Sustainable Urban Greening and Cooling Strategies for Thermal Comfort at Pedestrian Level
Abstract
:1. Introduction
- Section 2 describes the methodological approach, the tools and software used for CFD simulations, and analytic models for calculating comfort indicators. The equipment used for a ground survey is described too;
- Section 3 provides detailed descriptions of the case study;
- Section 4 discusses the methods used for calibrating and validating the model through statistical analysis approach;
- Section 5 provides the results of computational simulations (CFD) for Cool and Green scenarios;
- Section 6 reports scenarios’ results and some critical issues through comparative analysis.
2. Materials and Methods
2.1. CFD Simulations
- Shortwave and longwave radiation fluxes attributable to shading, reflection, and re-radiation from building systems and the vegetation;
- Transpiration, evaporation, and sensible and latent heat flux from the vegetation, including full simulation of all plant physical parameters [36];
- Water and heat transfer inside the soil system.
- Geometry modeling of simulation domain;
- Generation of the mesh of the calculation grid;
- Implementation of buildings, obstacles geometry, trees, shrubs, and plants;
- Definition of the boundary conditions and entering climate data;
- Definition of the radiative and thermo-physical properties of buildings and urban materials;
- Calculation of the field of temperature, humidity, wind speed, and comfort indicators;
- Extraction of the simulation outcomes in 2D and 3D maps and in specific points at different height.
2.2. Comfort Indexes
2.2.1. PMV
2.2.2. PET
2.3. Field Survey
- Air temperature and relative humidity sensors: (uncertainty: 0.10 °C and 0.1%; measurements range: −50–100 °C and 0–100%);
- Radiometer: (spectral response: 300–3000 nm; operative temperature −40 °C/+80 °C; uncertainty: ±4 W/m2);
- Anemometer: (measurement range: 0 ÷ 50 m/s; threshold: 0.36 m/s; uncertainty 1%; below 3 m/s and 1.5% above 3 m/s; resolution: 0.06 m/s).
2.4. Statistical Analysis
3. The Case Study
3.1. Baseline Scenario
3.1.1. Model Simulation
3.1.2. Materials and Thermo-Physical Properties
3.2. On Site Weather Measurements
4. Calibration and Validation
5. Proposed Scenarios
- Cool scenario (Cs), in which a reflective paint is applied on the pedestrian pavements, roads, and building roofs;
- Green Roof scenario (GRs), in which extensive green roofs are installed with an increase of surface cover at around 25%;
- Green Saturation scenario (GSs), in which any available area is covered with vegetation and green roofs. In this way, the green surface cover increases by around 44%.
6. Results and Discussion
6.1. Microclimate and Thermal Comfort Daily Variation
6.2. Spatial Analysis
6.2.1. Air Temperature, Wind Speed, and Relative Humidity
6.2.2. Soil Temperature, Mean Radiant Temperature, and Thermal Comfort Indexes
6.2.3. Spatial Cumulative Frequency Distribution
6.3. Spatial Averages
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heatwave Plan for England–Making the Case: The Impact of Heat on Health–Now and in the Future. Department of Health, 1–21, 2015. Available online: https://www.england.nhs.uk/2015/06/2015-heatwave-plan (accessed on 11 March 2021).
- Li, D.; Boud-Zeid, E. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteorol. Climatol. 2013, 52, 2051–2064. [Google Scholar] [CrossRef] [Green Version]
- Climate Change Impacts and Vulnerabilty European. An Indicator Based Report. European Environment Agency (EEA): Copenhagen, 2012. Available online: https://energee-watch.eu/wp-content/up-loads/2014/05/Climate-change-impacts-and-vulnerability-in-Europe-2012.pdf (accessed on 11 March 2021).
- Akbari, H.; Levinson, R.; Miller, W.; Berdahl, W.P. Energy Saving Potentials and Air Quality Benefits of Urban Heat Island Mitigation, Lawrence Berkeley National Laboratory. 2005. Available online: http://escholarship.org/u-c/item/20j676c9 (accessed on 11 March 2021).
