Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Briquetting
2.3. Physical Properties Characterization
2.3.1. Density
2.3.2. Durability
2.3.3. Compressive Strength
2.3.4. Surface Morphology
2.4. Chemical Properties characterization
2.4.1. Ultimate Analysis and Proximate Analysis
2.4.2. Thermogravimetric Analysis
3. Results and Discussion
3.1. Briquette Compression
3.2. Physical Properties
3.2.1. Density
3.2.2. Durability
3.2.3. Compressive Strength
3.2.4. Surface Morphology
3.3. Chemical Properties
3.3.1. Proximate and Ultimate Analysis
3.3.2. Calorific Value
3.3.3. Thermogravimetric Analysis
3.4. Comparison with Agricultural Biomass Residue-Based Briquette
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balat, M.; Ayar, G. Biomass energy in the world, use of biomass and potential trends. Energy Sources 2005, 27, 931–940. [Google Scholar] [CrossRef]
- Sansaniwal, S.; Pal, K.; Rosen, M.; Tyagi, S.J.R. Recent advances in the development of biomass gasification technology: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 72, 363–384. [Google Scholar] [CrossRef]
- Saeed, A.A.H.; Harun, N.Y.; Sufian, S.; Siyal, A.A.; Zulfiqar, M.; Bilad, M.R.; Vagananthan, A.; Al-Fakih, A.; Ghaleb, A.A.S.; Almahbashi, N. Eucheuma cottonii Seaweed-Based Biochar for Adsorption of Methylene Blue Dye. Sustainability 2020, 12, 318. [Google Scholar] [CrossRef]
- Syuhadah, N.; Rohasliney, H. Rice husk as biosorbent: A review. Health Environ. J. 2012, 3, 89–95. [Google Scholar]
- Saeed, A.A.H.; Harun, N.Y.; Sufian, S.; Aznan, M.F.B. Effect of Adsorption Parameter on the Removal of Nickel (II) by Low-Cost Adsorbent Extracted From Corn Cob. Int. J. Adv. Res. Eng. Technol. (Ijaret) 2020, 11, 981–989. [Google Scholar]
- Saeed, A.A.H.; Harun, N.Y.; Nasef, M.M.; Afolabi, H.K.; Ghaleb, A.A.S. Removal of Cadmium from Aqueous Solution by Optimized Magnetic Biochar Using Response Surface Methodology. In Proceedings of the International Conference on Civil, Offshore and Environmental Engineering; Springer: Singapore, 2021; pp. 119–126. [Google Scholar]
- Zhang, W.; Lin, N.; Liu, D.; Xu, J.; Sha, J.; Yin, J.; Tan, X.; Yang, H.; Lu, H.; Lin, H. Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy 2017, 128, 618–625. [Google Scholar] [CrossRef]
- Saeed, A.A.H.; Harun, N.Y.; Nasef, M.M. Physicochemical Characterization Of Different Agricultural Residues in Malaysia for Bio Char Production. Int. J. Civil. Eng. Technol. (IJCIET) 2019, 10, 213–225. [Google Scholar]
- Kumar, A.; Mohanta, K.; Kumar, D.; Parkash, O. Properties and industrial applications of rice husk: A review. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 1–5. [Google Scholar]
- Pode, R. Potential applications of rice husk ash waste from rice husk biomass power plant. Renew. Sustain. Energy Rev. 2016, 53, 1468–1485. [Google Scholar] [CrossRef]
- Moayedi, H.; Aghel, B.; Nguyen, H.; Rashid, A.S.A. Applications of rice husk ash as green and sustainable biomass. J. Clean. Prod. 2019, 237, 117851. [Google Scholar] [CrossRef]
- Kamari, S.; Ghorbani, F.J.B.C. Extraction of highly pure silica from rice husk as an agricultural by-product and its application in the production of magnetic mesoporous silica MCM–41. Biomass Convers. Biorefinery 2020, 1–9. [Google Scholar] [CrossRef]
