A Spatial Ecosystem Services Assessment to Support Decision and Policy Making: The Case of the City of Bologna
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
- The historic city center—located 54 m a.s.l. with high population density and imperviousness [25];
- The hills (280 m a.s.l.) and woodlands (hill city, according to the objectives of Bologna PSC [26])—account for most of the urban forest area, lie south of the city;
- The rest of the city—location of the main transport infrastructure (railroad city and ring road city, according to the objectives of Bologna PSC [26]) and some periurban agricultural areas.
2.2. Methodological Approach
2.2.1. Water Retention Supply and Demand Mapping and Assessment
- Agricultural demand (Equation (5)): water needed to irrigate cultivated fields. The percentage of the cultivated area in need of irrigation (Acrop · %irrig) [37] is multiplied by the volume of water needed for the specific crop (Wcrop). Subsequently, agricultural demand is distributed over the agricultural areas (Acrop) (our computation based on [27]).
- Industrial and tertiary demand (Equation (8)): computed as the difference between the volume of water consumed for nondomestic use (Dnon-dom) [36] and the abovementioned demands (Equations (5)–(7)).
2.2.2. PM10 Removal Supply and Demand Mapping and Assessment
2.2.3. Carbon Sequestration Supply and Demand Mapping and Assessment
2.2.4. ESDR and Districts’ Clusters: Identifying and Highlighting Mismatches for ESs
- It enables evaluation of the ratio between supply and demand within selected districts. If ESDR is greater than zero, an ecosystem service surplus is observed, and the demand is matched by the current supply; otherwise, if ESDR is negative, the supply cannot meet the demand, highlighting the shortage in the distribution of such service.
- It enables the comparison of different districts [63] through the creation of a scale composed by comparable dimensionless values.
2.3. Data Collected
2.3.1. Water Retention
- Residential demand. The total population per district was acquired from the metropolitan city of Bologna web portal (population section) [35]. In addition, water for domestic use was retrieved from the open data website of the municipality, through an HERA-developed analysis [36]. The total consumption of water for domestic use in Bologna was observed to be of 21,710 · 103 m3/year during 2018. The data were then divided by the number of inhabitants of the city to determine the domestic water use per capita (m3/(year⋅inhabitant).
- Agricultural demand. All of the data noted were retrieved from a study developed by ISTAT (Italian National Institute of Statistics) [37] that provides irrigation volumes used by type of cultivation in cubic meters per hectare of irrigated area, and the area of irrigated surface as a percentage of the total agricultural area.
- Airport demand. The airport contribution to the overall request for water in Bologna comes from the sustainability report of the airport [38] and is referred to 2014. The proposed value is considered to be higher than more recent ones, since measures to contain water consumption at the airport were activated in the last few years [66] and is therefore considered an acceptable appraisal.
- Ecological demand. The ecological requested water for green urban areas (Weco) was retrieved from the Bologna Adaptation Plan [22] and are assumed to be stable for 2018.
- Industrial demand. Since no data were available for industrial consumption, the approach described in Section 2.2.1 was followed, and the total water for nondomestic use was retrieved from the previous HERA-developed analysis [36].
2.3.2. PM10 Removal
2.3.3. Carbon Sequestration
3. Results
3.1. Water Retention Results
3.2. PM10 Removal Results
3.3. Carbon Sequestration Results
3.4. Clustering of Districts
4. Discussion
5. Conclusions
- (i)
- Identifing “hotspot” areas with high mismatches of ES supply and demand;
- (ii)
- Enhancing engagement of stakeholders in the codevelopment and coimplementation of relevant measures to address mismatches;
- (iii)
- Supporting decision-makers in setting priorities by communicating the overall benefits and shortcomings through easy-to-read maps of the city;
- (iv)
- Classifying and clustering urban areas, i.e., districts, that present similar results in terms of mismatches for ES supply and demand, and further define priority and type of intervention;
- (v)
- Potentially enhancing citizens’ valuation of ecosystem services, providing them with a clear understanding of ES benefits derived and raising awareness among the population on the relevance of the urban green and blue infrastructures (GBI).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations: Department of Economic and Social Affairs. Population Division. World Urbanization Prospects 2018: Highlights; United Nations: New York, NY, USA, 2019; ISBN 978-92-1-148318-5. [Google Scholar]
- EEA. The European Environment—State and Outlook 2020. Knowledge for Transition to a Sustainable Europe; 2019; ISBN 978-92-9480-090-9. Available online: https://www.preventionweb.net/publications/view/69423 (accessed on 3 September 2020).
