3); EUR 30164 EN; JRC120355; Publications Office of the European Union: Luxembourg, April 2020; ISBN 978-92-76-17854-5. [Google Scholar] [CrossRef]
- Hoglund-Isaksson, L.; Winiwarter, W.; Purohit, P.; Gomez-Sanabria, A. Non-CO2 Greenhouse Gas Emissions in the EU-28 from 2005 to 2050: Final GAINS Reference Scenario 2016. GAINS Model Methodology. IIASA Report; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2016. [Google Scholar]
- Dasselaar, A.V.D.P.-V.; Hennessy, D.; Isselstein, J. Grazing of dairy cows in europe—An in-depth analysis based on the perception of grassland experts. Sustainability 2020, 12, 1098. [Google Scholar] [CrossRef] [Green Version]
- Coppolecchia, D.; Gardoni, D.; Baldini, C.; Borgonovo, F.; Guarino, M. The influence on biogas production of three slurry-handling systems in dairy farms. J. Agric. Eng. 2015, 46, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Vergote, T.L.I.; Vanrolleghem, W.J.C.; Van der Heyden, C.; De Dobbelaere, A.E.J.; Buysse, J.; Meers, E.; Volcke, E.I.P. Model-Based Analysis of Greenhouse Gas Emission Reduction Potential through Farm-Scale Digestion. Biosyst. Eng. 2019, 181, 157–172. [Google Scholar] [CrossRef]
- Himanshu, H.; Murphy, J.D.; Lenehan, J.J.; O’Kiely, P. Impacts of characteristics of grass silage and cattle slurry feedstocks on the cost of methane production. Biofuels Bioprod. Biorefining 2018, 13, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Baldé, H.; Vanderzaag, A.C.; Burtt, S.D.; Wagner-Riddle, C.; Crolla, A.; Desjardins, R.L.; Macdonald, D.J. Methane emissions from digestate at an agricultural biogas plant. Bioresour. Technol. 2016, 216, 914–922. [Google Scholar] [CrossRef]
- Rodhe, L.K.; Ascue, J.; Willén, A.; Persson, B.V.; Nordberg, Å. Greenhouse gas emissions from storage and field application of anaerobically digested and non-digested cattle slurry. Agric. Ecosyst. Environ. 2015, 199, 358–368. [Google Scholar] [CrossRef]
- Lukehurst, C.; Bywater, A. Exploring the Viability of Small-Scale Anaerobic Digesters in Livestock Farming; IEA Bioenergy: Paris, France, 2015; Available online: https://www.ieabioenergy.com/wp-content/uploads/2015/12/Small_Scale_RZ_web2.pdf (accessed on 1 September 2020).
- Intergovernmental Panel on Climate Change (IPCC)—IPCC 2019, Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available online: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories (accessed on 12 June 2020).
- Hynes, D.N.; Stergiadis, S.; Gordon, A.; Yan, T. Effects of Crude Protein Level in Concentrate Supplements on Animal Performance and Nitrogen Utilisation of Lactating Dairy Cows Fed Fresh Cut Perennial Grass. J. Dairy Sci. 2016, 99, 8111–8120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Mara, F.P. Climate Change—Development of Emission Factors for the Irish Cattle Herd, Special Report; Environmental Protection Agency: Johnstown Castle, Ireland, 2006.
- National Research Council. NRC (2001) Nutrient Requirements of Dairy Cattle: Seventh Revised Edition, 2001; The National Academies Press: Washington, DC, USA, 2001; p. 13. [Google Scholar]
- O’Connor, S.; Ehimen, E.; Pillai, S.C.; Lyons, G.; Bartlett, J. Economic and environmental analysis of small-scale anaerobic digestion plants on Irish dairy farms. Energies 2020, 13, 637. [Google Scholar] [CrossRef] [Green Version]
- Richmond, B.; Misra, A.; Broomfield, M.; Brown, P.; Karagianni, E.; Murrells, T.; Pang, Y.; Passant, N.; Pearson, B.; Stewart, R.; et al. UK Informative Inventory Report (1990–2017); DEFRA: London, UK, April 2019.
- Hellwig, A.L.F.; Weisbjerg, M.R.; Brask, M.; Astrup, L.; Johansen, M.; Hymøller, L.; Larsen, M.K.; Lund, P. Prediction of the Methane Conversion Factor (Ym) for Dairy Cows on the Basis of National Farm Data. Anim. Prod. Sci. 2016, 56, 535–540. [Google Scholar] [CrossRef]
- Duffy, P.; Hyde, B.; Ryan, A.M.; Murphy, J.; Quirke, B.; Fahey, D. Ireland Informative Inventory Report 2019; Environment Protection Agency: Johnstown Castle, Ireland, 2019.