- Johnson, A.C.; Nordin, Y.B.D.E.D. Particleboards from rice husk: A brief introduction to renewable materials of construction. Cellulose 2009, 28, 38. [Google Scholar]
- Wang, Z.; Lei, T.; Yan, X.; Chen, G.; Xin, X.; Yang, M.; Guan, Q.; He, X.; Gupta, A.K. Common characteristics of feedstock stage in life cycle assessments of agricultural residue-based biofuels. Fuel 2019, 253, 1256–1263. [Google Scholar] [CrossRef]
- Gangil, S.; Bhargav, V.K. Influences of binderless briquetting stresses on intrinsic bioconstituents of rice straw based solid biofuel. Renew. Energy 2019, 133, 462–469. [Google Scholar] [CrossRef]
- Saeed, A.A.H.; Harun, N.Y.; Sufian, S.; Afolabi, H.K.; Al-Qadami, E.H.H.; Roslan, F.A.S.; Rahim, S.A.; Ghaleb, A. Production and Characterization of Rice Husk Biochar and Kenaf Biochar for Value-Added Biochar Replacement for Potential Materials Adsorption. Ecol. Eng. Environ. Technol. 2021, 22, 1–8. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, Y.; Xu, Y. Review of briquette binders and briquetting mechanism. Renew. Sustain. Energy Rev. 2018, 82, 477–487. [Google Scholar] [CrossRef]
- Navalta, C.J.L.G.; Banaag, K.G.C.; Von Adrian, O.R.; Go, A.W.; Cabatingan, L.K.; Ju, Y.-H. Solid fuel from Co-briquetting of sugarcane bagasse and rice bran. Renew. Energy 2020, 147, 1941–1958. [Google Scholar] [CrossRef]
- Saeed, A.A.H.; Harun, N.Y.; Zulfani, N. Heavy Metals Capture from Water Sludge by Kenaf Fibre Activated Carbon in Batch Adsorption. J. Ecol. Eng. 2020, 21, 102–115. [Google Scholar] [CrossRef]
- Gouveia, S.; Otero, L.A.; Fernández-Costas, C.; Filgueira, D.; Sanromán, Á.; Moldes, D. Green binder based on enzymatically polymerized eucalypt kraft lignin for fiberboard manufacturing: A preliminary study. Polymers 2018, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Saeed, A.A.H.; Saimon, N.N.; Ali, M.W.; Kidam, K.; Jusoh, Y.M.; Jusoh, M.; Zakaria, Z.Y. Effect of Particle Size on the Explosive Characteristics of Grain (Wheat) Starch in a Closed Cylindrical Vessel. Chem. Eng. Trans. 2018, 63, 571–576. [Google Scholar]
- Matkowski, P.; Lisowski, A.; Świętochowski, A. Effect of compacted dose of pure straw and blends of straw with calcium carbonate or cassava starch on pelletising process and pellet quality. J. Clean. Prod. 2020, 277, 124006. [Google Scholar] [CrossRef]
- Kuranc, A.; Stoma, M.; Rydzak, L.; Pilipiuk, M.J.E. Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product. Energies 2020, 13, 5890. [Google Scholar] [CrossRef]
- Thliza, B.A.; Abdulrahman, F.I.; Akan, J.C.; Chellube, Z.M.; Kime, B. Determination of Compressive Strength and Combustibility Potential of Agricultural Waste Briquette. Chem. Sci. Int. J. 2020, 30–46. [Google Scholar] [CrossRef]
- Stelte, W.; Holm, J.K.; Sanadi, A.R.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U.B. Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 2011, 90, 3285–3290. [Google Scholar] [CrossRef] [Green Version]
- Ndindeng, S.; Mbassi, J.; Mbacham, W.; Manful, J.; Graham-Acquaah, S.; Moreira, J.; Dossou, J.; Futakuchi, K. Quality optimization in briquettes made from rice milling by-products. Energy Sustain. Dev. 2015, 29, 24–31. [Google Scholar] [CrossRef]