- Elmqvist, T.; Goodness, J.; Marcotullio, P.J.; Parnell, S.; Sendstad, M.; Wilkinson, C.; Fragkias, M.; Güneralp, B.; McDonald, R.I.; Schewenius, M.; et al. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-7088-1. [Google Scholar]
- Cortinovis, C.; Geneletti, D. Ecosystem Services in Urban Plans: What Is There, and What Is Still Needed for Better Decisions. Land Use Policy 2018, 70, 298–312. [Google Scholar] [CrossRef]
- McPhearson, T.; Andersson, E.; Elmqvist, T.; Frantzeskaki, N. Resilience of and through Urban Ecosystem Services. Ecosyst. Serv. 2015, 12, 152–156. [Google Scholar] [CrossRef]
- MEA. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being—A Framework for Assessment; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and Classifying Ecosystem Services for Decision Making. Ecol. Econ. 2009. [Google Scholar] [CrossRef] [Green Version]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being. Synthesis; Island Press: Washington, DC, USA, 2005; ISBN 1-59726-040-1. [Google Scholar]
- Geneletti, D.; Cortinovis, C.; Zardo, L.; Esmail, B.A. Planning for Ecosystem Services in Cities, 1st ed.; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-20023-7. [Google Scholar]
- Bolund, P.; Hunhammar, S. Ecosystem Services in Urban Areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and Valuing Ecosystem Services for Urban Planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- TEEB. The Economics of Ecosystems and Biodiversity Ecological and Economic Foundations; Earthscan: London, UK; Washington, DC, USA, 2010. [Google Scholar]
- Hansen, R.; Frantzeskaki, N.; McPhearson, T.; Rall, E.; Kabisch, N.; Kaczorowska, A.; Kain, J.-H.; Artmann, M.; Pauleit, S. The Uptake of the Ecosystem Services Concept in Planning Discourses of European and American Cities. Ecosyst. Serv. 2015, 12, 228–246. [Google Scholar] [CrossRef] [Green Version]
- Kaczorowska, A.; Kain, J.-H.; Kronenberg, J.; Haase, D. Ecosystem Services in Urban Land Use Planning: Integration Challenges in Complex Urban Settings—Case of Stockholm. Ecosyst. Serv. 2016, 22, 204–212. [Google Scholar] [CrossRef]
- Kabisch, N. Ecosystem Service Implementation and Governance Challenges in Urban Green Space Planning—The Case of Berlin, Germany. Land Use Policy 2015, 42, 557–567. [Google Scholar] [CrossRef]
- World Health Organization. Ecosystems and Human Well-Being—Health Synthesis. A report of the Millennium Ecosystem Assessment; WHO Press: Geneva, Switzerland, 2005. [Google Scholar]
- Baró, F.; Haase, D.; Gómez-Baggethun, E.; Frantzeskaki, N. Mismatches between Ecosystem Services Supply and Demand in Urban Areas: A Quantitative Assessment in Five European Cities. Ecol. Indic. 2015. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Jiang, B.; Bai, Y.; Xu, X.; Alatalo, J.M. Quantifying Ecosystem Services Supply and Demand Shortfalls and Mismatches for Management Optimisation. Sci. Total Environ. 2019, 650, 1426–1439. [Google Scholar] [CrossRef] [PubMed]
- Atlante Statistico Metropolitano Studio Sul Movimento—Trend. Available online: http://inumeridibolognametropolitana.it/atlantemetropolitano/popolazione/movimento-della-popolazione/studio-sul-movimento (accessed on 8 May 2020).
- ARPA Lombardia Progetto Bacino Padano—Aria/Qualità Dell’Aria. Available online: https://www.arpalombardia.it:443/Pages/Aria/Aria-Progetti/Progetto-Bacino-Padano.aspx (accessed on 29 October 2020).
- Comune di Bologna Piano Di Adattamento Città Di Bologna. Available online: http://www.comune.bologna.it/media/files/piano_adattamento_bologna.pdf (accessed on 3 September 2020).
