COVID-19 Pandemic Turns Life-Science Students into “Citizen Scientists”: Data Indicate Multiple Negative Effects of Urbanization on Biota
Abstract
:1. Introduction
2. Material and Methods
2.1. Teaching Strategy and Workflow of the “Citizen Science” Approach
2.2. Site Selection
2.3. Data Collection
2.3.1. Environmental Parameters
2.3.2. Ellenberg’s Indicator Values
2.3.3. Vegetation Structure
2.3.4. Ground-Dwelling Invertebrates
2.3.5. Pollinators
2.3.6. Animal and Seed Predation
2.4. Data Validation and Analysis
3. Results
3.1. Environmental Parameters, Ellenberg Indicator Values, and Vegetation Structure
3.2. Individual Numbers of Ground-Dwelling Invertebrates and Pollinators
3.3. Animal and Seed Predation
4. Discussion
4.1. Multiple Negative Effects of Urbanization on Biota
4.2. Students as “Citizen Scientists”—Strengths and Advantages
4.3. Students as “Citizen Scientists”—Limitations
5. Conclusions and Outlook
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19). Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef]
- Crawford, J.; Butler-Henderson, K.; Rudolph, J.; Malkawi, B.; Glowatz, M.; Burton, R.; Magni, P.A.; Lam, S. COVID-19: 20 countries’ higher education intra-period digital pedagogy responses. J. Appl. Learn. Teach. 2020, 3, 9–28. [Google Scholar]
- Sahu, P. Closure of universities due to coronavirus disease 2019 (COVID-19): Impact on education and mental health of students and academic staff. Cureus 2020, 12, 7541. [Google Scholar]
- Chang, V. Review and discussion: E-learning for academia and industry. Int. J. Inf. Manag. 2016, 36, 476–485. [Google Scholar] [CrossRef] [Green Version]
- Kattoua, T.; Al-Lozi, M.; Alrowwad, A. A review of literature on e-learning systems in higher education. Int. J. Bus. Manag. Econ. Res. 2016, 7, 754–762. [Google Scholar]
- Kobori, H.; Dickinson, J.L.; Washitani, I.; Sakurai, R.; Amano, T.; Komatsu, N.; Kitamura, W.; Takagawa, S.; Koyama, K.; Ogawara, T.; et al. Citizen science: A new approach to advance ecology, education, and conservation. Ecol. Res. 2016, 31, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, N.; Triska, M.; Liberatire, A.; Ashcroft, L.; Weatherill, R.; Longnecker, N. Benefits and challenges of incorporating citizen science into university education. PLoS ONE 2017, 12, 0186285. [Google Scholar] [CrossRef]
- Auerbach, J.; Barthelmess, E.L.; Cavalier, D.; Cooper, C.B.; Fenyk, H.; Haklay, M.; Hulbert, J.M.; Kyba, C.C.M.; Larson, L.R.; Lewandowski, E.; et al. The problem with delineating narrow criteria for citizen science. Proc. Natl. Acad. Sci. USA 2019, 116, 15336–15337. [Google Scholar] [CrossRef] [Green Version]
- Haklay, M.; Dörler, D.; Heigl, F.; Manzoni, M.; Hecker, S.; Vohland, K. What is citizen science? The challenges of definition. In The Science of Citizen Science; Vohland, K., Land-Zandstra, A., Ceccaroni, L., Lemmens, R., Perelló, J., Pont, M., Samson, R., Wagenknecht, K., Eds.; Springer: Cham, Switzerland, 2021; pp. 13–33. [Google Scholar]
- Dickinson, J.L.; Zuckerberg, B.; Bonter, D.N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 149–172. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, J.L.; Shirk, J.; Bonter, D.; Bonney, R.; Crain, R.L.; Martin, J.; Phillips, T.; Purcell, K. The current state of citizen science as a tool for ecological research and public engagement. Front. Ecol. Environ. 2012, 10, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.D.; Williams, B.K. The potential for citizen science to produce reliable and useful information in ecology. Conserv. Biol. 2014, 33, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theobald, E.J.; Ettinger, A.K.; Burgess, H.K.; DeBey, L.B.; Schmidt, N.R.; Froehlich, H.E.; Wagner, C.; Hille Ris Lambers, J.; Tewksbury, J.; Harsch, M.A.; et al. Global change and local solutions: Tapping the unrealized potential of citizen science for biodiversity research. Biol. Conserv. 2015, 181, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Bonney, R.; Shirk, J.L.; Phillips, T.B.; Wiggins, A.; Ballard, H.L.; Miller-Rushing, A.J.; Parrish, J.K. Next steps for citizen science. Science 2014, 343, 1436–1437. [Google Scholar] [CrossRef] [PubMed]
