Diversity in Nutrient Content and Consumer Preferences of Sensory Attributes of Peanut (Arachis hypogaea L.) Varieties in Ugandan Agroecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Preparation
2.3. Proximate Composition
2.4. Mineral Analysis Procedure
2.5. Sensory Evaluation
2.6. Data Analysis
3. Results
3.1. Subsection
3.1.1. Ash
3.1.2. Protein
3.1.3. Iron
3.1.4. Calcium
3.1.5. Sodium
3.1.6. Oil
3.1.7. Zinc
3.1.8. Magnesium
3.2. Variety Clustering According to the Nutrient Content
3.3. Sensory Evaluation of the Varieties
4. Discussion
4.1. Nutrient Content
4.2. Site Variety Interaction in Nutrient Content
4.3. Sensory Evaluation of Organoleptic Characteristics of Varieties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Welch, R.D.; Graham, R.D. A new paradigm for world agriculture: Meeting human needs: Productive, sustainable, nutritious. Field Crops Res. 1999, 60, 1–10. [Google Scholar] [CrossRef]
- Frison, E.; Smith, I.F.; Johns, T.; Cherfas, J.; Eyzaguirre, P.B. Agricultural biodiversity, nutrition, and health: Making a difference to hunger and nutrition in the developing world. Food Nutr. Bull. 2006, 25, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.D.; Welch, R.M.; Saunders, D.A.; Ortiz-Monasterio, I.; Bouis, H.E.; Bonierbale, M.; Haan, S.; Burgos, G.; Thiele, G.; Liria, R.; et al. Nutritious subsistence food systems. Adv. Agron. 2007, 92, 1–72. [Google Scholar] [CrossRef] [Green Version]
- Negin, J.; Remans, R.; Karuti, S.; Fanzo, J.C. Integrating a broader notion of food security and gender empowerment into the African Green Revolution. Food Sec. 2009, 1, 351–360. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- Global Food Policy Report, International Food Policy Research Institute. 2017. Available online: http://www.ifri.org-ifpri.org/publication/2017-globalfoodsecurityreport (accessed on 15 December 2020).
- Headey, D.; Ecker, O. Re-thinking the measurement of food security: From first principles to best practice. Food Secur. 2013, 5, 327–343. [Google Scholar] [CrossRef]
- Remans, R.; Flynn, D.F.B.; Mudiope, J.; Mutuo, P.K.; Nkhoma, P.; Siriri, D.; Sullivan, C.; Palm, C.A. Assessing nutritional diversity of cropping systems in African villages. PLoS ONE 2011, 6, e21235. [Google Scholar] [CrossRef] [Green Version]
- Burlingame, B.; Dernini, S. Sustainable Diets and Biodiversity: Directions and Solutions for Policy, Research and Action; FAO and Bioversity International: Rome, Italy, 2012. [Google Scholar]
- Fanzo, J.; Hunter, D.; Borelli, T.; Mattei, F. Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health Issues in Agricultural Biodiversity; Earthscan: London, UK, 2013; pp. 257–269. [Google Scholar]
- Powell, B.; Thilsted, S.H.; Ickowitz, A.; Termote, C.; Sunderland, T.; Herforth, A. Improving diets with wild and cultivated biodiversity from across the landscape. Food Secur. 2015, 7, 535–554. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.D. On-farm crop species richness is associated with household diet diversity and quality in subsistence- and market-oriented farming households in Malawi. J. Nutr. 2017, 147, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.D. Critical review of the emerging research evidence on agricultural biodiversity, diet diversity, and nutritional status in low- and middle-income countries. Nutr. Rev. 2017, 75, 769–782. [Google Scholar] [CrossRef] [Green Version]
- Toomer, O.T. Nutritional chemistry of the peanut (Arachis hypogaea). Crit. Rev. Food Sci. Nutr. 2017, 58, 3042–3053. [Google Scholar] [CrossRef]
- Okello, D.K.; Biruma, M.; Deom, C.M. Overview of Groundnut research in Uganda: Past, Present and Future. Afr. J. Biotechnol. 2010, 9, 6448–6459. Available online: http://www.academicjournals.org/AJB/PDF/pdf2010/27Sep/Okello%20et%20al.pdf (accessed on 4 January 2021).