- De Luca, C.; Martin, J.; Tondelli, S. Ecosystem Services Integration into Local Policies and Strategies in the City of Bologna: Analysis of the State of the Art and Recommendations for Future Development. Ecosyst. Serv. Green Infrastruct. Cities Nat. 2021. [Google Scholar] [CrossRef]
- Comune di Bologna Iperbole—PSC. Available online: http://www.comune.bologna.it/psc/ (accessed on 20 October 2020).
- Copernicus Imperviousness Density. 2015. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers/imperviousness/status-maps/2015 (accessed on 10 February 2020).
- Comune di Bologna PSC—Documenti di Piano—Figure Della Ristrutturazione. Available online: http://informa.comune.bologna.it/iperbole/psc/documenti/850 (accessed on 5 January 2020).
- Regione Emilia-Romagna Coperture Vettoriali Dell’uso Del Suolo—Edizione 2018. Available online: https://geoportale.regione.emilia-romagna.it/it/download/dati-e-prodotti-cartografici-preconfezionati/pianificazione-e-catasto/uso-del-suolo-1/2014-coperture-vettoriali-uso-del-suolo-di-dettaglio-edizione-2018/dati-preconfezionati (accessed on 11 November 2019).
- Larondelle, N.; Lauf, S. Balancing Demand and Supply of Multiple Urban Ecosystem Services on Different Spatial Scales. Ecosyst. Serv. 2016. [Google Scholar] [CrossRef]
- Pauleit, S.; Duhme, F. Assessing the Environmental Performance of Land Cover Types for Urban Planning. Landsc. Urban Plan. 2000. [Google Scholar] [CrossRef]
- Vihervaara, P.; Poikolainen, L.; Nedkov, S.; Viinikka, A.; Adamescu, C.; Arnell, A.; Balzan, M.; Bicking, S.; Broekx, S.; Burkhard, B.; et al. Biophysical Mapping and Assessment Methods for Ecosystem Services; Deliverable D3.3 EU Horizon 2020 ESMERALDA Project, Grant Agreement No. 642007, 2018. (EU Deliverable). Available online: https://www.researchgate.net/profile/Malgorzata_Stepniewska/publication/325217449_Biophysical_Mapping_and_Assessment_Methods_for_Ecosystem_Services/links/5afe971daca272b5d84ab65e/Biophysical-Mapping-and-Assessment-Methods-for-Ecosystem-Services.pdf (accessed on 3 September 2020).
- Water and Climate Change. Available online: https://www.iucn.org/resources/issues-briefs/water-and-climate-change (accessed on 20 October 2020).
- UNESCO; UN-Water. UN World Water Development Report 2020: Water and Climate Change; Water and Climate Change; UNESCO: Paris, France, 2020. [Google Scholar]
- Comune di Bologna; Kyoto Club; AmbienteItalia; ARPA BLUEAP. PROFILO CLIMATICO LOCALE: Analisi Delle Vulnerabilità All’impatto Dei Cambiamenti Climatici. Available online: https://docs.google.com/viewerng/viewer?url=http://www.blueap.eu/site/wp-content/uploads/2013/11/BLUEAP_PROFILO_CLIMATICO_LOCALE.pdf (accessed on 7 September 2020).
- Comune di Bologna Climatologia—Temperature e Precipitazioni. Available online: http://inumeridibolognametropolitana.it/dati-statistici/ambiente-e-territorio/climatologia (accessed on 20 January 2020).
- Comune di Bologna Popolazione Residente per Età, Quartiere e Zona al 31 Dicembre—Serie Storica. Available online: http://inumeridibolognametropolitana.it/dati-statistici/popolazione-residente-eta-quartiere-e-zona-al-31-dicembre-serie-storica (accessed on 20 January 2020).
- Comune di Bologna Acqua—Consumo Di Acqua per i Diversi Usi Nel Comune Di Bologna Dal 1996 al 2018. Available online: http://www.comune.bologna.it/iperbole/piancont/dati_statistici/Indici/Ambiente%20e%20territorio/index.htm (accessed on 11 September 2020).
- Istituto Nazionale di Statistica (ISTAT) Utilizzo e Qualità Della Risorsa Idrica in Italia. Available online: https://www.istat.it/it/files//2019/10/Utilizzo-e-qualit%C3%A0-della-risorsa-idrica-in-Italia.pdf (accessed on 11 September 2020).