- Wang Wei, J.; Lee, B.P.Y.-H.; Bing Wen, L. Citizen science and the urban ecology of birds and butterflies–a systematic review. PLoS ONE 2016, 11, 0156425. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, C.T.; Major, R.E.; Lyons, M.B.; Martin, J.M.; Wilshire, J.H.; Kingsford, R.T.; Cornwell, W.K. Using citizen science data to define and track restoration targets in urban areas. J. Appl. Ecol. 2019, 56, 1998–2006. [Google Scholar] [CrossRef]
- Li, E.; Parker, S.S.; Pauly, G.B.; Randall, J.M.; Brown, B.V.; Cohen, B.S. An urban biodiversity assessment framework that combines an urban habitat classification scheme and citizen science data. Front. Ecol. Evol. 2019, 7, 277. [Google Scholar] [CrossRef] [Green Version]
- Aronson, M.F.J.; Handel, S.N.; La Puma, I.P.; Clemants, S.E. Urbanization promotes non-native woody species and diverse plant assemblages in the New York metropolitan region. Urban Ecosyst. 2015, 18, 31–45. [Google Scholar] [CrossRef]
- Lepczyk, C.A.; Aronson, M.F.J.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S. Biodiversity in the city: Fundamental questions for understanding the ecology of urban green spaces for biodiversity conservation. BioScience 2017, 67, 799–807. [Google Scholar] [CrossRef] [Green Version]
- Nilon, C.H.; Aronson, M.F.J.; Cilliers, S.S.; Dobbs, C.; Frazee, L.J.; Goddard, M.A.; O’Neill, K.M.; Roberts, D.; Stander, E.K.; Werner, P.; et al. Planning for the future of urban biodiversity: A global review of city-scale initiatives. BioScience 2017, 67, 332–342. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Gaston, K. Urban Ecology; Cambridge University Press: Cambridge, UK, 2012; ISBN 9780511778483. [Google Scholar]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Concepción, E.D.; Moretti, M.; Altermatt, F.; Nobis, M.P.; Obrist, M.K. Impacts of urbanisation on biodiversity: The role of species mobility, degree of specialisation and spatial scale. Oikos 2015, 124, 1571–1582. [Google Scholar] [CrossRef] [Green Version]
- Knop, E. Biotic homogenization of three insect groups due to urbanization. Glob. Chang. Biol. 2016, 22, 228–236. [Google Scholar] [CrossRef]
- Fenoglio, M.S.; Rossetti, M.R.; Videla, M. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 2020, 29, 1412–11429. [Google Scholar] [CrossRef]
- Sattler, T.; Obrist, M.K.; Duelli, P.; Moretti, M. Urban arthropod communities: Added value or just a blend of surrounding biodiversity? Landsc. Urban Plan. 2011, 103, 347–361. [Google Scholar] [CrossRef]
- Hall, D.M.; Camilo, G.R.; Tonietto, R.K.; Ollerton, J.; Ahrné, K.; Arduser, M.; Ascher, J.S.; Baldock, K.C.R.; Fowler, R.; Frankie, G.; et al. The city as a refuge for insect pollinators. Conserv. Biol. 2017, 31, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Eckert, S.; Möller, M.; Buchholz, S. Grasshopper diversity of urban wastelands is primarily boosted by habitat factors. Insect Divers. Conserv. 2017, 10, 248–257. [Google Scholar] [CrossRef]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in cities needs space: A meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Ives, C.D.; Lentini, P.E.; Threlfall, C.G.; Ikin, K.; Shanahan, D.F.; Garrard, G.E.; Bekessy, S.A.; Fuller, R.A.; Mumaw, L.; Rayner, L.; et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 2016, 25, 117–126. [Google Scholar] [CrossRef]
