Assessment of Acidic Biochar on the Growth, Physiology and Nutrients Uptake of Maize (Zea mays L.) Seedlings under Salinity Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Salt Analysis
2.2. Collection of Biochar and Its Characterization
2.3. Experimental Site and Treatments
2.4. Chlorophyll Fluorescence and SPAD Chlorophyll Content
2.5. Seedling Growth Characteristics
2.6. Nutrients Analysis
2.7. Post-Harvest Analysis of Soil
2.8. Statistical Analysis
3. Results
3.1. Effects of Acidic Biochar on Plant Growth Attributes
3.2. SPAD Chlorophyll Content and Chlorophyll Fluorescence (Fv/Fm)
3.3. Effect of Acidic Biochar on Shoot Nutrients Concentration in Maize Seedlings
3.4. Effect of Acidic Biochar on Root Nutrients Concentration in Maize Seedlings
3.5. Effect of Biochar on Soil Properties after Harvest (0–20 cm)
3.6. Relationship between Plant Growth Parameters, and Shoot and Root Na Content
4. Discussion
4.1. Effect of Biochar on Growth Attributes of Maize Seedlings
4.2. Effect of Biochar on Nutrients Concentration in Shoot
4.3. Effect of Biochar on Nutrients Concentration in Root
4.4. Effect of Biochar on Soil Properties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, R.; Howlader, M.H.K.; Shila, A.; Haque, M.A. Effect of salinity on germination and early seedling growth of maize. Progress. Agric. 2017, 28, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Grattan, S.R.; Grieve, C.M. Salinity-mineral nutrient relations in horticultural crops. Sci. Hortic. 1999, 58, 127–157. [Google Scholar] [CrossRef]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Ambede, J.G.; Netondo, G.W.; Mwai, G.N.; Musyimi, D.M. NaCl salinity affects germination, growth, physiology, and biochemistry of Bambara groundnut. Braz. J. Plant Physiol. 2012, 24, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Abreu, I.A.; Farinha, A.P.; Negrão, S.; Gonçalves, N.; oFnseca, C.; Rodrigues, M. Coping with abiotic stress: Proteome changes for crop improvement. J. Proteom. 2013, 93, 145–168. [Google Scholar] [CrossRef]
- Saleh, B. Effect of salt stress on growth and chlorophyll content of some cultivated cotton varieties grown in Syria. Commun. Soil Sci. Plant Anal. 2012, 43, 1976–1983. [Google Scholar] [CrossRef]
- Bose, S.; Fakir, O.A.; Alam, M.K.; Hossain, A.Z.; Hossain, A.; Mymensingh, B.; Rashid, M.H. Effects of salinity on seedling growth of four maize (Zea mays L.) cultivars under hydroponics. J. Agric. Stud. 2018, 6, 56–69. [Google Scholar]
- Adnan, M.; Fahad, S.; Zamin, M.; Shah, S.; Mian, I.A.; Danish, S.; Zafar-ul-Hye, M.; Battaglia, M.L.; Naz, R.M.M.; Saeed, B.; et al. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants 2020, 9, 900. [Google Scholar] [CrossRef]
- Yuan, C.; Feng, S.; Wang, J.; Huo, Z.; Ji, Q. Effects of irrigation water salinity on soil salt content distribution, soil physical properties and water use efficiency of maize for seed production in arid Northwest China. Int. J. Agric. Biol. Eng. 2018, 11, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Li, F.; Yang, P.; Ren, S.; Wang, S.; Wang, Y.; Zhang, Y. Effects of irrigation water salinity on soil properties, N2O emission and yield of spring maize under mulched drip irrigation. Water 2019, 11, 1548. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.W.; Chong, W.A.N.G.; Rui, X.U.E.; Wang, L.J. Effects of salinity on the soil microbial community and soil fertility. J. Integr. Agric. 2019, 18, 1360–1368. [Google Scholar] [CrossRef]
- Fu, J.; Liu, Z.; Li, Z.; Wang, Y.; Yang, K. Alleviation of the effects of saline-alkaline stress on maize seedlings by regulation of active oxygen metabolism by Trichoderma asperellum. PLoS ONE 2017, 12, e0179617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amini, S.; Ghadiri, H.; Chen, C.; Marschner, P. Salt-affected soils, reclamation, carbon dynamics, and biochar: A review. J Soils Sed. 2016, 16, 939–953. [Google Scholar] [CrossRef]