- Aeroporto Guglielmo Marconi di Bologna S.p.A. Bilancio Di Sostenibilità. 2014. Available online: https://www.bologna-airport.it/System/files/Bilanciaziendali/bilancio_sostenibilita_2014.pdf (accessed on 19 December 2020).
- EEA; Guerreiro, C.; Ortiz, G.A.; de Leeuw, F. Air Quality in Europe—2017 Report; Publications Office of the European Union: Luxembourg, 2017; ISBN ISSN 1725-9177. [Google Scholar]
- WHO. Health Effects of Particulate Matter: Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia. J. Korean Med Assoc. 2013. [Google Scholar] [CrossRef]
- World Health Organization Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 7 October 2020).
- World Health Organization. Air Pollution. Available online: https://www.who.int/westernpacific/health-topics/air-pollution (accessed on 7 October 2020).
- Hendryx, M.; Luo, J. COVID-19 Prevalence and Fatality Rates in Association with Air Pollution Emission Concentrations and Emission Sources. Environ. Pollut. 2020, 265, 115126. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M.; Schneider, N. The Relationship between Air Pollution and COVID-19-Related Deaths: An Application to Three French Cities. Appl. Energy 2020, 279, 115835. [Google Scholar] [CrossRef]
- Yao, Y.; Pan, J.; Wang, W.; Liu, Z.; Kan, H.; Qiu, Y.; Meng, X.; Wang, W. Association of Particulate Matter Pollution and Case Fatality Rate of COVID-19 in 49 Chinese Cities. Sci. Total Environ. 2020, 741, 140396. [Google Scholar] [CrossRef]
- Zhang, Z.; Xue, T.; Jin, X. Effects of Meteorological Conditions and Air Pollution on COVID-19 Transmission: Evidence from 219 Chinese Cities. Sci. Total Environ. 2020, 741, 140244. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between Short-Term Exposure to Air Pollution and COVID-19 Infection: Evidence from China. Sci. Total Environ. 2020, 727, 138704. [Google Scholar] [CrossRef]
- McPhearson, T.; Kremer, P.; Hamstead, Z.A. Mapping Ecosystem Services in New York City: Applying a Social-Ecological Approach in Urban Vacant Land. Ecosyst. Serv. 2013. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air Pollution Removal by Urban Trees and Shrubs in the United States. Urban For. Urban Green. 2006. [Google Scholar] [CrossRef]
- Baró, F.; Chaparro, L.; Gómez-Baggethun, E.; Langemeyer, J.; Nowak, D.J.; Terradas, J. Contribution of Ecosystem Services to Air Quality and Climate Change Mitigation Policies: The Case of Urban Forests in Barcelona, Spain. Ambio 2014. [Google Scholar] [CrossRef] [Green Version]
- McPherson, G.E.; Nowak, D.J.; Rowntree, R.A. Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project, 1st ed.; U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Radnor, PA, USA, 1994. [CrossRef]
- i-Tree Cooperative I-Tree Canopy. Available online: https://canopy.itreetools.org/ (accessed on 3 October 2020).
- Nowak, D.J.; Crane, D.E. The Urban Forest Effects (UFORE) Model: Quantifying Urban Forest Structure and Functions. In Integrated Tools for Natural Resources Inventories in the 21st Century; Gen. Tech. Rep. NC-212; Mark, H., Tom, T., Eds.; Dept. of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 2000; Volume 212, pp. 714–720. [Google Scholar]
- Comune di Bologna Qualità Dell’aria. Available online: http://inumeridibolognametropolitana.it/dati-statistici/ambiente-e-territorio/qualita-dellaria (accessed on 9 September 2020).
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Lindsey, R. Climate Change: Atmospheric Carbon Dioxide. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide (accessed on 10 September 2020).
- World Meteorological Organization. WMO Statement on the State of the Global Climate in 2018; World Meteorological Organization (WMO): Geneva, Switzerland, 2019. [Google Scholar]
- NASA Global Climate Change Carbon Dioxide Concentration | NASA Global Climate Change. Available online: https://climate.nasa.gov/vital-signs/carbon-dioxide (accessed on 7 October 2020).
- Intergovernmental Panel on Climate Change (IPCC); Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Environment Programme, U.N. Cities and Climate Change. Available online: http://www.unenvironment.org/explore-topics/resource-efficiency/what-we-do/cities/cities-and-climate-change (accessed on 7 October 2020).