- Misselbrook, T.; Del Prado, A.; Chadwick, D. Opportunities for reducing environmental emissions from forage-based dairy farms. Agric. Food Sci. 2013, 22, 93–107. [Google Scholar] [CrossRef] [Green Version]
- Thorman, R.E.; Nicholson, F.A.; Topp, C.F.E.; Bell, M.J.; Cardenas, L.M.; Chadwick, D.R.; Cloy, J.M.; Misselbrook, T.H.; Rees, R.M.; Watson, C.J.; et al. Towards country-specific nitrous oxide emission factors for manures applied to arable and grassland soils in the UK. Front. Sustain. Food Syst. 2020, 4. [Google Scholar] [CrossRef]
- Agriculture and Horticulture Development Board (AHDB), Slurry. Available online: http://www.ahdb.org.uk/knowledge-library/slurry-wizard (accessed on 24 July 2020).
- Agriculture and Horticulture Development Board. AHDB Nutrient Management Guide (RB209), February 2020 edition. Available online: https://ahdb.org.uk/RB209 (accessed on 11 August 2020).
- Wall, D.M.; O’Kiely, P.; Murphy, J.D. The potential for biomethane from grass and slurry to satisfy renewable energy targets. Bioresour. Technol. 2013, 149, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Himanshu, H.; Murphy, J.; Grant, J.; O’Kiely, P. Antagonistic effects on biogas and methane output when co-digesting cattle and pig slurries with grass silage in in vitro batch anaerobic digestion. Biomass Bioenergy 2018, 109, 190–198. [Google Scholar] [CrossRef]
- Nizami, A.S.; Orozco, A.; Groom, E.; Dieterich, B.; Murphy, J.D. How much gas can we get from grass? Appl. Energy 2012, 92, 783–790. [Google Scholar] [CrossRef]
- Department for Business, Energy and Industrial Strategy—UK Government. Greenhouse Gas Reporting: Conversion Factors 2020. Available online: https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2020 (accessed on 30 August 2020).
- British Grassland Society. Recommended Grass and Clover Lists for England and Wales; British Grassland Society: Nantwich, UK, 2020. [Google Scholar]
- Gridwatch.co.uk—GB Electricity National Grid CO2e Output per production type. Available online: https://gridwatch.co.uk/co2-emissions (accessed on 30 August 2020).
IPCC 2006 Default (West Europe) | IPCC 2019 Default (West Europe) | Case Study Farm | Ireland National Inventory | UK National Inventory | |
---|---|---|---|---|---|
Cow body weight (kg) | 600 | 600 | 550 | 538 | 600 |
Milk yield (kg/cow/yr) | 6000 | 7410 | 7718 | 5300 | 8120 |
Digestibility of feed (%) | 70 | 71 | 77 | 76 | 74.5 |
Enteric methane (kg CH4/yr) | 117 | 126 | 128.26 | 115.21 | 122.71 |
Manure management system | 36% slurry, 37% solid, 20% pasture, 7% daily spread | 43% slurry, 29% solid, 26% pasture, 2% daily spread | 82% pit storage, 18% pasture | 28% pit storage, 70% pasture, 2% deep bedding | 61% slurry, 21% pasture, 9% solid, 8% daily spread |
Manure methane (kg/cow/yr) | 21 | not stated | 35.88 | 10.36 | 37.26 |
Total methane (kg/cow/yr) | 138.00 | not known | 164.14 | 125.57 | 159.97 |
N excreted (kg/cow/day) | 0.288 | 0.324 | 0.401 | 0.282 | 0.301 |
RS | RS with AD | FC | FC with AD | PG | PG with AD | |
---|---|---|---|---|---|---|
Enteric CH4 (kg/yr) | 38,135 | 38,135 | 39,417 | 39,417 | 37,036 | 37,036 |
Manure Storage CH4 (kg/yr) | 10,692 | 653 | 16,019 | 763 | 8751 | 549 |
Total CH4 emissions (kg/yr) | 48,827 | 38,788 | 55,436 | 40,180 | 45,787 | 37,585 |
Manure Storage N2O kg/yr) | 344 | 84 | 403 | 91 | 257 | 136 |
Manure Field Losses (Spreading, Leaching, Runoff) N2O (kg/yr) | 479 | 708 | 561 | 771 | 357 | 1150 |
Pasture Losses N2O (kg /yr) | 80 | 80 | 0 | 0 | 191 | 191 |
Inorganic Fertiliser N2O (kg/yr) | 542 | 537 | 348 | 293 | 666 | 704 |
