Integrating Environmental Impact and Ecosystem Services in the Process of Land Resource Capitalization—A Case Study of Land Transfer in Fuping, Hebei
Abstract
:1. Introduction
2. Land Transfer and Overview of the Study Area
2.1. Land Transfer
2.2. General Situation of the Study Area
3. Research Method
3.1. Life Cycle Assessment
3.1.1. Evaluation Objective
3.1.2. Functional Unit
3.1.3. System Boundary
3.1.4. Data Lists and Sources
3.1.5. Impact Categories and Impact Assessment Methodology
3.2. Life Cycle Cost
3.3. Assessment of Ecosystem Services
4. Results
4.1. Analysis of Land Resource Capitalization Process
4.1.1. Overall Environmental Impact Analysis of Land Resource Capitalization Process
4.1.2. Analysis of Specific Links in the Process of Land Resource Capitalization
4.2. Analysis of the Conversion into Resource Stage
4.3. Analysis of Resource–Asset Stage
4.4. Analysis of Asset–Capitalization Stage
5. Discussion
5.1. Sensitivity Analysis of Key Environmental Indicators in the Resource Capitalization Process
5.2. Advantages and Disadvantages of Integrating Life Cycle Assessment and Ecosystem Services to Evaluate the Resource Capitalization Process
6. Conclusions
- (1)
- The process of resource capitalization under the land transfer mode will have a certain impact on the environment. The most significant indicators for the whole process on environment are Human toxicity, Marine ecotoxicity, Metal depletion, Climate change, Fossil depletion and Particulate matter formation.
- (2)
- The contribution degree of different links to environmental indicators is obviously different. The irrigation and drainage project has the most significant impact on the overall environment of resource capitalization, whereas the farmland protection and ecological conservation project has the least impact. On the whole, there is not necessarily a positive correlation between environmental load and economic cost.
- (3)
- In the conversion into resource stage, the maximum economic cost of different raw materials is not necessarily at the expense of the maximum environmental load. In the stage of resource–asset, different crops have different impacts on environmental indicators. From the value changes of ecosystem services, the positive function of the changes in ecosystem services occupies a dominant position, far exceeding its negative impact. In the stage of asset–capitalization, the proportion of the value in ecosystem services to the value added of capitalization is particularly prominent.
- (4)
- From the perspective of material and energy input, through sensitivity analysis of key environmental indicators, there is a possibility of reducing the potential environmental impact of inputs in the whole resource capitalization process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.; Shen, Y.; Wang, Y.A.; Wu, Q. The effect of industrial relocation on industrial land use efficiency in China: A spatial econometrics approach. J. Clean. Prod. 2018, 205, 525–535. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Shao, L.; Sun, X.D.; Han, M.Y.; Zhao, X.L.; Meng, J.; Zhang, B.; Qiao, H. Outsourcing natural resource requirements within China. J. Environ. Manag. 2018, 228, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.C.; Dong, X.B.; Liu, H.M.; Wei, H.J.; Fan, W.G.; Lu, N.C.; Xu, Z.H.; Ren, J.H.; Xing, K.X. Linking land use change, ecosystem services and human well-being: A case study of the Manas river basin of Xinjiang, China. Ecosyst. Serv. 2017, 27, 113–123. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, L.Y.; Liu, Y.S. Land consolidation boosting poverty alleviation in China: Theory and practice. Land Use Pol. 2019, 82, 339–348. [Google Scholar] [CrossRef]