- Turrini, A.; Knop, E. A landscape ecology approach identifies important drivers of urban biodiversity. Glob. Chang. Biol. 2015, 21, 1652–1667. [Google Scholar] [CrossRef]
- Turrini, T.; Sanders, D.; Knop, E. Effects of urbanisation on direct and indirect interactions in a tri-trophic system. Ecol. Appl. 2016, 26, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Knop, E.; Zoller, L.; Ryser, R.; Gerpe, C.; Hörler, M.; Fontaine, C. Artificial light at night as a new threat to pollination. Nature 2017, 548, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.D.; Cleeton, S.H.; Lyons, T.P.; Miller, J.R. Urbanization and the predation paradox: The role of trophic dynamics in structuring vertebrate communities. BioScience 2012, 62, 809–818. [Google Scholar] [CrossRef]
- Dirzo, R.; Young, H.S.; Galetti, M.; Ceballos, G.; Isaac, N.J.B.; Collen, B. Defaunation in the Anthropocene. Science 2014, 345, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015, 1, 1400253. [Google Scholar] [CrossRef] [Green Version]
- Hochkirch, A. The insect crisis we can’t ignore. Nature 2016, 539, 141. [Google Scholar] [CrossRef] [Green Version]
- Seibold, S.; Gossner, M.M.; Simons, N.K.; Blüthgen, N.; Müller, J.; Ambarli, D.; Ammer, C.; Bauhus, J.; Fischer, M.; Habel, J.C.; et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 2019, 574, 671–674. [Google Scholar] [CrossRef]
- Cardoso, P.; Barton, P.S.; Birkhofer, K.; Chichorro, F.; Deacon, C.; Fartmann, T.; Fukushima, C.S.; Gaigher, R.; Habel, J.C.; Hallmann, C.A.; et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 2020, 242, 108426. [Google Scholar] [CrossRef]
- Domroese, M.C.; Johnson, E.A. Why watch bees? Motivations of citizen science volunteers in the Great Pollinator Project. Biol. Conserv. 2016, 208, 40–47. [Google Scholar] [CrossRef]
- Ellenberg, H.; Weber, H.E.; Düll, R.; Wirth, V.; Werner, W.; Paulißen, D. Zeigerwerte von Pflanzen in Mitteleuropa. Scr. Geobot. 1992, 18. [Google Scholar]
- Diekmann, M. Species indicator values as an important tool in applied plant ecology—A review. Basic Appl. Ecol. 2003, 4, 493–506. [Google Scholar] [CrossRef]
- Gehlker, H. Eine Hilfstafel zur Schätzung von Deckungsgrad und Artmächtigkeit; Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft NF: Göttingen, Germany, 1977; Volume 19–20, pp. 427–429. [Google Scholar]
- Traxler, A. Handbuch des Vegetationsökologischen Monitorings; Methoden, Praxis, Angewandte Projekte. Teil A: Methoden; Umweltbundesamt: Wien, Austria, 1998. [Google Scholar]
- Lövei, G.L.; Ferrante, M. A review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Sci. 2017, 24, 528–542. [Google Scholar] [CrossRef] [PubMed]
- McHugh, N.M.; Moreby, S.; Lof, M.E.; Van der Werf, W.; Holland, J.M. The contribution of semi-natural habitats to biological control is dependent on sentinel prey type. J. Appl. Ecol. 2020, 57, 914–925. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Bird, T.J.; Bates, A.E.; Lefcheck, J.S.; Hill, N.A.; Thomson, R.J.; Edgar, G.J.; Stuart-Smith, R.D.; Wotherspoon, S.; Krkosek, M.; Stuart-Smith, J.F.; et al. Statistical solutions for error and bias in global citizen science datasets. Biol. Conserv. 2014, 173, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 3rd ed.; Sage Publishing: Thousand Oaks, CA, USA, 2018; ISBN 9781544336473. [Google Scholar]
- Baldock, K.C.R.; Goddard, M.A.; Hicks, D.M.; Kunin, W.E.; Mitschunas, N.; Osgathorpe, L.M.; Potts, S.G.; Robertson, K.M.; Scott, A.V.; Stone, G.N.; et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B 2015, 282, 20142849. [Google Scholar] [CrossRef] [Green Version]