- Yank, A.; Ngadi, M.; Kok, R.J.B. Physical properties of rice husk and bran briquettes under low pressure densification for rural applications. Biomass Bioenergy 2016, 84, 22–30. [Google Scholar] [CrossRef]
- Tumuluru, J.S. Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosyst. Eng. 2014, 119, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Mohsenin, N.; Zaske, J. Stress relaxation and energy requirements in compaction of unconsolidated materials. J. Agric. Eng. Res. 1976, 21, 193–205. [Google Scholar] [CrossRef]
- Huang, Y. Biofuel Pellets Made at Low Moisture Content—Influence of Water in the Binding Mechanism of Densified Biomass; Department of Forest Biomaterials and Technology: Umea, Sweden, 2013; pp. 1–43. [Google Scholar]
- Tumuluru, J.S. Effect of pellet die diameter on density and durability of pellets made from high moisture woody and herbaceous biomass. Carbon Resour. Convers. 2018, 1, 44–54. [Google Scholar] [CrossRef]
- Kaliyan, N.; Morey, R.V. Factors affecting the strength and durability of densified products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Wright, C.T.; Kenney, K.L.; Hess, J.R. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuelsbioprod. Biorefin. 2011, 105, 683–707. [Google Scholar] [CrossRef]
- Muazu, R.I.; Stegemann, J.A. Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs. Fuel Process. Technol. 2015, 133, 137–145. [Google Scholar] [CrossRef]
- Vivek, C.P.; Rochak, P.V.; Suresh, P.S.; Kiran, K.R.R. Comparison Study on Fuel Briquettes Made of Eco-Friendly Materials for Alternate Source of Energy. IOP Conf. Ser. Mater. Sci. Eng. 2019, 577, 012183. [Google Scholar] [CrossRef]
- Chao-Lung, H.; Le Anh-Tuan, B.; Chun-Tsun, C.J.C. Effect of rice husk ash on the strength and durability characteristics of concrete. Constr. Build. Mater. 2011, 25, 3768–3772. [Google Scholar] [CrossRef]
- Setter, C.; Ataíde, C.H.; Mendes, R.F.; de Oliveira, T.J.P.; Research, P. Influence of particle size on the physico-mechanical and energy properties of briquettes produced with coffee husks. Environ. Sci. Pollut. Res. 2020, 28, 8215–8223. [Google Scholar] [CrossRef] [PubMed]
- Zhai, M.; Wang, X.; Zhang, Y.; Panahi, A.; Dong, P.; Levendis, Y.A. Ash Fusion during Combustion of Single Corn Straw Pellets. J. Energy Resour. Technol. 2020, 143, 1–29. [Google Scholar]
- Chaiyaomporn, K.; Chavalparit, O. Fuel pellets production from biodiesel waste. Environ. Asia 2010, 3, 103–110. [Google Scholar]
- Wang, Q.; Han, K.; Wang, P.; Li, S.; Zhang, M.J.E. Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere. Energy 2020, 195, 116987. [Google Scholar] [CrossRef]
- Prasityousil, J.; Muenjina, A. Properties of solid fuel briquettes produced from rejected material of municipal waste composting. Procedia Environ. Sci. 2013, 17, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Ríos-Badrán, I.M.; Luzardo-Ocampo, I.; García-Trejo, J.F.; Santos-Cruz, J.; Gutiérrez-Antonio, C. Production and characterization of fuel pellets from rice husk and wheat straw. Renew. Energy 2020, 145, 500–507. [Google Scholar] [CrossRef]