- Bonku, R.; Yu, J. Health aspects of Pea Nuts as an outcome of its chemical composition. Food Sci. Hum. Wellness 2019, 9, 21–30. [Google Scholar] [CrossRef]
- Okello, D.K.; Akello, B.L.; Tukamuhabwa, P.; Odong, T.L.; Adriko, J.; Ochwo-Ssemakula, M.; Deom, C.M. Groundnut Rosette Disease Symptoms types distribution and management of the disease in Uganda. Afr. J. Sci. 2014, 8, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, M.A.; Osman, A.K.; Nalyongo, P.W.; Wakjira, A.; David, C. Peanut in East Africa 1981–1990. In Peanut, A Global Perspective; ICRISAT: Patancheru, India, 1991. [Google Scholar]
- Okello, D.K.; Monyo, E.; Deom, C.M.; Ininda, J.; Oloka, H.K. Groundnuts Production Guide for Uganda: Recommended Practices for Farmers; National Agricultural Research Organization: Entebbe, Uganda, 2013; ISBN 978-9970-401-06-2. [Google Scholar]
- Mugisa, I.; Karungi, J.; Akello, B.; Ochwo-Ssemakula, M.; Biruma, M.; Kalule, D.; Otim, G. Assessing the effect of farmers’ practices on the severity of groundnut rosette virus disease in Uganda. Afr. J. Agric Res. 2015, 10, 995–1003. [Google Scholar] [CrossRef] [Green Version]
- Jelliffe, J.L.; Bravo-Ureta, B.E.; Deom, C.M.; Okello, D.K. Adoption of high-yielding groundnut varieties: The sustainability of a farmer-led multiplication-dissemination program in Eastern Uganda. Sustainability 2018, 10, 1597. [Google Scholar] [CrossRef] [Green Version]
- Joughin, J. The Political Economy of Seed Reform in Uganda: Promoting a Regional Seed Trade Market; World Bank Group: Washington, DC, USA, 2014. [Google Scholar]
- Musalima, J.H.; Ogwok, P.; Mugampoza, D. Anti-Oxidant Vitamins, Minerals and Tannins in Oil from Groundnuts and Oyster Nuts Grown in Uganda. Food Sci. Nutr. Res. 2019, 2, 1–7. [Google Scholar] [CrossRef]
- Achola, E.; Tukamuhabwa, P.; Adriko, J.; Edema, R.; Mwale, S.E.; Gibson, P.; Naveen, P.; Okul, V.; Michael, D.; Okello, D.K. Composition and variation of fatty acids among groundnut cultivars in Uganda. Afr. Crop Sci. J. 2017, 25, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Nimusiima, A.; Basalirwa, C.P.K.; Majaliwa, J.G.M.; Otim-Nape, W.; Okello-Onen, J.; Rubaire-Akiiki, C.; Konde-Lule, J.; Ogwal-Byenek, S. Nature and dynamics of climate variability in the Uganda cattle corridor. Afr. J. Environ. Sci. Technol. 2013, 7, 770–782. [Google Scholar] [CrossRef]
- Ogwang, B.A.; Chen, H.; Li, X.; Gao, C. Evaluation of the capability of RegCM4.0 in simulating East African climate. Theor. Appl. Climatol. 2016, 124, 303–313. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Determination of Moisture, Ash, Protein and Fat. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, UK, 1999. [Google Scholar]