- Wichern, F.; Islam, M.; Hemkemeyer, M.; Watson, C.; Joergensen, R.G. Organic amendments alleviate salinity effects on soil microorganisms and mineralisation processes in aerobic and anaerobic paddy rice soils. Front. Sustain. Food Syst. 2020, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Leogrande, R.; Vitti, C. Use of organic amendments to reclaim saline and sodic soils: A review. Arid Land Res. Manag. 2019, 33, 1–21. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Andersen, M.N.; Naveed, M.; Zahir, Z.A.; Liu, F. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Funct. Plant Biol. 2015, 42, 770–781. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.; Cheng, R.; Qulaqa, A.; Yangqiu, G.; Liying, G.; Jianbo, L.; Dong, H.; Xianqin, Z.; Xu, L.; Xiwen, S. Effects of biochar on sodium ion accumulation, yield and quality of rice in saline-sodic soil of the west of Songnenplain, northeast China. Plant Soil Environ. 2018, 64, 612–618. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.; Lehmann, J. Biochar for Environmental Management Science and Technology; Earth Scan: London, UK, 2009; pp. 1–12. [Google Scholar]
- Mishra, A.; Shinogi, Y. Effects of biochar on soil physico-chemical properties. In Proceedings of the International Exchange and Innovation Conference on Engineering and Sciences, Fukuoka, Japan, 18–19 October 2018; Volume 4, pp. 102–105. [Google Scholar]
- Sial, T.A.; Khan, M.N.; Lan, Z.; Kumbhar, F.; Ying, Z.; Zhang, J.; Li, X. Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties. Process Saf. Environ. Prot. 2019, 122, 366–377. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosys Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Głąb, T.; Palmowska, J.; Zaleski, T.; Gondek, K. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 2016, 281, 11–20. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Aboyeji, C.M.; Dunsin, O.; Simeon, V.T. Effects of biochar and poultry manure on soil characteristics and the yield of radish. Sci. Hortic. 2019, 243, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Piash, M.I.; Hossain, M.F.; Parveen, Z. Effect of biochar and fertilizer application on the growth and nutrient accumulation of rice and vegetables in two contrast soils. Acta Sci. Agric. 2019, 3, 74–83. [Google Scholar]
- Duarte, S.J.; Glaser, B.; Cerri, C.E.P. Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils. Agronomy 2019, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Zhang, Z.; Zhu, C.; Zhai, Y.; Lu, P. Effect of biochar on sweet corn and soil salinity under conjunctive irrigation with brackish water in coastal saline soil. Sci. Hortic. 2019, 250, 405–413. [Google Scholar] [CrossRef]
- Younis, U.; Athar, M.; Malik, S.A.; Shah, M.H.R.; Mahmood, S. Biochar impact on physiological and biochemical attributes of spinach (Spinacia oleracea L.) in nickel contaminated soil. Glob. J Environ. Sci. Manag. 2015, 1, 245–254. [Google Scholar]
- Agbna, G.H.D.; Dongli, S.; Zhipeng, L.; Elshaikh, N.A.; Guangcheng, S.; Timm, L.C. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Sci. Hortic. 2017, 222, 90–101. [Google Scholar] [CrossRef]
- Lashari, M.S.; Liu, Y.; Li, L.; Pan, W.; Fu, J.; Pan, G.; Zheng, J.; Zheng, J.; Zhang, X.; Yu, X. Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crop. Res. 2013, 144, 113–118. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Andersen, M.N.; Liu, F. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric. Water Manag. 2015, 158, 61–68. [Google Scholar] [CrossRef]
