Preparation of Sodium Lignosulfonate/Chitosan Adsorbent and Application of Pb2+ Treatment in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Reagents
2.2. Material Preparation
Preparation of LS/CS Adsorbent
2.3. Characterization of Adsorbents
2.4. Adsorption of Pb2+
3. Results and Discussion
3.1. Results of the Orthogonal Experiment
3.2. Characterization of the LS/CS Adsorbent
3.3. Adsorption Properties of the LS/CS Adsorbent
3.4. Adsorption Thermodynamics
3.5. Adsorption Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Zhu, J.; Wang, N.; Feng, J.; Yan, W. Hydrophilic polythiophene/SiO2 composite for adsorption engineering: Green synthesis in aqueous medium and its synergistic and specific adsorption for heavy metals from wastewater. Chem. Eng. J. 2019, 360, 1486–1497. [Google Scholar] [CrossRef]
- Dao, T.H.; Vu, T.Q.M.; Nguyen, N.T.; Pham, T.T.; Nguyen, T.L.; Yusa, S.I.; Pham, T.D. Adsorption Characteristics of Synthesized Polyelectrolytes onto Alumina Nanoparticles and their Application in Antibiotic Removal. Langmuir 2020, 36, 13001–13011. [Google Scholar] [CrossRef]
- Pham, T.D.; Pham, T.T.; Phan, M.N.; Ngo, T.M.V.; Dang, V.D.; Vu, C.M. Adsorption characteristics of anionic surfactant onto laterite soil with differently charged surfaces and application for cationic dye removal. J. Mol. Liq. 2020, 301, 112456. [Google Scholar] [CrossRef]
- Chen, Q.; Zheng, J.; Wen, L.; Yang, C.; Zhang, L. A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: Performance and quantum chemical mechanism. Chemosphere 2019, 224, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.; Gao, Y.; Zhang, J.; Zhao, J.; Luo, S.; Zhang, D.; Lu, C.; Sun, Y. Effect of initial pH on the sludge fermentation performance enhanced by aged refuse at low temperature of 10 °C. Environ. Sci. Pollut. Res. 2020, 27, 31468–31476. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Y.; Ouyang, X.K.; Yang, L.Y. Adsorption of Pb(II) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads. J. Mol. Liq. 2021, 322, 114523. [Google Scholar] [CrossRef]
- Shi, S.; Xu, C.; Dong, Q.; Wang, Y.; Zhu, S.; Zhang, X.; Chow, Y.T.; Wang, X.; Zhu, L.; Zhang, G.; et al. High saturation magnetization MnO2/PDA/Fe3O4 fibers for efficient Pb(II) adsorption and rapid magnetic separation. Appl. Surf. Sci. 2021, 541, 148379. [Google Scholar] [CrossRef]
- Wu, F.; Chen, L.; Hu, P.; Wang, Y.; Deng, J.; Mi, B. Industrial alkali lignin-derived biochar as highly efficient and low-cost adsorption material for Pb(II) from aquatic environment. Bioresour. Technol. 2021, 322, 124539. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.-Q.; Zhu, J.; Han, H.; Zhang, J.-Z.; Wu, F.-F.; Qin, X.-H.; Yu, J.-Y. Synthesis and characterization of arginine-NIPAAm hybrid hydrogel as wound dressing: In vitro and in vivo study. Acta Biomater. 2018, 65, 305–316. [Google Scholar] [CrossRef]
- Wu, J.; Wang, T.; Wang, J.; Zhang, Y.; Pan, W.-P. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Sci. Total. Environ. 2021, 754, 142150. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhang, D.; Ma, X.; Qiao, W.; Wang, Z.; Hao, X.; Guan, G. Electrochemical redox induced rapid uptake/release of Pb(II) ions with high selectivity using a novel porous electroactive HZSM-5@PANI/PSS composite film. Electrochim. Acta 2018, 282, 384–394. [Google Scholar] [CrossRef]
- Antić-Mladenović, S.; Frohne, T.; Kresović, M.; Stärk, H.J.; Tomić, Z.; Ličina, V.; Rinklebe, J. Biogeochemistry of Ni and Pb in a periodically flooded arable soil: Fractionation and redox-induced (im)mobilization. J. Environ. Manag. 2017, 186, 141–150. [Google Scholar] [CrossRef]