- Khoury, C.K.; Bjorkman, A.D.; Dempewolf, H.; Ramirez-Villegas, J.; Guarino, L.; Jarvis, A.; Rieseberg, L.H.; Struik, P.C. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl. Acad. Sci. USA 2014, 111, 4001–4006. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Analytical Chemists International, 18th ed.; Association of Official Analytical Chemists: Gathersburg, MD, USA, 2005. [Google Scholar]
- Wheal, M.S.; Fowles, T.O.; Palmer, L.T. A cost- effective acid digestion method using closed polypropylene tubes for inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of plant essential elements. Anal. Methods 2011, 3, 2854–2863. [Google Scholar] [CrossRef]
- Mulumba, J.W.; Nankya, R.; Adokorach, J.; Kiwuka, C.; Fadda, C.; De Santis, P.; Jarvis, D.I. A risk-minimizing argument for traditional crop varietal diversity use to reduce pest and disease damage in agricultural ecosystems of Uganda. Agric. Ecosyst. Environ. 2012, 57, 70–86. [Google Scholar] [CrossRef] [Green Version]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Springer: Berlin, Germany, 1999. [Google Scholar]
- Peryam, D.R.; Pilgrim, F.J. Hedonic scale method of measuring food preferences. Food Technol. 1957, 11, 9–14. [Google Scholar]
- Olmedo, R.H.; Asensio, C.M.; Napote, V.; Mestrallet, M.G.; Grosso, R.N. Chemical and sensory stability of fried-salted peanuts flavored with Oregano essential oil and olive oil. J. Sci. Food Agric. 2009, 89, 2128–2136. [Google Scholar] [CrossRef]
- Napote, V.; Olmedo, R.H.; Mestrallet, M.G.; Grosso, N.R. A Study of the Relationships among Consumer Acceptance, Oxidation Chemical Indicators, and Sensory Attributes in High-Oleic and Normal Peanuts. J. Food Sci. 2009, 74, 51–58. [Google Scholar] [CrossRef]
- Ren, X.; Jiang, H.; Yan, Z.; Chen, Y.; Zhou, X.; Huang, L.; Lei, Y.; Huang, J.; Yan, L.; Qi, Y.; et al. Genetic Diversity and Population Structure of the Major Peanut (Arachis hypogaea L.) Cultivars Grown in China by SSR Markers. PLoS ONE 2014, 9, e88091. [Google Scholar] [CrossRef] [Green Version]
- Bates, T.E. Factors affecting critical nutrient concentrations in plants and their evaluation: A review. Soil Sci. 1971, 112, 116–130. [Google Scholar] [CrossRef]
- Kennedy, G.; Burlingame, B. Analysis of food composition data on rice from a plant genetic resources perspective. Food Chem. 2003, 80, 589–596. [Google Scholar] [CrossRef]
- Davey, M.W.; Saeys, W.; Hof, E.; Ramon, H.; Swennen, R.; Keulemans, J. Application of visible and near-infrared reflectance spectroscopy (Vis/NIRS) to determine carotenoid contents in banana (Musa spp.) fruit pulp. J. Agric. Food Chem. 2009, 57, 1742–1751. [Google Scholar] [CrossRef] [PubMed]