- Greinert, A.; Mrówczyńska, M.; Grech, R.; Szefner, W.J.E. The use of plant biomass pellets for energy production by combustion in dedicated furnaces. Energies 2020, 13, 463. [Google Scholar] [CrossRef] [Green Version]
- Bisen, K.S.; Sharma, P.; Gupta, B.; Baredar, P. Development and experimental characterization of energy efficient poultry litter & plant weeds based briquettes (PLPWBB) by comparing with rice husk briquettes. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Zia, U.U.R.; Rashid, T.U.; Awan, W.N.; Hussain, A.; Ali, M.J.B. Quantification and technological assessment of bioenergy generation through agricultural residues in Punjab (Pakistan). Biomass Bioenergy 2020, 139, 105612. [Google Scholar]
- Chena, L.; Xingb, L.; Hana, L. Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology. Renew. Sustain. Energy Rev. 2009, 13, 2689–2695. [Google Scholar] [CrossRef]
- Ed., G.H. Basic of the Combustion of Wood and Straw; Elsevier Science: London, UK, 1985. [Google Scholar]
- Sokhansanj, S.; Mani, S.; Bi, X.; Zaini, P.; Tabil, L. Binderless Pelletization of Biomass; ASAE Paper No. 056061; ASAE: St. Joseph, MI, USA, 2005. [Google Scholar]
- Rhéna, C.; Grefa, R.; Sjöströmb, M.; Wästerlund, I. Effects of raw material moisture content, densification pressure and temperature on some properties of Norway spruce pellets. Fuel Process. Technol. 2005, 87, 11–16. [Google Scholar] [CrossRef]
- Demirbas, A. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor. Exploit. 2002, 20, 105–111. [Google Scholar] [CrossRef]
- Harun, N.Y.; Saeed, A.A.H.; Ramachandran, V.A.A. Abundant nipa palm waste as Bio-pellet fuel. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Chou, C.-S.; Lin, S.-H.; Lu, W.-C. Preparation and characterization of solid biomass fuel made from rice straw and rice bran. Fuel Process. Technol. 2009, 90, 980–987. [Google Scholar] [CrossRef]
- Wang, Z.; Lei, T.; Yang, M.; Li, Z.; Qi, T.; Xin, X.; He, X.; Ajayebi, A.; Yan, X. Life cycle environmental impacts of cornstalk briquette fuel in China. Appl. Energy 2017, 192, 83–94. [Google Scholar] [CrossRef]
- Oladeji, J.T.; Enweremadu, C.C. The effects of some processing parameters on physical and densification characteristics of corncob briquettes. Int. J. Energy Eng. 2012, 2, 22–27. [Google Scholar] [CrossRef]
- Akogun, O.A.; Waheed, M.A.; Ismaila, S.O.; Dairo, O.U. Physical and Combustion Indices of Thermally Treated Cornhusk and Sawdust Briquettes for Heating Applications in Nigeria. J. Nat. Fibers 2020, 1–16. [Google Scholar] [CrossRef]
- Słomka-Polonis, K.; Łapczyńska-Kordon, B.; Frączek, J.; Styks, J.; Fitas, J.; Gładyszewska, B.; Chocyk, D.; Gładyszewski, G. The Physical-Mechanical Properties of Fuel Briquettes Made from RDF and Wheat Straw Blends. In Renewable Energy Sources: Engineering, Technology, Innovation; Springer: Cham, Switzerland, 2020; pp. 351–361. [Google Scholar]
- Tumuluru, J.S.; Tabil, L.G.; Song, Y.; Iroba, K.L.; Meda, V. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes. Bioenergy Res. 2015, 8, 388–401. [Google Scholar] [CrossRef] [Green Version]
- Japhet, J.A.; Tokan, A.; Kyauta, E.E. A Review of Pellet Production from Biomass Residues as Domestic Fuel. Int. J. Environ. Agric. Biotechnol. 2019, 4. [Google Scholar] [CrossRef]