- Li, Y.J.; Kong, X.S.; Zhu, Z.Q. Multiscale analysis of the correlation patterns between the urban population and construction land in China. Sustain. Cities Soc. 2020, 61, 102326. [Google Scholar] [CrossRef]
- Gao, J.X.; Fan, X.S.; Li, H.M.; Tian, M.R. Research on constituent elements, operation modes and political demands for capitalizing ecological assets. Res. Environ. Sci. 2016, 29, 315–322. [Google Scholar]
- Yan, L.D.; Li, P.H.; Deng, Y.J.; Qu, Z.G. Research on capitalization value of natural resources-based on natural resources economics thinking. J. Arid Land Resour. Environ. 2018, 32, 1–9. [Google Scholar]
- Chen, W.J. A Study on Development of Land Capitalizationin Guangzhou City; South China University of Technology: Guangzhou, China, 2015. [Google Scholar]
- Duan, J.P.; Xu, D.R. Analysis of resources property right during the resources capitalization process in China. J. Zhengzhou Univ. Aeronaut. 2007, 6, 9–12. [Google Scholar]
- Zhang, X.Q.; Liu, S.M. Research on the basic theory of land consolidation and reclamation. Shanxi Agric. Econ. 2018, 21, 27–29. [Google Scholar]
- Zhang, J.H.; Zhao, X.J.; Wang, Y. Quantitative evaluation and application of economic benefits of land reclamation based on AHP theory. Resour. Econ. Environ. Prot. 2017, 9, 55–56. [Google Scholar]
- Xu, F.; Wang, Z.Q.; Zhang, H.W. Rural residential land recycling under the ecological concept. Resour. Sci. 2017, 39, 1238–1247. [Google Scholar]
- Hong, S.; Zhao, H.X.; Yuan, K.N. Guanting reservoir wetland park water quality project. Wetl. Sci. Manag. 2017, 13, 4–7. [Google Scholar]
- Shan, J.Z.; Li, J.M.; Xu, Z.H. Estimating ecological damage caused by green tides in the Yellow Sea: A choice experiment approach incorporating extended theory of planned behavior. Ocean Coast. Manag. 2019, 181, 104901. [Google Scholar] [CrossRef]
- Mostert, E.; Gaertner, M.; Holmes, P.M.; O’Farrell, P.J.; Richardson, D.M. A multi-criterion approach for prioritizing areas in urban ecosystems for active restoration following invasive plant control. Environ. Manag. 2019, 62, 1150–1167. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Han, Z.Y.; Cui, Y.Z.; Zhang, H.B.; Liu, L.L. Determination of the agricultural eco-compensation standards in ecological fragile poverty areas based on emergy synthesis. Sustainability 2019, 11, 2548. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Li, S.N.; Pu, J.W.; Miao, P.P.; Wang, Q.; Tan, K. Optimization of the national land space based on the coordination of urban-agricultural-ecological functions in the karst areas of southwest China. Sustainability 2019, 11, 6752. [Google Scholar] [CrossRef]
- Li, T.; Lu, Y.H.; Fu, B.J.; Comber, A.J.; Harris, P.; Wu, L.H. Gauging policy-driven large-scale vegetation restoration programmes under a changing environment: Their effectiveness and socio-economic relationships. Sci. Total Environ. 2017, 607, 911–919. [Google Scholar] [CrossRef]
- Yang, W.; Jin, Y.W.; Sun, T.; Yang, Z.F.; Cai, Y.P.; Yi, Y.J. Trade-offs among ecosystem services in coastal wetlands under the effects of reclamation activities. Ecol. Indic. 2018, 92, 354–366. [Google Scholar] [CrossRef]
- Khan, I.; Zhao, M.J.; Khan, S.U. Ecological degradation of an inland river basin and an evaluation of the spatial and distance effect on willingness to pay for its improvement. Environ. Sci. Pollut. Res. 2018, 25, 31474–31485. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Lei, H.D.; Ali, G.; Ali, S.; Zhao, M.J. Public attitudes, preferences and willingness to pay for river ecosystem services. Int. J. Environ. Res. Public Health 2019, 16, 3707. [Google Scholar] [CrossRef]