- Akbari, H.; Cartalis, C.; Kolokotsa, D.; Muscio, A.; Pisello, A.L.; Rossi, F.; Santamouris, M.; Synnefa, A.; Wong, N.; Zinzi, M. Local climate change and urban heat island mitigation techniques–the state of the art. J. Civ. Eng. Manag. 2016, 22, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Alexandri, E.; Jones, O. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build. Environ. 2008, 43, 480–493. [Google Scholar] [CrossRef]
- Akbari, H.; Konopacki, S. Calculating energy-saving potentials of heat-island reduction strategies. Energy Policy 2005, 33, 721–756. [Google Scholar] [CrossRef]
- Tzavali, A.; Paravantis, J.P.; Mihalakakou, G.; Fotiadi, A.; Stigka, E. Urban heat island intensity: A literature review. Fresenius Environ. Bull. 2015, 24, 4537–4554. [Google Scholar]
- Santamouris, M.; Synnefa, A.; Karlessi, T. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol. Energy 2011, 85, 3085–3102. [Google Scholar] [CrossRef]
- Takebayashi, H.; Moriyama, M. Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Build. Environ. 2007, 42, 2971–2979. [Google Scholar] [CrossRef] [Green Version]
- Dimoudi, A.; Zoras, S.; Kantzioura, A.; Stogiannou, X.; Kosmopoulos, P.; Pallas, C. Use of cool materials and other bioclimatic interventions in outdoor places in order to mitigate the urban heat island in a medium size city in Greece. Sustain. Cities Soc. 2014, 13, 89–96. [Google Scholar] [CrossRef]
- Akbari, H.; Matthews, H.D. Global cooling updates: Reflective roofs and pavements. Energy Build. 2012, 55, 2–6. [Google Scholar] [CrossRef]
- Dandou, A.; Santamouris, M.; Synnefa, A.; Soulakellis, N.; Tombrou, M. On the Use of Cool Materials as a Heat Island Mitigation Strategy. J. Appl. Meteorol. Climatol. 2008, 47, 2846–2856. [Google Scholar]
- Oke, T.R. The energetic basis of the Urban Heat Island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Salvati, A.; Roura, H.C.; Cecere, C. Assessing the urban heat island and its energy impact on residential buildings in Mediterranean climate: Barcelona case study. Energy Build. 2017, 146, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Mihalakakou, G.; Santamouris, M.; Papanikolaou, N.; Cartalis, C.; Tsangrassoulis, A. Simulation of the Urban Heat Island Phenomenon in Mediterranean Climates. Pure Appl. Geophys. 2004, 161, 429–451. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort. Analysis and Applications in Environmental Engineering; McGrawHill: New York, NY, USA, 1970. [Google Scholar]
- ISO 7730. Ergonomics of the Thermal Environment–Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; International Standards Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Honyo, T. Thermal Comfort in Outdoor Environment. Glob. Environ. Res. 2009, 13, 43–47. [Google Scholar]
- Jendritzky, G.; Nübler, W. A model analysing the urban thermal environment in physiologically significant terms. Meteorol. Atmos. Phys. 1981, 29, 313–326. [Google Scholar] [CrossRef]
- Höppe, P. Heat balance modelling. Experientia 1993, 49, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Höppe, P. Die Energiebilanz des Menschen. Wiss. Mitt. Meteor. Inst. Univ. Miinchen 1984, 49, 1–12. [Google Scholar]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Boud-Zeid, E.; Oppenheimer, M. The effectiveness of cool and green roof as urban heat mitigation strategies. Environ. Res. Lett. 2014, 9, 055002. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Taha, H.; Akbari, H.; Rosenfeld, A. Heat island and oasis effects of vegetative canopies: Micro-meteorological field-measurements. Theor. Appl. Climatol. 1991, 44, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Zoras, S.; Tsermentselis, A.; Kosmopoulos, P.; Dimoudi, A. Evaluation of the application of cool materials in urban spaces: A case study in the center of Florina. Sustain. Cities Soc. 2014, 13, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Kolokotsa, D.D.; Giannariakis, G.; Gobakis, K.; Giannarakis, G.; Synnefa, A.; Santamouris, M. Cool roofs and cool pavements application in Acharnes, Greece. Sustain. Cities Soc. 2018, 37, 466–474. [Google Scholar] [CrossRef]
- Gagliano, A.; Nocera, F.; Detommaso, M.; Evola, G. Thermal behavior of an extensive green roof: Numerical simulations and experimental investigations. Int. J. Heat Technol. 2006, 34, S226–S234. [Google Scholar] [CrossRef]
- Santamouris, M. Urban warming and mitigation: Actual status, impacts and challenges. In Urban Climate Mitigation Techniques, 1st ed.; Santamouris, M., Kolokotsa, D.D., Eds.; Taylor & Francis Group: London, UK, 2016; pp. 1–26. [Google Scholar] [CrossRef]
- Susca, T.; Gaffin, S.R.; Dell’osso, G.R. Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut. 2011, 159, 2119–2226. [Google Scholar] [CrossRef] [PubMed]
- Maleki, A.; Mahdavi, A. Evaluation of urban heat islands mitigation strategies using Three dimensional urban micro-climate model ENVI-met. Asian J. Civ. Eng. 2016, 17, 357–371. [Google Scholar]
- ENVI-met V4.5. Urban Environment through Holistic Microclimate Modelling. Available online: https://www.envi-met.com/last (accessed on 13 February 2020).