- Alhassan, K.; Agbenorhevi, J.K.; Asibuo, J.Y.; Sampson, G.O. Proximate composition and functional properties of some new groundnut accessions. J. Food Sec. 2017, 5, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, A.; Shah, F.; Hamayun, M.; Ahmad, A.; Hussain, A.; Waqas, M.; Kang, S.M.; Lee, I.J. Allergens of Arachis hypogaea and the effect of processing on their detection by ELISA. Food Nutr. Res. 2016, 60, 28945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D.F.; Carter, C.M.; Mattil, K.F.; Darroch, J.G. Effect of variety, growing location and their interaction on the fatty acid composition of peanuts. J. Food Sci. 1975, 40, 1055–1060. [Google Scholar] [CrossRef]
- Young, T. Peanut oil. In Bailey’s Industrial Oil and Fat Products; Hui, Y.H., Ed.; John & Wiley Sons: New York, NY, USA, 1996; pp. 377–392. [Google Scholar]
- Subuola, F.; Widodo, Y.; Kehinde, T. Processing and utilization of legumes in the tropics. Trends Vital Food Control Eng. 2012, 77, 1–18. [Google Scholar] [CrossRef]
Variety Name | %Protein Content | %Oil Content | %Ash Content | Zn (mg/kg) | Fe (mg/kg) | Ca (mg/kg) | Mg (mg/kg) | Na (mg/kg) |
---|---|---|---|---|---|---|---|---|
Black | 30.73 ± 0.90 | 16.20 ± 0.27 | 4.26 ± 0.14 | 15.67 ± 0.14 | 25.94 ± 0.22 | 250.58 ± 9.69 | 407.35 ± 88.87 | 85.13 ± 14.62 |
Dok red | 40.14 ± 2.70 | 7.20 ± 0.22 | 5.05 ± 0.07 | 16.27 ± 0.46 | 43.99 ± 0.98 | 461.01 ± 34.34 | 536.66 ± 1.91 | 427.98 ± 27.32 |
Dok Tan | 39.98 ± 0.09 | 7.43 ± 1.17 | 4.17 ± 0.58 | 17.50 ± 0.11 | 41.55 ± 0.74 | 355.55 ± 11.59 | 427.72 ± 98.78 | 338.04 ± 65.00 |
Egoromoit | 29.66 ± 1.98 | 6.54 ± 0.01 | 4.31 ± 0.01 | 16.24 ± 0.61 | 34.78 ± 0.04 | 390.99 ± 14.31 | 487.29 ± 2.59 | 384.37 ± 10.04 |
Emoit | 43.15 ± 5.12 | 7.54 ± 1.18 | 4.29 ± 0.05 | 19.79 ± 0.18 | 37.71 ± 1.22 | 465.90 ± 9.08 | 458.38 ± 38.72 | 362.95 ± 16.09 |
Garbon | 42.10 ± 0.75 | 7.92 ± 0.18 | 4.38 ± 0.01 | 16.15 ± 0.49 | 32.80 ± 0.76 | 308.52 ± 6.02 | 462.69 ± 41.33 | 385.20 ± 27.91 |
India | 45.54 ± 2.89 | 6.46 ± 0.62 | 3.93 ± 0.01 | 16.41 ± 0.82 | 35.58 ± 0.99 | 328.73 ± 15.79 | 491.16 ± 5.06 | 414.22 ± 31.63 |
Kabonge Red | 36.62 ± 1.86 | 7.42 ± 1.02 | 3.95 ± 0.02 | 15.40 ± 0.35 | 40.57 ± 1.07 | 272.86 ± 1.98 | 438.12 ± 86.06 | 91.20 ± 25.33 |
Kabonge white | 47.99 ± 5.09 | 7.21 ± 0.16 | 4.64 ± 0.00 | 17.83 ± 0.98 | 47.32 ± 0.23 | 481.53 ± 12.49 | 512.85 ± 28.97 | 387.81 ± 5.81 |
Kawanda bulk | 38.05 ± 3.71 | 8.29 ± 0.40 | 5.08 ± 0.08 | 18.79 ± 0.94 | 44.96 ± 0.42 | 510.13 ± 3.34 | 447.87 ± 7.04 | 357.71 ± 7.23 |