- Qu, Y.; Long, H.L. The economic and environmental effects of land use transitions under rapid urbanization and the implications for land use management. Habitat Int. 2018, 82, 113–121. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Williams, B. Determinants of urban expansion and agricultural land conversion in 25 EU countries. Environ. Manag. 2017, 60, 717–746. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.Q.; Wang, L.P.; Wang, X.D.; Zhang, Z.; Lu, Z.W. Interpreting non-conforming urban expansion from the perspective of stakeholders’ decision-making behavior. Habitat Int. 2019, 89, 102007. [Google Scholar] [CrossRef]
- Zhou, C. On the constitution of land property rights in my country. China Land Sci. 1997, 3, 1–6. [Google Scholar]
- Fu, G.; Chen, W.K.; Li, S.Y.; Tang, H. The dilemma and path choice of promoting property right marketization of rural resources in China. Issues Agric. Econ. 2016, 37, 14–23. [Google Scholar]
- Chen, H. Research on the value composition of allocated land and its evaluation method. Times Financ. 2015, 33, 369–373. [Google Scholar]
- Zhu, Y.L.; Li, J.; He, B.N. Research on the economic feasibility of rural land securitization. Product. Res. 2008, 9, 37–38. [Google Scholar]
- Zhang, X.G. Legal attribute and regulation of land ticket tradeoff. J. Nanjing Agric. Univ. Soc. Sci. Ed. 2015, 4, 106–113. [Google Scholar]
- Luo, S.W. The capitalization trend of rural land and the key points of management. China Land 2011, 6, 55–56. [Google Scholar]
- Tang, P.C.; Yang, S.W.; Fu, S.K. Do political incentive affects China’s land transfer in energy-intensive industries? Energy 2018, 164, 550–559. [Google Scholar] [CrossRef]
- Xu, D.D.; Cao, S.; Wang, X.X.; Liu, S.Q. Influences of labor migration on rural household land transfer: A case study of Sichuan Province, China. J. Mt. Sci. 2018, 15, 2055–2067. [Google Scholar] [CrossRef]
- Peng, K.L.; Yang, C.; Chen, Y. Land transfer in rural China: Incentives, influencing factors and income effects. Appl. Econ. 2020, 52, 5477–5490. [Google Scholar] [CrossRef]
- Lu, N.C.; Wei, H.J.; Fan, W.G.; Xu, Z.H.; Wang, X.C.; Xing, K.X.; Dong, X.B.; Viglia, S.; Ulgiati, S. Multiple influences of land transfer in the integration of Beijing-Tianjin-Hebei region in China. Ecol. Indic. 2018, 90, 101–111. [Google Scholar] [CrossRef]
- Li, B.W.; Shen, Y.Q. Effects of land transfer quality on the application of organic fertilizer by large-scale farmers in China. Land Use Pol. 2021, 100, 105124. [Google Scholar] [CrossRef]
- General Office of Hebei Provincial Committee of the Communist Party of China. Implementation opinions on guiding the orderly transfer of rural land management rights to develop agricultural appropriate scale operation. Hebei Agric. 2015, 9, 4–8. [Google Scholar]
- Li, J.T.; Sun, Z.F. Does the transfer of state-owned land-use rights promote or restrict urban development? Land Use Pol. 2021, 100, 104945. [Google Scholar] [CrossRef]
- Chandra, V.V.; Hemstock, S.L.; Mwabonje, O.N.; N’Yeurt, A.D.; Woods, J. Life cycle assessment of sugarcane growing process in Fiji. Sugar Tech 2018, 20, 692–699. [Google Scholar] [CrossRef]
- Woldegebriel, D.; Udo, H.; Viets, T.; van der Harst, E.; Potting, J. Environmental impact of milk production across an intensification gradient in Ethiopia. Livest. Sci. 2017, 206, 28–36. [Google Scholar] [CrossRef]
- Behrooznia, L.; Sharifi, M.; Alimardani, R.; Mousavi-Avval, S.H. Sustainability analysis of landfilling and composting-landfilling for municipal solid waste management in the north of Iran. J. Clean. Prod. 2018, 203, 1028–1038. [Google Scholar] [CrossRef]
- Kim, K.J.; Yun, W.G.; Cho, N.; Ha, J. Life cycle assessment based environmental impact estimation model for pre-stressed concrete beam bridge in the early design phase. Environ. Impact Assess. Rev. 2017, 64, 47–56. [Google Scholar] [CrossRef]