- Jiang, C.L.; Wang, X.H.; Wang, G.H.; Hao, C.; Li, X.; Li, T.H. Adsorption performance of a polysaccharide composite hydrogel based on crosslinked glucan/chitosan for heavy metal ions. Compos. Part B. 2019, 169, 45–54. [Google Scholar] [CrossRef]
- Godiya, C.B.; Liang, M.; Sayed, S.M.; Li, D.; Lu, X. Novel alginate/polyethyleneimine hydrogel adsorbent for cascaded removal and utilization of Cu2+ and Pb2+ ions. J. Environ. Manag. 2019, 232, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Luo, J.; Liu, Y.; Wei, Y.; Cai, T.; Yu, X.; Liu, H.; Liu, C.; Crittenden, J.C. Pb(II), Cu(II) and Cd(II) removal using a humic substance-based double network hydrogel in individual and multicomponent systems. J. Mater. Chem. A 2018, 6, 20110–20120. [Google Scholar] [CrossRef]
- Sun, J.; Li, M.; Zhang, Z.; Guo, J. Unravelling the adsorption disparity mechanism of heavy-metal ions on the biomass-derived hierarchically porous carbon. Appl. Surf. Sci. 2019, 471, 615–620. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Wei, J. Fabrication of poly(β-cyclodextrin)-conjugated magnetic graphene oxide by surface-initiated RAFT polymerization for synergetic adsorption of heavy metal ions and organic pollutants. J. Mater. Chem. A 2018, 7, 2055–2065. [Google Scholar] [CrossRef]
- Pham, T.D.; Tran, T.T.; Le, V.A.; Pham, T.T.; Dao, T.H.; Le, T.S. Adsorption characteristics of molecular oxytetracycline onto alumina particles: The role of surface modification with an anionic surfactant. J. Mol. Liq. 2019, 287, 110900. [Google Scholar] [CrossRef]
- Pham, T.D.; Bui, T.T.; Truong, T.T.T.; Hoang, T.H.; Le, T.S.; Duong, V.D.; Yamaguchi, A.; Kobayashi, M.; Adachi, Y. Adsorption characteristics of beta-lactam cefixime onto nanosilica fabricated from rice HUSK with surface modification by polyelectrolyte. J. Mol. Liq. 2020, 298, 111981. [Google Scholar] [CrossRef]
- Liu, X.; Lai, D.; Wang, Y. Performance of Pb(II) removal by an activated carbon supported nanoscale zero-valent iron composite at ultralow iron content. J. Hazard. Mater. 2019, 361, 37–48. [Google Scholar] [CrossRef]
- Dong, D.M.; Liu, L.; Hua, X.Y.; Lu, Y.Z. Comparison of lead, cadmium, copper and cobalt adsorption onto metal oxides and organic materials in natural surface coatings. Microchem. J. 2007, 85, 270–275. [Google Scholar] [CrossRef]
- Wu, Y.; Qiu, X.; Cao, S.; Chen, J.; Shi, X.; Du, Y.; Deng, H. Adsorption of natural composite sandwich-like nanofibrous mats for heavy metals in aquatic environment. J. Colloid Interface Sci. 2019, 539, 533–544. [Google Scholar] [CrossRef]
- Veselská, V.; Šillerová, H.; Göttlicher, J.; Michálková, Z.; Siddique, J.A.; Číhalová, S.; Chrastný, V.; Steininger, R.; Mangold, S.; Komárek, M. The role of soil components in synthetic mixtures during the adsorption and speciation changes of Cr(VI): Conjunction of the modeling approach with spectroscopic and isotopic investigations. Environ. Int. 2019, 127, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhu, C.; Dang, Z.; Zhang, H.; Yi, X.; Liu, C. Preparation of cellulose derived from corn stalk and its application for cadmium ion adsorption from aqueous solution. Carbohydr. Polym. 2012, 90, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, Y.; Gutha, Y.; Jiao, X. Adsorption of Pb(II) ions from aqueous environment using eco-friendly chitosan schiff’s base@Fe3O4 (CSB@Fe3O4) as an adsorbent; kinetics, isotherm and thermodynamic studies. Int. J. Biol. Macromol. 2017, 105, 422–430. [Google Scholar]
- Sang, Y.; Gu, Q.; Sun, T.; Li, F.; Liang, C. Filtration by a novel nanofiber membrane and alumina adsorption to remove copper(II) from groundwater. J. Hazard. Mater. 2008, 153, 860–866. [Google Scholar] [CrossRef]