Ogwara | 48.17 ± 3.06 | 8.20 ± 0.48 | 3.86 ± 0.03 | 17.75 ± 0.16 | 34.28 ± 0.05 | 412.62 ± 2.32 | 527.20 ± 33.59 | 420.34 ± 16.97 |
Otirai | 44.46 ± 2.66 | 7.31 ± 0.60 | 4.24 ± 0.03 | 16.45 ± 0.45 | 45.39 ± 1.68 | 375.92 ± 12.25 | 473.16 ± 20.22 | 368.61 ± 2.88 |
Serenut 11T | 40.1 ± 0.78 | 6.58 ± 0.12 | 3.81 ± 0.01 | 15.00 ± 0.30 | 26.49 ± 0.23 | 256.42 ± 17.89 | 420.88 ± 3.56 | 89.33 ± 2.92 |
Serenut 12 | 28.54 ± 1.11 | 5.64 ± 0.29 | 4.33 ± 0.10 | 15.07 ± 0.82 | 26.23 ± 0.09 | 270.17 ± 2.28 | 454.01 ± 32.08 | 91.79 ± 7.50 |
Serenut 14 | 34.91 ± 1.91 | 7.34 ± 0.19 | 4.63 ± 0.00 | 16.45 ± 0.73 | 27.03 ± 0.38 | 321.10 ± 18.77 | 396.79 ± 21.10 | 79.91 ± 12.32 |
Serenut 5 | 48.78 ± 1.49 | 8.50 ± 0.41 | 4.09 ± 0.03 | 15.76 ± 0.55 | 28.92 ± 0.21 | 200.81 ± 11.36 | 508.82 ± 17.72 | 113.92 ± 4.21 |
Serenut 6 | 60.88 ± 1.14 | 7.48 ± 0.46 | 4.17 ± 0.11 | 14.85 ± 0.73 | 45.67 ± 0.17 | 482.54 ± 1.85 | 451.80 ± 8.84 | 352.52 ± 8.36 |
Serenut 7 | 42.91 ± 5.91 | 8.23 ± 1.25 | 4.27 ± 0.00 | 16.30 ± 0.84 | 29.95 ± 1.92 | 228.07 ± 3.37 | 459.87 ± 1.82 | 92.02 ± 0.61 |
Serenut 9 Tan | 43.41 ± 3.47 | 6.56 ± 0.02 | 5.02 ± 0.14 | 14.97 ± 0.05 | 31.05 ± 1.22 | 336.93 ± 4.59 | 373.06 ± 65.73 | 302.14 ± 32.16 |
Variety Name | %Protein Content | %Oil Content | %Ash Content | Zn (mg/kg) | Fe (mg/kg) | Ca (mg/kg) | Mg (mg/kg) | Na (mg/kg) |
---|---|---|---|---|---|---|---|---|
Black | 35.54 ± 2.15 | 8.14 ± 0.37 | 6.04 ± 0.36 | 18.60 ± 0.07 | 37.62 ± 0.52 | 282.47 ± 13.90 | 527.72 ± 34.50 | 408.40 ± 19.37 |
Dok red | 30.73 ± 0.90 | 8.75 ± 0.22 | 4.20 ± 0.11 | 14.91 ± 0.28 | 110.70 ± 2.78 | 370.20 ± 5.12 | 522.99 ± 32.37 | 407.37 ± 14.63 |
DokTan | 35.38 ± 3.89 | 7.63 ± 0.07 | 4.38 ± 0.03 | 12.36 ± 0.64 | 29.55 ± 0.93 | 243.91 ± 14.62 | 503.49 ± 61.62 | 333.26 ± 13.17 |
Egoromoit | 43.90 ± 0.95 | 7.15 ± 0.43 | 4.94 ± 0.03 | 14.38 ± 0.95 | 24.05 ± 0.23 | 362.99 ± 22.20 | 475.32 ± 28.91 | 322.13 ± 11.48 |
Emoit | 30.82 ± 5.16 | 5.69 ± 0.01 | 4.94 ± 0.00 | 14.16 ± 0.81 | 37.73 ± 0.77 | 392.19 ± 14.49 | 480.79 ± 61.04 | 360.70 ± 25.66 |
Erudu red | 30.26 ± 0.27 | 8.32 ± 1.90 | 5.07 ± 0.06 | 17.44 ± 0.13 | 37.25 ± 1.62 | 354.91 ± 35.14 | 516.19 ± 12.41 | 377.51 ± 42.37 |
India | 41.25 ± 0.88 | 7.19 ± 0.57 | 6.09 ± 0.02 | 14.62 ± 0.46 | 30.22 ± 0.66 | 356.27 ± 4.37 | 498.64 ± 71.17 | 323.91 ± 24.36 |
Kawanda Bulk | 35.92 ± 2.21 | 6.60 ± 0.44 | 4.28 ± 0.06 | 15.68 ± 0.04 | 49.39 ± 1.04 | 381.90 ± 23.13 | 512.53 ± 18.01 | 359.17 ± 8.61 |
Kobonge white | 28.54 ± 1.11 | 7.60 ± 0.48 | 5.03 ± 0.12 | 14.78 ± 0.57 | 47.73 ± 0.25 | 456.34 ± 15.75 | 506.89 ± 33.97 | 385.35 ± 17.91 |
Ogwara | 25.73 ± 1.98 | 6.87 ± 0.09 | 3.94 ± 0.01 | 10.36 ± 1.51 | 38.69 ± 0.85 | 165.93 ± 18.66 | 423.82 ± 38.40 | 177.07 ± 17.15 |