- Nowak, D.J.; Crane, D.E. Carbon Storage and Sequestration by Urban Trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- ARPAE; Regione Emilia-Romagna Aggiornamento Dell’inventario Regionale Delle Emissioni in Atmosfera Dell’Emilia-Romagna Relativo All’anno 2015 (INEMAR-ER 2015). Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwirzKK465TvAhUFOuwKHRMLCrsQFjABegQIAxAD&url=https%3A%2F%2Fwww.arpae.it%2Fit%2Ftemi-ambientali%2Faria%2Finventario-emissioni%2Finventario_emissioni_2017.pdf&usg=AOvVaw1eVBduuK69rCJHKvpjm00T (accessed on 10 September 2020).
- Li, J.; Jiang, H.; Bai, Y.; Alatalo, J.M.; Li, X.; Jiang, H.; Liu, G.; Xu, J. Indicators for Spatial-Temporal Comparisons of Ecosystem Service Status between Regions: A Case Study of the Taihu River Basin, China. Ecol. Indic. 2016. [Google Scholar] [CrossRef]
- Baró, F.; Palomo, I.; Zulian, G.; Vizcaino, P.; Haase, D.; Gómez-Baggethun, E. Mapping Ecosystem Service Capacity, Flow and Demand for Landscape and Urban Planning: A Case Study in the Barcelona Metropolitan Region. Land Use Policy 2016, 57, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Geijzendorffer, I.R.; Martín-López, B.; Roche, P.K. Improving the Identification of Mismatches in Ecosystem Services Assessments. Ecol. Indic. 2015, 52, 320–331. [Google Scholar] [CrossRef]
- Ambiti Di Attività - Aeroporto G. Marconi Di Bologna BLQ. Available online: https://www.bologna-airport.it/la-societa/ambiente-qualita-e-sicurezza/ambiente-ed-energia/i-nostri-ambiti-di-attivita/?idC=62379 (accessed on 19 December 2020).
- Escobedo, F.J.; Wagner, J.E.; Nowak, D.J.; De la Maza, C.L.; Rodriguez, M.; Crane, D.E. Analyzing the Cost Effectiveness of Santiago, Chile’s Policy of Using Urban Forests to Improve Air Quality. J. Environ. Manag. 2008. [Google Scholar] [CrossRef] [PubMed]
- Shreffler, J.H. Factors Affecting Dry Deposition of SO2 on Forests and Grasslands. Atmos. Environ. (1967) 1978. [Google Scholar] [CrossRef]
- Comune di Bologna Concentrazione Di Alcuni Inquinanti Nell’aria Rilevata Dalle Centraline Di Bologna. Valori Medi Annui - Serie Storica | I Numeri Di Bologna. Available online: http://inumeridibolognametropolitana.it/dati-statistici/concentrazione-di-alcuni-inquinanti-nellaria-rilevata-dalle-centraline-di-bologna (accessed on 29 October 2020).
- Council of European Union. Council Directive 1999/30/EC of 22 April 1999 Relating to Limit Values for Sulphur Dioxide, Nitrogen Dioxide and Oxides of Nitrogen, Particulate Matter and Lead in Ambient Air; Office for Official Publications of the European Communities: Luxembourg, 1999; Volume L 163, pp. 0041–0060. [Google Scholar]
- Ministero dell’Ambiente e della Tutela del Territorio (law). Recepimento Della Direttiva 1999/30/CE Del Consiglio Del 22 Aprile 1999 Concernente i Valori Limite Di Qualita’ Dell’aria Ambiente per Il Biossido Di Zolfo, Il Biossido Di Azoto, Gli Ossidi Di Azoto, Le Particelle e Il Piombo e Della Direttiva 2000/69/CE Relativa Ai Valori Limite Di Qualita’ Dell’aria Ambiente per Il Benzene Ed Il Monossido Di Carbonio; Ministry of Justice - Directorate of the Official Gazette of the Italian Republic: Rome, Italy, 2002.