- Bruse, M.; Fleer, H. Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Bruse, M. ENVI-met 3.0: Updated Model Overview. 2004. Available online: http://www.envi-met.net/documents/papers/overview30.pdf (accessed on 11 March 2021).
- Jacobs, C.M.J.; Van den Hurk, B.J.J.M.; de Bruin, H.A.R. Stomata behaviour and photosynthetic rate of unstressed grapevines in semi-arid conditions. Agric. For. Meteorol. 1996, 80, 111–134. [Google Scholar] [CrossRef]
- Fang, Z.; Feng, X.; Lin, Z. Investigation of PMV Model for Evaluation of the Outdoor Thermal Comfort. Procedia Eng. 2017, 205, 2457–2462. [Google Scholar] [CrossRef]
- Gagge, A.P.; Stolwijk, A.J.A.; Nishi, Y. An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans. 1971, 77, 247–257. [Google Scholar]
- Giuffrida, S.; Gagliano, F.; Nocera, F.; Trovato, M.R. Landscape assessment and economic accounting in wind farm programming: Two cases in sicily. Land 2018, 7, 120. [Google Scholar] [CrossRef] [Green Version]
- ISO 7726. Ergonomics of the Thermal Environment–Instruments for Measuring Physical Quantities; International Organization for Standardization: Geneva, Switzerland, 1998. [Google Scholar]
- Despotovic, M.; Nedic, V.; Despotovic, D.; Cvetanovic, S. Review and statistical analysis of different global solar radiation sunshine models. Renew. Sustain. Energy Rev. 2015, 52, 1869–1880. [Google Scholar] [CrossRef]
- Ramos Ruiz, G.; Fernández Bandera, C. Validation of calibrated energy models: Common errors. Energies 2017, 10, 1587. [Google Scholar] [CrossRef] [Green Version]
- Trovato, M.R.; Nocera, F.; Giuffrida, S. Life-cycle assessment and monetary measurements for the carbon footprint reduction of public buildings. Sustainability 2020, 12, 3460. [Google Scholar] [CrossRef] [Green Version]
- Gagliano, A.; Patania, F.; Capizzi, A.; Nocera, F.; Galesi, A. A proposed methodology for estimating the performance of small wind turbines in urban areas. In Sustainability in Energy and Buildings, Smart Innovation, Systems and Technologies; M’Sirdi, N., Namaane, A., Howlett, R.J., Jain, L.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Salvati, A.; Kolokotroni, M. Microclimate Data for Building Energy Modelling: Study on ENVI-Met Forcing Data. In Proceedings of the 16th International Building Performance Simulation Association IBPSA Conference, Rome, Italy, 2–4 September 2019. [Google Scholar]
- Mohamed Elnabawi, H.; Hamza, N.; Dudek, S. Numerical modelling evaluation for the microclimate of an outdoor urban form in Cairo, Egypt. Hous. Build. Natl. Res. Center J. 2015, 11, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Gusson, C.S.; Duarte, D.H.S. Effects of built density and urban morphology on urban microclimate-calibration of the model ENVI-met V4 for the subtropical Sao Paulo, Brazil. Procedia Eng. 2016, 169, 2–10. [Google Scholar] [CrossRef]
- CRRC Rated Products Directory. Available online: Coolroofs.org/products/search.php (accessed on 12 June 2020).