Total N2O (kg/yr) | 1444 | 1408 | 1311 | 1155 | 1471 | 2181 |
Adjusted Land Area Required (ha) | 90 | 104 | 88 | 93 | 90 | 113 |
CO2 eq (tonne/yr) | 1750 | 1459 | 1900 | 1431 | 1672 | 1630 |
Ym Variance | −5% | −2% | Base | +2% | +5% | |
---|---|---|---|---|---|---|
Ym (actual figure used in sensitivity calculations) | 5.98 | 6.17 | 6.3 | 6.43 | 6.62 | |
Reference Scenario | Enteric CH4 (kg/cow/yr) | 121.85 | 125.7 | 128.26 | 130.83 | 134.67 |
Herd Enteric CH4 (kg/yr) | 36,228 | 37,372 | 38,135 | 38,897 | 40,041 | |
Full Confinement | Enteric CH4 (kg/cow/yr) | 125.97 | 129.95 | 132.6 | 135.26 | 139.23 |
Herd Enteric CH4 (kg/yr) | 37,446 | 38,629 | 39,417 | 40,205 | 41,388 | |
Pasture Grazing | Enteric CH4 (kg/cow/yr) | 118.32 | 122.05 | 124.55 | 127.04 | 130.77 |
Herd Enteric CH4 (kg/yr) | 35,185 | 36,296 | 37,036 | 37,777 | 38,888 |
D Value Variance | −5% | −2% | Base | +2% | +5% | |
---|---|---|---|---|---|---|
D (actual figures used in sensitivity calculations) | ||||||
Grass—Early Season (to end May) | 76.30 | 78.71 | 80.30 | 81.91 | 84.34 | |
Grass—Mid Season (June to August) | 74.28 | 76.63 | 78.20 | 79.76 | 82.10 | |
Grass—Late Season (September onwards) | 71.25 | 73.50 | 75.00 | 76.50 | 78.75 | |
Grass Silage | 67.45 | 69.58 | 71.00 | 72.42 | 74.55 | |
Reference Scenario | Average D value of ration * | 75.43 | 76.52 | 77.24 | 77.95 | 79.06 |
Volatile solids to storage (kg/cow/yr) ** | 1339.6 | 1289.6 | 1256.3 | 1223.5 | 1173.0 | |
Manure Management CH4 (kg/cow) | 38.21 | 36.81 | 35.88 | 34.97 | 33.56 | |
Herd Manure Management CH4 (kg/yr) | 11,384 | 10,969 | 10,692 | 10,420 | 10,001 | |
Full Confinement | Average D value of ration | 74.47 | 75.51 | 76.21 | 76.91 | 77.96 |
Volatile solids to storage (kg/cow/yr) ** | 1696.5 | 1636.2 | 1596.10 | 1555.9 | 1495.6 | |
Manure Management CH4 (kg/cow) | 57.29 | 55.25 | 53.9 | 52.54 | 50.5 | |
Herd Manure Management CH4 (kg/yr) | 17,027 | 16,422 | 16,019 | 15,616 | 15,011 | |
Pasture Grazing | Average D value of ration | 76.1 | 77.21 | 77.95 | 78.69 | 79.8 |
Volatile solids to storage (kg/cow/yr) ** | 969.32 | 934.17 | 910.74 | 887.31 | 852.15 | |
Manure Management CH4 (kg/cow) | 31.18 | 30.07 | 29.32 | 28.58 | 27.46 | |
Herd Manure Management CH4 (kg/yr) | 9306 | 8973 | 8751 | 8529 | 8196 |
RS with AD | FC with AD | PG with AD | |
---|---|---|---|
CH4 yield (m3) | 157,544 | 141,173 | 174,211 |
Gross energy (MWh) | 1654 | 1482 | 1829 |
Net thermal energy (MWh) | 707 | 593 | 837 |
Net electrical energy (MWh) | 462 | 407 | 520 |
CO2 saving from emission reduction (tonne/yr) | 291 | 469 | 42 |
CO2 saving from HEAT * (tonne/yr) | 193 | 162 | 229 |
CO2 saving from electricity ** (tonne/yr) | 231 | 203 | 259 |
TOTAL CO2 saving tonne/yr | 715 (41%) | 834 (44%) | 530 (32%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scott, A.; Blanchard, R. The Role of Anaerobic Digestion in Reducing Dairy Farm Greenhouse Gas Emissions. Sustainability 2021, 13, 2612. https://doi.org/10.3390/su13052612
Scott A, Blanchard R. The Role of Anaerobic Digestion in Reducing Dairy Farm Greenhouse Gas Emissions. Sustainability. 2021; 13(5):2612. https://doi.org/10.3390/su13052612
Chicago/Turabian StyleScott, Alun, and Richard Blanchard. 2021. "The Role of Anaerobic Digestion in Reducing Dairy Farm Greenhouse Gas Emissions" Sustainability 13, no. 5: 2612. https://doi.org/10.3390/su13052612
APA StyleScott, A., & Blanchard, R. (2021). The Role of Anaerobic Digestion in Reducing Dairy Farm Greenhouse Gas Emissions. Sustainability, 13(5), 2612. https://doi.org/10.3390/su13052612