- Xie, A.; Dai, J.; Chen, X.; Ma, P.; He, J.; Li, C.; Zhou, Z.; Yan, Y. Ultrahigh adsorption of typical antibiotics onto novel hierarchical porous carbons derived from renewable lignin via halloysite nanotubes-template and in-situ activation. Chem. Eng. J. 2016, 304, 609–620. [Google Scholar] [CrossRef]
- Kandile, N.G.; Mohamed, H.M. Chitosan nanoparticle hydrogel based sebacoyl moiety with remarkable capability for metal ion removal from aqueous systems. Int. J. Biol. Macromol. 2019, 122, 578–586. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Zhang, T.; Du, T.; Li, T.; Yue, T.; Li, Z.; Wang, J. Selective removal of heavy metal ions in aqueous solutions by sulfide-selector intercalated layered double hydroxide adsorbent. J. Mater. Sci. Technol. 2019, 35, 1809–1816. [Google Scholar] [CrossRef]
- Pu, S.; Hou, Y.; Yan, C.; Ma, H.; Huang, H.; Shi, Q.; Mandal, S.; Diao, Z.; Chu, W. In Situ Coprecipitation Formed Highly Water-Dispersible Magnetic Chitosan Nanopowder for Removal of Heavy Metals and Its Adsorption Mechanism. ACS Sustain. Chem. Eng. 2018, 6, 16754–16765. [Google Scholar] [CrossRef]
- Tang, S.; Yang, J.; Lin, L.; Peng, K.; Chen, Y.; Jin, S.; Yao, W. Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal. Chem. Eng. J. 2020, 393, 124728. [Google Scholar] [CrossRef]
Factor | C20H24Na2O10S2 (g) | (C6H11NO4)n (g) | K2S2O8 (g) | NMBA (g) |
---|---|---|---|---|
1 | 0.1 | 0.1 | 0.07 | 0.0085 |
2 | 0.1 | 0.2 | 0.09 | 0.0115 |
3 | 0.1 | 0.3 | 0.11 | 0.0145 |
4 | 0.2 | 0.1 | 0.09 | 0.0145 |
5 | 0.2 | 0.2 | 0.11 | 0.0085 |
6 | 0.2 | 0.3 | 0.07 | 0.0115 |
7 | 0.3 | 0.1 | 0.11 | 0.0115 |
8 | 0.3 | 0.2 | 0.07 | 0.0145 |
9 | 0.3 | 0.3 | 0.09 | 0.0085 |
Factor | C20H24Na2O10S2 (g) | (C6H11NO4)n (g) | K2S2O8 (g) | NMBA (g) | Qe–Pb2+ (mg g−1) |
---|---|---|---|---|---|
1 | 0.1 | 0.1 | 0.07 | 0.0085 | 241 |
2 | 0.1 | 0.2 | 0.09 | 0.0115 | 185 |
3 | 0.1 | 0.3 | 0.11 | 0.0145 | 330 |
4 | 0.2 | 0.1 | 0.09 | 0.0145 | 161 |
5 | 0.2 | 0.2 | 0.11 | 0.0085 | 210 |
6 | 0.2 | 0.3 | 0.07 | 0.0115 | 325 |
7 | 0.3 | 0.1 | 0.11 | 0.0115 | 289 |
8 | 0.3 | 0.2 | 0.07 | 0.0145 | 286 |
9 | 0.3 | 0.3 | 0.09 | 0.0085 | 232 |
k1 | 252 | 230 | 284 | 227 | |
k2 | 232 | 227 | 193 | 266 | |
k3 | 269 | 295 | 276 | 259 | |
R | 37 | 65 | 91 | 29 |
qe,exp (mg g−1) | Pseudo First Order | Pseudo Second Order |
---|---|---|
345.356 | qe = 581.412 k1 = 0.060 R2 = 0.717 ΔQe = 13.69 | qe = 363.737 k2 = 0.00122 R2 = 0.999 ΔQe = 1.09 |
Langmuir | Freundlich | ||
---|---|---|---|
Actual adsorption | 524.95 mg g−1 | ||
Qm = 517.8 mg g−1 | kF = 301.6 mg g−1 | ||
KL = 0.202 L mg−1 | nF = 12.34 | ||
R2 = 0.993 | R2 = 0.831 | ||
ΔQe = 1.34% | ΔQe = 25.6% | ||
RL = 0.005 |
Thermodynamic | ΔH0 | ΔS0 | ΔG0 (KJ mol−1) | ||||
Parameters | (KJ mol−1) | (J mol−1 K−1) | 293.15 K | 303.15 K | 313.15 K | 323.15 K | 333.15 K |
Pb2+ | 10.41 | 49.86 | –4.21 | –4.71 | –5.21 | –5.71 | –6.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Zhu, J.; Cheng, F. Preparation of Sodium Lignosulfonate/Chitosan Adsorbent and Application of Pb2+ Treatment in Water. Sustainability 2021, 13, 2997. https://doi.org/10.3390/su13052997
Pan J, Zhu J, Cheng F. Preparation of Sodium Lignosulfonate/Chitosan Adsorbent and Application of Pb2+ Treatment in Water. Sustainability. 2021; 13(5):2997. https://doi.org/10.3390/su13052997
Chicago/Turabian StylePan, Jie, Jiangwei Zhu, and Fulong Cheng. 2021. "Preparation of Sodium Lignosulfonate/Chitosan Adsorbent and Application of Pb2+ Treatment in Water" Sustainability 13, no. 5: 2997. https://doi.org/10.3390/su13052997
APA StylePan, J., Zhu, J., & Cheng, F. (2021). Preparation of Sodium Lignosulfonate/Chitosan Adsorbent and Application of Pb2+ Treatment in Water. Sustainability, 13(5), 2997. https://doi.org/10.3390/su13052997