- Anwani, S.; Methekar, R.; Ramadesigan, V. Life cycle assessment and economic analysis of acidic leaching and baking routes for the production of cobalt oxalate from spent lithium-ion batteries. J. Mater. Cycles Waste Manag. 2020, 22, 2092–2106. [Google Scholar] [CrossRef]
- Fan, W.G.; Dong, X.B.; Wei, H.J.; Weng, B.Q.; Liang, L.; Xu, Z.H.; Wang, X.C.; Wu, F.L.; Chen, Z.D.; Jin, Y.; et al. Is it true that the longer the extended industrial chain, the better the circular agriculture? A case study of circular agriculture industry company in Fuqing, Fujian. J. Clean. Prod. 2018, 189, 718–728. [Google Scholar] [CrossRef]
- Zhu, X.Z.; Ho, C.H.; Wang, X.N. Application of Life cycle assessment and machine learning for high-throughput screening of green chemical substitutes. ACS Sustain. Chem. Eng. 2020, 8, 11141–11151. [Google Scholar] [CrossRef]
- de Bortoli, A.; Bouhaya, L.; Feraille, A. A life cycle model for high-speed rail infrastructure: Environmental inventories and assessment of the Tours-Bordeaux railway in France. Int. J. Life Cycle Assess. 2020, 25, 814–830. [Google Scholar] [CrossRef]
- Bhatt, A.; Bradford, A.; Abbassi, B.E. Cradle-to-grave life cycle assessment (LCA) of low-impact-development (LID) technologies in southern Ontario. J. Environ. Manag. 2019, 231, 98–109. [Google Scholar] [CrossRef]
- Fan, W.G.; Chen, N.; Li, X.M.; Wei, H.J.; Wang, X.C. Empirical research on the process of land resource-asset-capitalization—A case study of Yanba, Jiangjin district, Chongqing. Sustainability 2020, 12, 1236. [Google Scholar] [CrossRef]
- Xu, Z.H.; Fan, W.G.; Wei, H.J.; Zhang, P.; Ren, J.H.; Gao, Z.C.; Sergio, U.; Kong, W.D.; Dong, X.B. Evaluation and simulation of the impact of land use change on ecosystem services based on a carbon flow model: A case study of the Manas River Basin of Xinjiang, China. Sci. Total Environ. 2019, 652, 117–133. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being Synthesis; Island Press: Washington, DC, USA, 2014. [Google Scholar]
- Chen, H.; Nie, J.Y.; Xiang, P.A. Multifunctional value evaluation of rice production in Hunan Province. Ecol. Econ. 2013, 2, 21–27. [Google Scholar]
- Liu, L.H.; Yin, C.B.; Qian, X.P. Construction of value system of paddy resources and its value evaluation—Taking Nanjing as an example. Chin. J. Agric. Resour. Reg. Plan. 2015, 36, 29–37. [Google Scholar]
- Liu, M.C.; Li, D.Q.; Wen, Y.M.; Luan, X.F. The spatial analysis of soil retention function in Sanjiangyuan region and its value evaluation. China Environ. Sci. 2005, 5, 627–631. [Google Scholar]
- Xie, G.D.; Xiao, Y.; Zhen, L.; Lu, C.X. Study on ecosystem services value of food production in China. Chin. J. Eco-Agric. 2005, 3, 10–13. [Google Scholar]
- You, S.C.; Li, W.Q. Estimation of soil erosion supported by Gis—A case study in Guanji township, Taihe, Jiangxi. J. Nat. Resour. 1999, 14, 63–69. [Google Scholar]
- Min, Q.W.; He, L.; Sun, Y.H.; Zhang, D.; Yuan, Z.; Xu, Y.T.; Bai, Y.Y. On the value, conservation and sustainable development of GIAHS pilot sites in China. Chin. J. Eco-Agric. 2012, 20, 668–673. [Google Scholar] [CrossRef]
- Xiang, P.A.; Huang, H.; Yan, H.M. Environmental cost of rice production in Dongting Lake area of Hunan Province. Chin. J. Appl. Ecol. 2005, 16, 183–189. [Google Scholar]
- Yuan, X.Z.; Xiao, H.Y.; Yan, W.T.; Li, B. Dynamic analysis of land use and ecosystem services value in Cheng-Yu Economic Zone, Southwest China. Chin. J. Ecol. 2012, 31, 180–186. [Google Scholar]
- Mallapragada, D.S.; Reyes-Bastida, E.; Roberto, F.; McElroy, E.M.; Veskovic, D.; Laurenzi, I.J. Life cycle greenhouse gas emissions and freshwater consumption of liquefied Marcellus shale gas used for international power generation. J. Clean. Prod. 2018, 205, 672–680. [Google Scholar] [CrossRef]