- Buchholz, S.; Hannig, K.; Möller, M.; Schirmel, J. Reducing management intensity and isolation as promising tools to enhance ground-dwelling arthropod diversity in urban grasslands. Urban Ecosyst. 2018, 21, 1139–1149. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Saari, S.; Richter, S.; Higgins, M.; Oberhofer, M.; Jennings, A.; Faeth, S.H. Urbanization is not associated with increased abundance or decreased richness of terrestrial animals – dissecting the literature through meta-analysis. Urban Ecosyst. 2016, 19, 1251–1264. [Google Scholar] [CrossRef]
- Piano, E.; Souffreau, C.; Merckx, T.; Baardsen, L.F.; Backeljau, T.; Bonte, D.; Brans, K.I.; Cours, M.; Dahirel, M.; Debortoli, N.; et al. Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob. Chang. Biol. 2019, 26, 1196–1211. [Google Scholar] [CrossRef]
- Kowarik, I. Biologische Invasionen. Neophyten und Neozoen in Mitteleuropa; Ulmer: Stuttgart, Germany, 2010; ISBN 978-3-8001-5889-8. [Google Scholar]
- Zuefle, M.E.; Brown, W.P.; Tallamy, D.W. Effects of non-native plants on the native insect community of Delaware. Biol. Invasions 2008, 10, 1159–1169. [Google Scholar] [CrossRef]
- Bezemer, T.M.; Harvey, J.A.; Cronin, J.T. Response of native insect communities to invasive plants. Annu. Rev. Entomol. 2014, 59, 119–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schirmel, J.; Bundschuh, M.; Entling, M.H.; Kowarik, I.; Buchholz, S. Impacts of invasive plants on resident animals across ecosystems, taxa, and feeding types: A global assessment. Glob. Chang. Biol. 2016, 22, 594–603. [Google Scholar] [CrossRef]
- Philpott, S.M.; Cotton, J.; Bichier, P.; Friedrich, R.L.; Moorhead, L.C.; Uno, S.; Valdez, M. Local and landscape drivers of arthropod abundance, richness, and trophic composition in urban habitats. Urban Ecosyst. 2014, 17, 513–532. [Google Scholar] [CrossRef] [Green Version]
- MacGregor-Fors, I.; Avendaño-Reyes, S.; Bandala, V.M.; Chacón-Zapata, S.; Díaz-Toribio, M.H.; González-García, F.; Lorea-Hernández, F.; Martinez-Gómez, J.; Montes de Oca, E.; Montoya, L.; et al. Multi-taxonomic diversity patterns in a neotropical green city: A rapid biological assessment. Urban Ecosyst. 2015, 18, 633–647. [Google Scholar] [CrossRef]
- David, J.-F.; Handa, I.T. The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biol. Rev. 2010, 85, 881–895. [Google Scholar] [CrossRef]
- Tóth, Z.; Hornung, E. Taxonomic and functional response of millipedes (Diplopoda) to urban soil disturbance in a metropolitan area. Insects 2020, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Magura, T.; Horváth, R.; Tóthmérész, B. Effects of urbanization on ground-dwelling spiders in forest patches, in Hungary. Landsc. Ecol. 2010, 25, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Buchholz, S.; Gathof, A.K.; Grossmann, A.J.; Kowarik, I.; Fischer, L.K. Wild bees in urban grasslands: Urbanisation, functional diversity and species traits. Landsc. Urban Plan. 2019, 196, 103731. [Google Scholar] [CrossRef]
- Schwarz, N.; Moretti, M.; Bugalho, M.N.; Davies, Z.G.; Haase, D.; Hack, J.; Hof, A.; Melero, Y.; Pett, T.J.; Knapp, S. Understanding biodiversity-ecosystem service relationships in urban areas: A comprehensive literature review. Ecosyst. Serv. 2017, 27, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Miczajka, V.L.; Klein, A.-M.; Pufal, G. Slug activity density increases seed predation independently of an urban–rural gradient. Basic Appl. Ecol. 2019, 39, 15–25. [Google Scholar] [CrossRef]
- Faeth, S.H.; Warren, P.S.; Shochat, E.; Marussich, W.A. Trophic dynamics in urban communities. BioScience 2005, 55, 399–407. [Google Scholar] [CrossRef]