- World Health Organization. Air Quality Guidelines. Global Update 2005; WHO Press: Geneva, Switzerland, 2006; ISBN 92 890 1358 3. [Google Scholar]
- Comune di Bologna Numero Di Giorni Di Superamento Del Limite Giornaliero Di PM10 Nell’aria Rilevata Dalle Centraline Di Bologna - Serie Storica | I Numeri Di Bologna. Available online: http://inumeridibolognametropolitana.it/dati-statistici/numero-di-giorni-di-superamento-del-limite-giornaliero-di-pm10-nellaria-rilevata (accessed on 29 October 2020).
- Regione Emilia-Romagna (law). Misure per Il Miglioramento Della Qualità Dell’aria in Attuazione Del Piano Aria Integrato Regionale (Pair 2020) e Del Nuovo Accordo Di Bacino Padano 2017; Redazione del Bollettino Ufficiale: Bologna, Italy, 2017. [Google Scholar]
- Antunes, L.N.; Ghisi, E.; Severis, R.M. Environmental Assessment of a Permeable Pavement System Used to Harvest Stormwater for Non-Potable Water Uses in a Building. Sci. Total Environ. 2020, 746, 141087. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.; Kubilay, A.; Derome, D.; Carmeliet, J. The Use of Permeable and Reflective Pavements as a Potential Strategy for Urban Heat Island Mitigation. Urban Clim. 2020, 31, 100534. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon Storage and Sequestration by Trees in Urban and Community Areas of the United States. Environ. Pollut. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban Forests and Pollution Mitigation: Analyzing Ecosystem Services and Disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- Bodnaruk, E.W.; Kroll, C.N.; Yang, Y.; Hirabayashi, S.; Nowak, D.J.; Endreny, T.A. Where to Plant Urban Trees? A Spatially Explicit Methodology to Explore Ecosystem Service Tradeoffs. Landsc. Urban Plan. 2017. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.D.J. Strategic Tree Planting as an EPA Encouraged Pollutant Reduction Strategy: How Urban Trees Can Obtain Credit in State Implementation Plans. Sylvan Communities 25–27 2005. [Google Scholar]
- Young, R.F. Planting the Living City. J. Am. Plan. Assoc. 2011, 77, 368–381. [Google Scholar] [CrossRef]
- Cortinovis, C.; Geneletti, D. A Framework to Explore the Effects of Urban Planning Decisions on Regulating Ecosystem Services in Cities. Ecosyst. Serv. 2019. [Google Scholar] [CrossRef]
District Cluster | Built-Up and Sealed | Green Urban Areas | Tree Canopy Cover | Priority of Intervention | ESDR Class | Suggested Intervention |
---|---|---|---|---|---|---|
Cluster A | BU > 95% | GUA < 5% | TCC < 15% | Very high | 0–10 | Hybrid NBS, Green Roofs and Green Walls, Single trees, Sustainable Urban Drainage System (SUDS) |
Cluster B | 85% < BU < 95% | 5% < UGA < 15% | 15% < TCC < 25% | High | 11–15 | Hybrid NBS, Green Roofs and Green Walls, Single trees, SUDS Urban regeneration intervention |
Cluster C | 40% < BU < 85% | 15% < UGA < 60% | 10% < TCC < 35% | Medium | 16–20 | Urban forest, Urban regeneration interventions |
Cluster D | BU < 50% | GUA > 50% | TCC > 35% | Low | 21–25 | No priority intervention needed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vignoli, F.; de Luca, C.; Tondelli, S. A Spatial Ecosystem Services Assessment to Support Decision and Policy Making: The Case of the City of Bologna. Sustainability 2021, 13, 2787. https://doi.org/10.3390/su13052787
Vignoli F, de Luca C, Tondelli S. A Spatial Ecosystem Services Assessment to Support Decision and Policy Making: The Case of the City of Bologna. Sustainability. 2021; 13(5):2787. https://doi.org/10.3390/su13052787
Chicago/Turabian StyleVignoli, Francesca, Claudia de Luca, and Simona Tondelli. 2021. "A Spatial Ecosystem Services Assessment to Support Decision and Policy Making: The Case of the City of Bologna" Sustainability 13, no. 5: 2787. https://doi.org/10.3390/su13052787
APA StyleVignoli, F., de Luca, C., & Tondelli, S. (2021). A Spatial Ecosystem Services Assessment to Support Decision and Policy Making: The Case of the City of Bologna. Sustainability, 13(5), 2787. https://doi.org/10.3390/su13052787