- Sailor, D.J. A green roof model for building energy simulation programs. Energy Build. 2008, 40, 1466–1478. [Google Scholar] [CrossRef]
Climatic Variables | Type of Probes | Accuracy | Range |
---|---|---|---|
Air temperature | Thermometer Silicon band gap | ±0.3 °C, (@10, 40 °C) ±0.8 °C (@60 °C) | −20 °C ÷ 60 °C |
Relative Humidity | Hygrometric Sensors | 1.8% (10 ÷ 90%) | 0 ÷ 100% |
Wind speed | DNA205 Rotor Anemometer | 2.5% | 0 ÷ 0.75 m/s |
Globe temperature | ELR615M globe thermometer probe (Ø = 150 mm), Sensor type: 1/3 DIN-A Pt100 | ± 0.3 °C (@25 °C) | −20 ÷ 125 °C |
Index | Name | Formula | U.M. |
---|---|---|---|
MAE | Mean absolute error | data-dependent | |
RMSE | Root mean square error | data-dependent | |
r | Pearson correlation coefficient | - | |
R2 | Coefficient of determination | - |
Urban Components | Albedo (ρ) | Solar Emittance (ε) |
---|---|---|
Roads, parking, square (asphalt) | 0.20 | 0.85 |
Pedestrian roads | 0.30 | 0.85 |
Ground, soil | 0.20 | 0.95 |
Concrete building roofs | 0.30 | 0.90 |
Clay brick building roofs | 0.30 | 0.90 |
Building walls | 0.20 | 0.90 |
Photovoltaic panels | 0.625 | 0.90 |
Shelter parking | 0.20 | 0.90 |
Type | Species | Height (m) | LAD (-) | ρ (-) | ε (-) |
---|---|---|---|---|---|
Conic, small trunk, dense | conifer | 15.0 | 2.3 | 0.12 | 0.10 |
Tree dense foliage leafless | conifer | 10.0 | 2.5 | 0.25 | 0.12 |
Populus alba | deciduous | 7.0 | 2.0 | 0.40 | 0.20 |
Base grass, average density | - | 0.30 | 0.30 | 0.25 | 0.15 |
No | Locations | Time Periods | Locations | Height a.g.l. (m) |
---|---|---|---|---|
1 | P1 | 10.00 a.m. on July 29–6.00 p.m. on July 30 | Roof Terrace of building. n. 13 | 5.4 |
2 | P2 | 10.00 a.m.–6.00 pm. on July 30 | Pavements | 7.0 |
3 | P3 | 12.00 a.m. on August 22–12.00 a.m. on August 24 | Roof Terrace of building. n. 13 | 5.4 |
Variables | Statistical Indices | Unit | Locations | ||
---|---|---|---|---|---|
P1 (h = 5.41 m) 29th–30th July | P2 (h = 1.20 m) 30th July | P3 (h = 1.20 m) 22th–24th August | |||
To | MAE | °C | 1.33 | 2.41 | 0.82 |
RMSE | °C | 1.60 | 2.50 | 0.69 | |
r | - | 0.96 | 0.95 | 0.98 | |
R2 | - | 0.93 | 0.91 | 0.94 | |
RH | MAE | % | 4.76 | 4.95 | 3.04 |
RMSE | % | 5.49 | 6.02 | 2.15 | |
r | - | 0.94 | 0.77 | 0.97 | |
R2 | - | 0.88 | 0.60 | 0.95 |
Urban Components | Surface (m2) | Surfaces Ratio (%) | Albedo (ρ) | Emittance (ε) |
---|---|---|---|---|
Cool pavements | 12,160 | 36% | 0.80 | 0.90 |
Cool roofs | 8500 | 25% | 0.80 | 0.90 |
Total | 20,650 | 61% | - | - |
Height | H | 0.15 | m |
Thermal conductivity | λ | 1.00 | W·m−1·K−1 |
Absorptance | α | 0.60 | - |
Albedo | ρ | 0.30 | - |
Emittance | ε | 0.90 | - |
Moisture content | Θsat | 0.50 | m−3·m−3 |
Height | H | 0.30 | m |
Leaf Area Index | LAI | 1.50 | m2·m−2 |
Absorptance | α | 0.60 | - |
Albedo | ρ | 0.25 | - |
Emittance | ε | 0.95 | - |
Transmissivity | τ | 0.15 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Detommaso, M.; Gagliano, A.; Marletta, L.; Nocera, F. Sustainable Urban Greening and Cooling Strategies for Thermal Comfort at Pedestrian Level. Sustainability 2021, 13, 3138. https://doi.org/10.3390/su13063138
Detommaso M, Gagliano A, Marletta L, Nocera F. Sustainable Urban Greening and Cooling Strategies for Thermal Comfort at Pedestrian Level. Sustainability. 2021; 13(6):3138. https://doi.org/10.3390/su13063138
Chicago/Turabian StyleDetommaso, Maurizio, Antonio Gagliano, Luigi Marletta, and Francesco Nocera. 2021. "Sustainable Urban Greening and Cooling Strategies for Thermal Comfort at Pedestrian Level" Sustainability 13, no. 6: 3138. https://doi.org/10.3390/su13063138
APA StyleDetommaso, M., Gagliano, A., Marletta, L., & Nocera, F. (2021). Sustainable Urban Greening and Cooling Strategies for Thermal Comfort at Pedestrian Level. Sustainability, 13(6), 3138. https://doi.org/10.3390/su13063138