Inputs | Land Leveling Project | Irrigation and Drainage Project | ||||
---|---|---|---|---|---|---|
Categories | Amount | Cost (CNY) | Categories | Amount | Cost (CNY) | |
Raw materials | Tap water | 603.11 kg | 1.81 | Tap water | 2430.00 kg | 7.29 |
Stone | 8400.00 kg | 945.00 | Cement 32.5 | 1015.00 kg | 355.25 | |
Organic fertilizer | 10,892.00 kg | 8713.60 | Sand | 7196.00 kg | 571.77 | |
Gravel | 3263.00 kg | 322.31 | ||||
Limestone | 4620.00 kg | 323.40 | ||||
Polyethylene tube | 31.85 m | 31.85 | ||||
Steel tube | 278.73 kg | 1633.80 | ||||
Rebar | 118.00 kg | 434.24 | ||||
Steel sections | 12.78 kg | 20.87 | ||||
Cast iron component | 0.63 kg | 17.50 | ||||
Polyvinyl chloride | 42.60 kg | 131.76 | ||||
Steel plate | 3.91 kg | 8.61 | ||||
Hydrant | 9.52 kg | 59.50 | ||||
Concrete | 9138.50 kg | 1046.08 | ||||
Normal mortar | 3249.00 kg | 400.05 | ||||
Brick | 46.37 kg | 39.60 | ||||
Energy | Electricity | 283.21 kW·h | 224.44 | Electricity | 15.50 kW·h | 12.25 |
Diesel | 465.23 kg | 3391.53 | Diesel | 256.83 kg | 1872.29 | |
Laborers | Class A workers | 93.31 workdays | 5431.58 | Class A workers | 43.41 workdays | 2526.90 |
Class B workers | 1384.21 workdays | 58,289.08 | Class B workers | 142.31 workdays | 5992.67 | |
Mechanical | Excavator (21.5 km) | 7.72 shift | 4547.08 | Excavator (21.5 km) | 3.55 shift | 2090.95 |
Tamping machine (21.5 km) | 2.31 shift | 349.30 | Concrete mixer machine (21.5 km) | 1.51 shift | 324.65 | |
Dump truck (21.5 km) | 2.21 shift | 975.07 | Trolley (21.5 km) | 9.53 shift | 31.45 | |
Measure fee | 3521.91 | 775.84 | ||||
Indirect fee | 4751.47 | 1046.70 | ||||
Profit | 2734.26 | 602.33 | ||||
Tax | 3022.81 | 665.89 |
Inputs | Field Road Project | Farmland Protection and Ecological Conservation | ||||
---|---|---|---|---|---|---|
Categories | Amount | Cost (CNY) | Categories | Amount | Cost (CNY) | |
Raw materials | Tap water | 2500.00 kg | 7.50 | Cement 32.5 | 806.00 kg | 282.10 |
Cement 32.5 | 2892.15 kg | 1012.25 | Sand | 4270.00 kg | 339.28 | |
Sand | 7994.00 kg | 635.18 | Gravel | 2379.00 kg | 234.99 | |
Gravel | 9555.00 kg | 943.81 | Normal mortar | 4294.00 kg | 528.73 | |
Concrete | 13,107.50 kg | 1500.41 | Arbor | 33.00 kg | 330.00 | |
Stone | 4288.00 kg | 698.40 | Concrete | 4532.50 kg | 548.38 | |
Stone | 4000.00 kg | 450.00 | ||||
Tap water | 1800.00 kg | 5.40 | ||||
Energy | Diesel | 39.65 kg | 289.05 | Diesel | 147.75 kg | 1077.10 |
Electricity | 41.30 kW·h | 32.73 | Electricity | 14.41 kW·h | 11.38 | |
Laborers | Class A workers | 15.21 workdays | 885.37 | Class A workers | 29.51 workdays | 1717.78 |
Class B workers | 70.35 workdays | 2962.44 | Class B workers | 141.21 workdays | 5946.35 | |
Mechanical | Tamping machine (21.5 km) | 2.55 shift | 385.59 | Excavator (21.5 km) | 2.08 shift | 1225.12 |
Concrete mixer machine (21.5 km) | 0.90 shift | 193.50 | Concrete mixer machine (21.5 km) | 0.93 shift | 199.95 | |
Dump truck (21.5 km) | 0.75 shift | 330.91 | Dump truck (21.5 km) | 0.77 shift | 339.73 | |
Measure fee | 410.60 | 562.54 | ||||
Indirect fee | 553.95 | 758.94 | ||||
Profit | 318.77 | 436.73 | ||||
Tax | 352.41 | 482.82 |
Categories | Apple Planting | Cherry Planting | ||
---|---|---|---|---|
Amount | Cost (CNY) | Amount | Cost (CNY) | |
Seedlings | 600.00 | 2700.00 | 150.00 | 3750.00 |
Organic fertilizer | 30,400.00 kg | 21,280.00 | 12,050.00 kg | 8435.00 |
Azophoska | 183.21 kg | 421.38 | 79.50 kg | 182.85 |
Mulch | 60.00 kg | 660.00 | 18.00 kg | 198.00 |
Nitrogen fertilizer | 143.05 kg | 457.76 | 24.50 kg | 78.40 |
Phosphate fertilizer | 39.25 kg | 160.93 | 10.50 kg | 43.05 |
Potash fertilizer | 125.60 kg | 690.80 | 22.50 kg | 123.75 |
Pesticide | 6.66 kg | 212.99 | 3.28 kg | 104.96 |
Electricity | 110.25 kW·h | 87.10 | 30.25 kW·h | 23.90 |