Otirai | 26.51 ± 2.45 | 7.96 ± 0.99 | 5.17 ± 0.06 | 13.98 ± 0.27 | 26.27 ± 0.16 | 304.05 ± 3.80 | 507.85 ± 55.07 | 367.78 ± 8.78 |
Serenut 11T | 32.68 ± 1.15 | 7.71 ± 0.37 | 4.82 ± 0.07 | 21.04 ± 0.35 | 32.60 ± 0.51 | 447.05 ± 22.92 | 544.55 ± 12.98 | 384.09 ± 6.70 |
Serenut 14 | 39.93 ± 2.76 | 7.20 ± 0.24 | 4.64 ± 0.00 | 15.42 ± 0.41 | 32.25 ± 0.25 | 250.64 ± 20.05 | 511.28 ± 88.64 | 352.61 ± 25.22 |
Serenut 5 | 30.47 ± 1.19 | 8.69 ± 1.95 | 4.96 ± 0.00 | 15.70 ± 0.95 | 49.41 ± 2.51 | 374.58 ± 5.04 | 549.18 ± 43.30 | 413.06 ± 9.99 |
Serenut 6 | 26.09 ± 3.74 | 7.23 ± 0.55 | 6.72 ± 0.61 | 15.12 ± 0.46 | 32.01 ± 0.86 | 332.40 ± 0.76 | 501.81 ± 11.17 | 370.16 ± 3.05 |
Serenut 7 | 29.43 ± 0.66 | 5.75 ± 0.41 | 5.46 ± 0.08 | 14.11 ± 0.33 | 25.84 ± 0.91 | 272.18 ± 25.22 | 457.13 ± 28.43 | 334.09 ± 47.64 |
Serenut 9 Tan | 36.63 ± 3.66 | 9.08 ± 0.49 | 5.59 ± 0.07 | 15.30 ± 0.40 | 34.12 ± 0.31 | 237.43 ± 34.16 | 478.83 ± 30.97 | 361.86 ± 16.45 |
Site | Nakasongola | Nakaseke | ||
---|---|---|---|---|
Variable | Roasted | Soup | Roasted | Soup |
Appearance | 6.5 ± 2.5 | 6.4 ± 2.4 | 6.3 ± 2.3 | 6.0 ± 2.3 |
Taste | 6.5 ± 2.4 | 6.0 ± 2.5 | 6.0 ± 2.4 | 6.1 ± 2.2 |
Aroma | 6.2 ± 2.4 | 5.9 ± 2.5 | 5.6 ± 2.3 | 5.6 ± 2.3 |
Texture | 6.4 ± 2.4 | - | 6.1 ± 2.2 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nankya, R.; Mulumba, J.W.; Lwandasa, H.; Matovu, M.; Isabirye, B.; De Santis, P.; Jarvis, D.I. Diversity in Nutrient Content and Consumer Preferences of Sensory Attributes of Peanut (Arachis hypogaea L.) Varieties in Ugandan Agroecosystems. Sustainability 2021, 13, 2658. https://doi.org/10.3390/su13052658
Nankya R, Mulumba JW, Lwandasa H, Matovu M, Isabirye B, De Santis P, Jarvis DI. Diversity in Nutrient Content and Consumer Preferences of Sensory Attributes of Peanut (Arachis hypogaea L.) Varieties in Ugandan Agroecosystems. Sustainability. 2021; 13(5):2658. https://doi.org/10.3390/su13052658
Chicago/Turabian StyleNankya, Rose, John W. Mulumba, Hannington Lwandasa, Moses Matovu, Brian Isabirye, Paola De Santis, and Devra I. Jarvis. 2021. "Diversity in Nutrient Content and Consumer Preferences of Sensory Attributes of Peanut (Arachis hypogaea L.) Varieties in Ugandan Agroecosystems" Sustainability 13, no. 5: 2658. https://doi.org/10.3390/su13052658
APA StyleNankya, R., Mulumba, J. W., Lwandasa, H., Matovu, M., Isabirye, B., De Santis, P., & Jarvis, D. I. (2021). Diversity in Nutrient Content and Consumer Preferences of Sensory Attributes of Peanut (Arachis hypogaea L.) Varieties in Ugandan Agroecosystems. Sustainability, 13(5), 2658. https://doi.org/10.3390/su13052658