- Alberti, M. Maintaining ecological integrity and sustaining ecosystem function in urban areas. Curr. Opin. Environ. Sustain. 2010, 178–184. [Google Scholar] [CrossRef]
- Crall, A.W.; Newman, G.; Stohlgren, T.J.; Holfelder, K.A.; Graham, J.; Waller, D.M. Assessing citizen science data quality: A case study. Conserv. Lett. 2011, 4, 433–442. [Google Scholar] [CrossRef]
Variable | Rural | Urban | Chi² | p |
---|---|---|---|---|
Environment | ||||
Noise (dB) (N = 75) | 41.27 ± 1.29 | 49.07 ± 1.23 | 33.00 | <0.001 |
Distance to light source (m) (N = 73) | 325.4 ± 35.9 | 43.14 ± 11.16 | 55.62 | <0.001 |
Temperature (soil surface) °C (N = 58) | 22.94 ± 0.41 | 23.58 ± 0.34 | 6.90 | 0.009 |
Temperature (5 cm depth) °C (N = 57) | 20.23 ± 0.44 | 20.74 ± 0.38 | 4.62 | 0.032 |
Ellenberg indicator values | ||||
Light (N = 74) | 6.95 ± 0.07 | 7.02 ± 0.06 | 1.06 | 0.302 |
Temperature (N = 74) | 5.38 ± 0.10 | 5.34 ± 0.14 | 0.12 | 0.725 |
Humidity (N = 74) | 4.78 ± 0.10 | 4.60 ± 0.07 | 3.42 | 0.065 |
Nitrogen (N = 73) | 5.27 ± 0.12 | 5.23 ± 0.12 | 0.09 | 0.758 |
Reaction (N = 74) | 6.10 ± 0.15 | 5.86 ± 0.17 | 3.20 | 0.074 |
Vegetation structure | ||||
Field layer cover (%) (N = 75) | 81.0 ± 2.6 | 77.3 ± 1.9 | 2.49 | 0.115 |
Cryptogam cover (%) (N = 75) | 24.1 ± 2.7 | 26.2 ± 2.8 | 0.67 | 0.412 |
Litter cover (%) (N = 74) | 27.2 ± 3.0 | 24.3 ± 2.6 | 0.72 | 0.395 |
Height of field layer (cm) (N = 75) | 36.4 ± 2.9 | 23.9 ± 2.1 | 12.95 | <0.001 |
Variable | Rural | Urban | +/−% | Chi² | p |
---|---|---|---|---|---|
Ground-dwelling invertebrates | |||||
All (N = 75) | 21.28 ± 1.46 | 15.87 ± 1.21 | −25.4 | 10.41 | 0.001 |
Spiders (N = 75) | 3.49 ± 0.38 | 2.96 ± 0.42 | −15.2 | 2.16 | 0.142 |
Beetles (N = 75) | 5.53 ± 0.79 | 3.17 ± 0.42 | −42.7 | 12.35 | <0.001 |
Ants (N = 75) | 5.87 ± 0.66 | 5.51 ± 0.75 | −6.1 | 0.25 | 0.615 |
Millipedes (N = 75) | 0.44 ± 0.11 | 0.16 ± 0.06 | −63.6 | 8.80 | 0.003 |
Woodlice (N = 75) | 4.39 ± 0.57 | 2.89 ± 0.54 | −34.2 | 8.63 | 0.003 |
Snails (N = 66) | 1.00 ± 0.17 | 0.95 ± 0.18 | −5.0 | 0.18 | 0.675 |
Pollinators | |||||
All (N = 75) | 18.75 ± 2.10 | 12.65 ± 1.36 | −32.5 | 17.76 | <0.001 |
Bees (including honey bees) (N = 75) | 5.55 ± 0.95 | 3.91 ± 0.75 | −29.5 | 7.79 | 0.005 |
Bumble bees (N = 75) | 2.92 ± 0.56 | 1.53 ± 0.28 | −47.6 | 5.91 | 0.015 |
Wasps (N = 75) | 1.21 ± 0.27 | 0.75 ± 0.18 | −38.0 | 7.90 | 0.005 |
Butterflies (N = 75) | 1.91 ± 0.31 | 0.81 ± 0.19 | −57.6 | 18.03 | <0.001 |
Hoverflies (N = 75) | 3.65 ± 0.38 | 2.80 ± 0.37 | −23.3 | 6.22 | 0.013 |
Other flies (N = 75) | 2.33 ± 0.31 | 2.03 ± 0.32 | −12.9 | 0.99 | 0.321 |
Beetles (N = 75) | 1.17 ± 0.17 | 0.83 ± 0.15 | −29.1 | 4.37 | 0.036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schirmel, J. COVID-19 Pandemic Turns Life-Science Students into “Citizen Scientists”: Data Indicate Multiple Negative Effects of Urbanization on Biota. Sustainability 2021, 13, 2992. https://doi.org/10.3390/su13052992
Schirmel J. COVID-19 Pandemic Turns Life-Science Students into “Citizen Scientists”: Data Indicate Multiple Negative Effects of Urbanization on Biota. Sustainability. 2021; 13(5):2992. https://doi.org/10.3390/su13052992
Chicago/Turabian StyleSchirmel, Jens. 2021. "COVID-19 Pandemic Turns Life-Science Students into “Citizen Scientists”: Data Indicate Multiple Negative Effects of Urbanization on Biota" Sustainability 13, no. 5: 2992. https://doi.org/10.3390/su13052992
APA StyleSchirmel, J. (2021). COVID-19 Pandemic Turns Life-Science Students into “Citizen Scientists”: Data Indicate Multiple Negative Effects of Urbanization on Biota. Sustainability, 13(5), 2992. https://doi.org/10.3390/su13052992