Tap water | 360,000.00 kg | 1080.00 | 100,000.00 kg | 300.00 |
Male workers | 12,000.00 | 15,000.00 | ||
Female workers | 48,000.00 | 24,000.00 | ||
Area | 0.80 ha | 0.20 ha | ||
Total income | 268,800.00 | 162,000.00 | ||
Net income | 181,049.04 | 109,760.09 |
Ecosystem Services | Instructions | Calculation Method | Method Statement |
---|---|---|---|
Provisioning services | Vy is the value of food production; TRV is the total value of food production; TRC is the cost of food production. | ||
Crop production [50] | Food production | Vy = TRV − TRC | |
Regulating services | |||
Climate regulation [51] | Carbon fixation and oxygen production | Vco2 = Qg × (1 + kg) × 1.63 × 0.2727 × fc Vo2 = Qg × (1 + kg) × 1.07 × Co2 | Vco2 is value of carbon fixation; Vo2 is value of O2 production; Qg is crop production; Kg is the grass valley ratio; fc is the carbon tax rate; Co2 is the industrial oxygen cost. |
Water conservation [52] | Dominating the conservation of groundwater | Vw = (R − E) × Area × Pw | Vw is the value of water conservation; R is the regional average precipitation; E is the evapotranspiration; Pw is the storage cost of water. |
Waste treatment [53] | Garbage, etc. poured into farmland, can be purified | Vwt = Ewt × Area | Vwt is the value of waste treatment; Ewt is the value factor. |
Supporting services | Qsm is the amount of soil conservation; R is the rainfall erosivity index; K is the soil erodibility factor; LS is the slope and length gradient factor; C is the vegetation coverage factor; P is the soil conservation factor; Qei is the soil content of N, P, K; Pei is the price of N, P, K fertilizers. | ||
Soil conservation [54] | Conserving soil and maintaining soil nutrient value | Qsm = R × K × LS × (1 – C × P) Ves = ∑Qsm × Qei × Pei (i = N,P,K) | |
Biodiversity [53] | Maintaining biodiversity | Vb = Eb × Area | Vb is the value of biodiversity; Eb is the value factor. |
Cultural services | Vm is the value of maintain landscape culture; Vi is the actual expenses, such as ticket fees, tolls, etc. | ||
Maintaining landscape culture [55] | Ornamental farmland has landscape values. | Vm = ∑Vi | |
Negative services | |||
Fertilizer pollution [56] | Soil, air, and water pollution of fertilizer use | Cf = Tv × Qf × Pv | Cf is the economic loss caused by cadmium pollution; Tv is the total crop yield; Qf is the over-standard rate of cadmium in crops; Pv is the price of agricultural products. |
Pesticide pollution [56] | Pesticides have an impact on biodiversity and crop quality. | Cp = Tv × Qb × Pv + Tv × Qq × Pv | Cp is the economic loss caused by pesticide pollution; Qb is reduced production due to reduced biodiversity; Qq is contaminated proportion due to pesticides. |
Categories | Values | Units | Categories | Values | Units |
---|---|---|---|---|---|
Climate change | 1.82 × 104 | kg CO2 Equation | Marine ecotoxicity | 7.60 × 104 | kg 1,4-DB Equation |
Particulate matter formation | 3.30 × 101 | kg PM2.5 Equation | Marine eutrophication | 2.11 × 100 | kg N Equation |
Fossil depletion | 5.27 × 103 | kg oil Equation | Metal depletion | 7.40 × 102 | kg Cu Equation |
Freshwater ecotoxicity | 5.32 × 100 | kg 1,4-DB Equation | Photochemical oxidant formation | 9.29 × 101 | kg NOx Equation |
Freshwater eutrophication | 4.79 × 10−1 | kg P Equation | Ozone depletion | 2.64 × 10−2 | kg CFC-11 Equation |
Human toxicity | 1.37 × 103 | kg 1,4-DB Equation | Terrestrial acidification | 8.79 × 101 | kg SO2 Equation |
Ionizing radiation | 8.07 × 102 | Bq C-60 Equation | Terrestrial ecotoxicity | 1.37 × 104 | kg 1,4-DB Equation |
Process of Resource Capitalization | LLP | IDP | FRP | FPECP | PP |
---|---|---|---|---|---|
Normalized life cycle environmental impact | 104.23 | 107.30 | 63.43 | 46.89 | 51.50 |