- Senthil, C.; Lee, C.W. Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices. Renew. Sustain. Energy Rev. 2020, 137, 110464. [Google Scholar] [CrossRef]
- Zakari, I.Y.; Ismaila, A.; Sadiq, U.; Nasiru, R. Investigation on the effects of addition of binder and particle size on the high calorific value of solid biofuel briquettes. J. Nat. Sci. Res. 2013, 3, 30–34. [Google Scholar]
- Dinesha, P.; Kumar, S.; Rosen, M.A. Biomass Briquettes as an Alternative Fuel: A Comprehensive Review. Energy Technol. 2019, 7, 1801011. [Google Scholar] [CrossRef]
- Song, X.; Zhang, S.; Wu, Y.; Cao, Z. Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust. Renew. Energy 2020, 151, 184–191. [Google Scholar] [CrossRef]
- Lubwama, M.; Yiga, V.A.; Muhairwe, F.; Kihedu, J. Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources. Renew. Energy 2020, 148, 1002–1016. [Google Scholar] [CrossRef]
- Brunerová, A.; Müller, M.; Šleger, V.; Ambarita, H.; Valášek, P. Bio-pellet fuel from oil palm empty fruit bunches (EFB): Using European standards for quality testing. Sustainability 2018, 10, 4443. [Google Scholar] [CrossRef] [Green Version]
- Setter, C.; Borges, F.A.; Cardoso, C.R.; Mendes, R.F.; Oliveira, T.J.P. Energy quality of pellets produced from coffee residue: Characterization of the products obtained via slow pyrolysis. Ind. Crops Prod. 2020, 154, 112731. [Google Scholar] [CrossRef]
Property | Range | Basis |
---|---|---|
Bulk density (kg/m3) | 96–160 | dry |
Length of the husk (mm) | 2.0–5.0 | dry |
Hardness (Mohr’s scale) | 5.0–6.0 | dry |
Ash (%) | 18–29 | dry |
Carbon (%) | 35.0–42.0 | dry |
Hydrogen (%) | 4.0–5.0 | dry |
Oxygen (%) | 31.0–37.0 | dry |
Nitrogen (%) | 0.23–0.32 | dry |
Sulphur (%) | 0.04–0.08 | dry |
Moisture content (%) | 6.0–10.0 | As received |
Moisture Content (%) | Tapped Density (kg/m3) | Maximum Density (kg/m3) | Relaxed Density (kg/m3) |
---|---|---|---|
12% | 144 ± 0.66 | 1136 ± 0.67 | 1136 ± 0.67 |
14% | 144 ± 0.67 | 1141 ± 0.22 | 825 ± 0.26 |
16% | 144 ± 0.71 | 1144 ± 0.63 | 673.± 0.17 |
Length (mm) | Thickness (mm) | Load @ 8 mm (kgf) | |
---|---|---|---|
12% | 40 | 9 | 500 |
14% | 40 | 9 | 500 |
16% | 40 | 9 | 500 |
Ultimate Analysis | Proximate Analysis | ||||||||
MC | C (%) | H (%) | N (%) | S (%) | O (%) | VM (%) | FC (%) | ASH (%) | HHV (MJ/kg) |
10% Raw RH | 35.82 | 6.15 | 5.57 | 0.52 | 51.95 | nd | nd | nd | 8.97 |
Rice Husk Blend | |||||||||
12% | 36.63 | 5.89 | 5.96 | 0.82 | 50.70 | 40 | 45.53 | 4.92 | 13.87 |
14% | 34.46 | 5.55 | 5.63 | 1.00 | 53.33 | 30 | 55.93 | 4.70 | 14.23 |
16% | 34.42 | 5.54 | 5.93 | 1.17 | 52.94 | 39 | 47.73 | 5.27 | 13.08 |
Rice Husk Briquette | |||||||||
12% | 39.43 | 5.87 | 6.36 | 0.81 | 48.43 | 42.00 | 45.79 | 4.21 | 14.04 |
14% | 41.23 | 5.71 | 5.81 | 0.73 | 46.55 | 40.50 | 46.00 | 3.97 | 17.69 |
16% | 38.76 | 5.99 | 5.54 | 0.78 | 49.00 | 41.00 | 46.37 | 4.63 | 13.10 |
Degradation Temperature°C | |||
Moisture Content | 12% | 14% | 16% |
Blend | 330 ± 10 | 270 ± 10 | 320 ± 10 |
Briquette | 300 ± 10 | 300 ± 10 | 300 ± 10 |
Crop | Residue | Moisture Content (%) | Ash content (%) | Volatile Matter (%) | Fixed Carbon | HHV (MJ/kg) | Relaxed Density (kg/m3) | Ref. |