Life cycle cost (CNY/hm2) | 91,430.42 | 20,141.14 | 10,875.33 | 14,603.86 | 139,990.87 |
Categories | LLP | IDP | FRP | FPECP | ||||
---|---|---|---|---|---|---|---|---|
Environment Impact | Cost | Environment Impact | Cost | Environment Impact | Cost | Environment Impact | Cost | |
(CNY) | (CNY) | (CNY) | (CNY) | |||||
Tap water | 1.77 × 10−3 | 1.81 × 100 | 7.11× 10−3 | 7.29 × 100 | 7.31 × 10−3 | 7.50 × 100 | 5.27 × 10−3 | 5.40 × 100 |
Electricity | 2.36 × 100 | 2.24 × 102 | 1.29 × 10−1 | 1.23 × 101 | 3.44 × 10−1 | 3.27 × 101 | 1.20 × 10−1 | 1.14 × 101 |
Equipment and transportation | 1.32 × 10−2 | 5.87 × 103 | 1.40 × 10−2 | 2.45 × 103 | 5.91 × 10−3 | 9.10 × 102 | 1.26 × 10−2 | 1.76 × 103 |
Diesel | 1.86 × 101 | 3.39 × 103 | 1.03 × 101 | 1.87 × 103 | 1.59 × 100 | 2.89 × 102 | 5.93 × 100 | 1.08 × 103 |
Organic fertilizer | 2.25 × 101 | 8.71 × 103 | ||||||
Stone | 6.07 × 101 | 9.45 × 102 | 3.10 × 101 | 6.98 × 102 | 2.90 × 101 | 4.50 × 102 | ||
Arbor | 3.30 × 102 | |||||||
Concrete | 1.26 × 101 | 1.50 × 103 | 4.35 × 100 | 5.48 × 102 | ||||
Sand | 6.75 × 10−1 | 5.72 × 102 | 7.49 × 10−1 | 6.35 × 102 | 4.01 × 10−1 | 3.39 × 102 | ||
Gravel | 3.06 × 10−1 | 3.22 × 102 | 8.97× 10−1 | 9.44 × 102 | 2.23 × 10−1 | 2.35 × 102 | ||
Cement 32.5 | 5.71 × 100 | 3.55 × 102 | 1.62 × 101 | 1.01 × 103 | 4.53 × 100 | 2.82 × 102 | ||
Normal mortar | 1.81 × 100 | 4.00 × 102 | 2.39 × 100 | 5.29 × 102 | ||||
Limestone | 1.20 × 100 | 3.23 × 102 | ||||||
Polyethylene tube | 8.90 × 10−1 | 3.19 × 101 | ||||||
Steel tube | 7.10 × 101 | 1.63 × 103 | ||||||
Rebar | 4.70 × 100 | 4.34 × 102 | ||||||
Steel sections | 3.24 × 10−1 | 2.09 × 101 | ||||||
Cast iron component | 1.63 × 10−2 | 1.75 × 101 | ||||||
Polyvinyl chloride | 9.84 × 10−1 | 1.32 × 102 | ||||||
Steel plate | 1.72 × 10−1 | 8.61 × 100 | ||||||
Hydrant | 2.45 × 10−1 | 5.95 × 101 | ||||||
Brick | 6.44 × 10−2 | 3.96 × 101 |
Categories | Apple Planting | Cherry Planting |
---|---|---|
Area (ha) | 0.80 | 0.20 |
Environmental impact | 37.00 | 12.87 |
Total income (CNY) | 268,800.00 | 162,000.00 |
Cost (CNY) | 87,750.96 | 52,239.91 |
Net income (CNY) | 181,049.04 | 109,760.09 |
Net income per unit environmental load | 4893.39 | 8528.37 |
First Levels | Second Levels | Chengjiagou, Fupin |
---|---|---|
Provisioning services | Crop production | 290,809.14 |
Regulating services | Climate regulation | 31,877.84 |
Water conservation | 1885.38 | |
Waste treatment | 4257.94 | |
Supporting services | Soil conservation | 4904.95 |
Biodiversity | 3124.53 | |
Negative services | Fertilizer pollution | −27,140.40 |
Pesticide pollution | −34,464.00 |
Categories | Cost and Benefit Details | Cost (104 CNY) |
---|---|---|
Engineering costs | Land leveling project | 9.14 |
Irrigation and drainage project | 2.01 | |
Field road project | 1.09 | |
Farmland protection and ecological conservation project | 1.46 | |
Compensation costs | Land transfer compensation for farmers | 1.35 |
Changes in values of ecosystem services | Provisioning services | 29.08 |
Regulating services | 3.8 | |
Supporting services | 0.8 | |
Negative services | −6.16 | |
Total value of land tickets | 42.57 |
Categories | Land Leveling Project | Field Road Project | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | Organic Fertilizer | Stone | Electricity | Diesel | Cement | Sand | Gravel | Concrete | Stone |
Variation | 10% | 10% | 10% | 10% | 10% | 10% | 10% | 10% | 10% |
Ht | 3.85 × 10−3 | 1.93 × 10−2 | 8.23 × 10−4 | 8.71 × 10−3 | 4.71 × 10−3 | 2.97 × 10−4 | 3.55 × 10−4 | 4.01 × 10−3 | 9.86 × 10−3 |
Me | 6.85 × 10−3 | 1.30 × 10−2 | 3.33 × 10−4 | 3.56 × 10−3 | 2.72 × 10−3 | 2.22 × 10−4 | 2.66 × 10−4 | 3.18 × 10−3 | 6.63 × 10−3 |
Md | 9.89 × 10−5 | 2.72 × 10−4 | 1.50 × 10−5 | 2.74 × 10−5 | 1.04 × 10−3 | 7.18 × 10−6 | 8.59 × 10−6 | 4.77 × 10−4 | 1.39 × 10−4 |