---|---|---|---|---|---|---|---|---|
Rice | Straw | 12.2 | 11.25 | 42.2 | 50.3 | 16.1 | 1011.23 | [53] |
Rice | bran | 12.5 | 8.7 | 44.51 | 55.01 | 20.5 | 887.25 | [53] |
Corn | Stalk | 16.8 | 10 | 61.20 | 36.4 | 13.79 | 1013.22 | [54] |
Corn | Cob | 7.7 | 8.1 | 64.2 | 33.21 | 17.25 | 1007.32 | [55] |
Corn | Husk | 11 | 2.84 | 62.98 | 36.15 | 14.44 | 1035.30 | [56] |
Wheat | Straw | 14.6 | 12.8 | 55.21 | 37.21 | 17.9 | 1022.40 | [57] |
Oats | Straw | 15 | na | 45.2- | 39.51 | 17.54 | 955.24 | [58] |
Barley | Straw | 16.3 | 4.3 | 44.52 | 41.21 | 14.85 | 1011.21 | [58] |
Sorghum | Straw | 15 | na | 46.35 | 52.35 | 14.25 | 956.34 | [31] |
Cassava | Stalk | 15 | na | 42.30 | 42.1 | 12.79 | 927.35 | [59] |
Groundnut | Husk/Shell | 7.8 | na | 57.1 | 46.43 | 13.15 | 957.25 | [60] |
Groundnut | Straw | 12 | 1.3 | 43.25 | 39.45 | 17.10 | 834.49 | [60] |
Soybean | Straw | 15 | na | 48.21 | 47.34 | 14.21 | 954.50 | [61] |
Sugar cane | Bagasse | 49.8 | 6 | 52.40 | 41.12 | 11.25 | 827.35 | [31] |
Sugar cane | Tops/Leaves | 62.5 | 1.2 | 54.35 | 38.5 | 13.45 | 987.25 | [62] |
Cotton | Stalk | 12 | 5.4 | 55.21 | 51.3 | 14.23 | 1157 | [63] |
Cotton | Husk | 10 | 6 | 49.34 | 13.35 | 1153 | [64] | |
Coconut | Shell | 10.9 | 1 | 49.25 | 54.3 | 17.24 | 875.43 | [62] |
Oil palm | Shell | 12.3 | 4 | 46.23 | 44.35 | 14.45 | 955.40 | [65] |
Oil palm | Fibre | 36.7 | 5 | 41.34 | 43.2 | 855.59 | [65] | |
Oil palm | Empty bunches | 36.7 | 5 | 43.35 | 39.5 | 16.30 | 947.15 | [65] |
Coffee | Husk | 15 | na | 57.25 | 42.10 | 19.35 | 1132 | [66] |
Rice | Husk | 10 | 19.5 | nd | 35.82 | 8.97 | 543 | This study |
Rice | Husk blen d+ kraft lignin | 12 | 4.92 | 40 | 36.63 | 13.868 | 1136 | This study |
14 | 4.70 | 30 | 34.46 | 14.229 | 825 | |||
16 | 5.27 | 39 | 34.42 | 13.08 | 673 | |||
Rice | Husk Briquette | 12 | 4.21 | 42 | 39.43 | 14.04 | 1021 | This study |
14 | 3.97 | 40.5 | 41.23 | 17.688 | 801 | |||
16 | 4.63 | 41 | 38.76 | 13.106 | 644 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, A.A.H.; Yub Harun, N.; Bilad, M.R.; Afzal, M.T.; Parvez, A.M.; Roslan, F.A.S.; Abdul Rahim, S.; Vinayagam, V.D.; Afolabi, H.K. Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste. Sustainability 2021, 13, 3069. https://doi.org/10.3390/su13063069
Saeed AAH, Yub Harun N, Bilad MR, Afzal MT, Parvez AM, Roslan FAS, Abdul Rahim S, Vinayagam VD, Afolabi HK. Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste. Sustainability. 2021; 13(6):3069. https://doi.org/10.3390/su13063069
Chicago/Turabian StyleSaeed, Anwar Ameen Hezam, Noorfidza Yub Harun, Muhammad Roil Bilad, Muhammad T. Afzal, Ashak Mahmud Parvez, Farah Amelia Shahirah Roslan, Syahirah Abdul Rahim, Vimmal Desiga Vinayagam, and Haruna Kolawole Afolabi. 2021. "Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste" Sustainability 13, no. 6: 3069. https://doi.org/10.3390/su13063069
APA StyleSaeed, A. A. H., Yub Harun, N., Bilad, M. R., Afzal, M. T., Parvez, A. M., Roslan, F. A. S., Abdul Rahim, S., Vinayagam, V. D., & Afolabi, H. K. (2021). Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste. Sustainability, 13(6), 3069. https://doi.org/10.3390/su13063069