Cc | 5.09 × 10−3 | 1.35 × 10−2 | 1.44 × 10−3 | 9.81 × 10−4 | 1.29 × 10−2 | 1.32 × 10−4 | 1.58 × 10−4 | 7.31 × 10−3 | 6.86 × 10−3 |
Fd | 5.44 × 10−3 | 1.45 × 10−2 | 1.30 × 10−3 | 1.04 × 10−2 | 3.79 × 10−3 | 1.40 × 10−4 | 1.67 × 10−4 | 3.30 × 10−3 | 7.40 × 10−3 |
Pmf | 7.65 × 10−3 | 2.69 × 10−2 | 2.58 × 10−4 | 5.97 × 10−4 | 4.07 × 10−3 | 4.38 × 10−4 | 5.24 × 10−4 | 3.74 × 10−3 | 1.37 × 10−2 |
Categories | Irrigation and Drainage Project | ||||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | Concrete | Normal Mortar | Hydrant | Limestone | Cement | Diesel | Steel Tube | Rebar | Polyvinyl Chloride |
Variation | 10% | 10% | 10% | 10% | 10% | 10% | 10% | 10% | 10% |
Ht | 2.80 × 10−3 | 4.83 × 10−4 | 7.14 × 10−5 | 2.81 × 10−4 | 1.65 × 10−3 | 4.82 × 10−3 | 1.07 × 10−2 | 4.45 × 10−4 | 1.17 × 10−4 |
Me | 2.22 × 10−3 | 2.85 × 10−4 | 1.04 × 10−4 | 1.34 × 10−4 | 9.58 × 10−4 | 1.96 × 10−3 | 3.37 × 10−2 | 1.00 × 10−3 | 6.42 × 10−5 |
Md | 3.33 × 10−4 | 3.46 × 10−4 | 4.44 × 10−6 | 2.22 × 10−5 | 3.64 × 10−4 | 1.52 × 10−5 | 8.44 × 10−2 | 6.15 × 10−3 | 1.15 × 10−5 |
Cc | 5.11 × 10−3 | 1.47 × 10−3 | 1.06 × 10−4 | 5.89 × 10−4 | 4.53 × 10−3 | 5.40 × 10−4 | 4.79 × 10−3 | 1.23 × 10−3 | 6.34 × 10−4 |
Fd | 2.30 × 10−3 | 4.80 × 10−4 | 1.01 × 10−4 | 6.35 × 10−4 | 1.33 × 10−3 | 5.74 × 10−3 | 5.20 × 10−3 | 1.24 × 10−3 | 1.08 × 10−3 |
Pmf | 2.61 × 10−3 | 5.15 × 10−4 | 2.25 × 10−5 | 9.81 × 10−4 | 1.43 × 10−3 | 3.29 × 10−4 | 3.29 × 10−3 | 8.54 × 10−4 | 4.47 × 10−4 |
Categories | Farmland Protection and Ecological Conservation Project | Planting Project | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | Concrete | Stone | Cement | Diesel | Organic Fertilizer | Nitrogen Fertilizer | Azophoska | Mulch | Pesticide |
Variation | 10% | 10% | 10% | 10% | 10% | 10% | 10% | 10% | 10% |
Ht | 1.39 × 10−3 | 9.18 × 10−3 | 1.31 × 10−3 | 2.78 × 10−3 | 6.30 × 10−3 | 1.39 × 10−4 | 1.23 × 10−4 | 1.62 × 10−3 | 3.61 × 10−4 |
Me | 1.10 × 10−3 | 6.20 × 10−3 | 7.61 × 10−4 | 1.13 × 10−3 | 1.01 × 10−2 | 6.28 × 10−5 | 6.03 × 10−5 | 6.87 × 10−4 | 1.54 × 10−4 |
Md | 1.65 × 10−4 | 1.29 × 10−4 | 2.87 × 10−4 | 8.74 × 10−6 | 2.62 × 10−4 | 1.00 × 10−5 | 2.60 × 10−5 | 2.00 × 10−5 | 3.94 × 10−3 |
Cc | 2.53 × 10−3 | 6.41 × 10−3 | 3.59 × 10−3 | 3.12 × 10−4 | 1.23 × 10−2 | 2.11× 10−4 | 9.05 × 10−4 | 6.52 × 10−4 | 4.36 × 10−4 |
Fd | 1.14 × 10−3 | 6.90 × 10−3 | 1.06 × 10−3 | 3.29 × 10−3 | 1.20 × 10−2 | 1.81 × 10−4 | 1.19 × 10−3 | 2.55 × 10−3 | 7.54 × 10−4 |
Pmf | 1.29 × 10−3 | 1.28 × 10−2 | 1.14 × 10−3 | 1.89 × 10−4 | 1.23 × 10−2 | 3.72 × 10−5 | 4.06 × 10−4 | 1.87 × 10−4 | 1.25 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, W.; Chen, N.; Yao, W.; Meng, M.; Wang, X. Integrating Environmental Impact and Ecosystem Services in the Process of Land Resource Capitalization—A Case Study of Land Transfer in Fuping, Hebei. Sustainability 2021, 13, 2837. https://doi.org/10.3390/su13052837
Fan W, Chen N, Yao W, Meng M, Wang X. Integrating Environmental Impact and Ecosystem Services in the Process of Land Resource Capitalization—A Case Study of Land Transfer in Fuping, Hebei. Sustainability. 2021; 13(5):2837. https://doi.org/10.3390/su13052837
Chicago/Turabian StyleFan, Weiguo, Nan Chen, Wei Yao, Mengmeng Meng, and Xuechao Wang. 2021. "Integrating Environmental Impact and Ecosystem Services in the Process of Land Resource Capitalization—A Case Study of Land Transfer in Fuping, Hebei" Sustainability 13, no. 5: 2837. https://doi.org/10.3390/su13052837
APA StyleFan, W., Chen, N., Yao, W., Meng, M., & Wang, X. (2021). Integrating Environmental Impact and Ecosystem Services in the Process of Land Resource Capitalization—A Case Study of Land Transfer in Fuping, Hebei. Sustainability, 13(5), 2837. https://doi.org/10.3390/su13052837