- Rafiq, M.K.; Bachmann, R.T.; Rafiq, M.T.; Shang, Z.; Joseph, S.; Long, R. Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea mays L.) biochar and feasibility for carbon capture and energy balance. PLoS ONE 2016, 11, e0156894. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.X.; Ta, N.; Wang, X.D. Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies 2017, 10, 1293. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.Y.; Xu, Z. Biochar: Nutrient properties and their enhancement. Biochar Environ. Manag. Sci. Technol. 2009, 1, 67–84. [Google Scholar]
- Zhang, J.; Liu, J.; Liu, R. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Technol. 2015, 176, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Elnour, A.Y.; Alghyamah, A.A.; Shaikh, H.M.; Poulose, A.M.; Al-Zahrani, S.M.; Anis, A.; Al-Wabel, M.I. Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites. Appl. Sci. 2019, 9, 1149. [Google Scholar] [CrossRef] [Green Version]
- Trupiano, D.; Cocozza, C.; Baronti, S.; Amendola, C.; Vaccari, F.P.; Lustrato, G.; Scippa, G.S. The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance. Int. J. Agron. 2017, 2017, 3158207. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Fande, M. Evaluating the effect of biochar on salt leaching and nutrient retention of Yellow River Delta soil. Soil Use Manag. 2020, 36, 740–750. [Google Scholar] [CrossRef]
- Fernandes, J.D.; Chaves, L.H.; Mendes, J.S.; Chaves, I.B.; Tito, G.A. Alterations in soil salinity with the use of different biochar doses. Rev. de Cienc. Agrar. 2018, 42, 89–98. [Google Scholar]
- Gonzaga, M.I.S.; Mackowiak, C.; Almeida, A.Q.; Junior, J.I.T.C.; Andrade, K.R. Positive and negative effects of biochar from coconut husks, orange bagasse and pine wood chips on maize (Zea mays L.) growth and nutrition. Catena 2018, 162, 414–420. [Google Scholar] [CrossRef]
- Deenik, J.L.; Uehara, T.M.G.; Antal, M.J., Jr.; Campbell, S. Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci. Soc. Am. J. 2010, 74, 1259–1270. [Google Scholar] [CrossRef]
- Hol, W.H.G.; Vestergard, M.; Hooven, F.; Duyts, H.; Voorde, T.F.J.; Bezemer, T.M. Transient negative biochar effects on plant growth are strongest after microbial species loss. Soil Biol. Biochem. 2017, 115, 442–451. [Google Scholar] [CrossRef]
- Qi, F.; Dong, Z.; Lamb, D.; Naidu, R.; Bolan, N.S.; Ok, Y.S.; Liu, C.; Khan, N.; Johir, M.A.H.; Semple, K.T. Effect of acidic and neutral biochars on properties and cadmium retention of soils. Chemosphere 2017, 180, 564–573. [Google Scholar] [CrossRef] [Green Version]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Rayment, G.E.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata Press Pty Ltd.: Melbourne, Australia, 1992. [Google Scholar]
- Dai, Z.; Meng, J.; Muhammad, N.; Liu, X.; Wang, H.; He, Y.; Xu, J. The potential feasibility for soil improvement, based on the properties of biochars pyrolyzed from different feedstocks. J. Soils Sediments 2013, 13, 989–1000. [Google Scholar] [CrossRef]
- Thomas, G.W. Exchangeable cations. Methods Soil Anal. Chem. Microbiol. Prop. 1983, 9, 159–165. [Google Scholar]
- Gao, H.; Mao, H.; Zhang, X. Determination of lettuce nitrogen content using spectroscopy with efficient wavelength selection and extreme learning machine. Zemdirb. Agric. 2015, 102, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1950, 347. [Google Scholar]
- Kader, M.H.A.; Wang, G.; Soothar, M.K.; Shen, X.; Gao, Y.; Qiu, R.; Mehmood, F. Responses of leaf gas exchange attributes, photosynthetic pigments and antioxidant enzymes in NaCl-stressed cotton (Gossypium hirsutum L.) seedlings to exogenous glycine betaine and salicylic acid. BMC Plant Biol. 2020, 1–14. [Google Scholar]
- Abideen, Z.; Koyro, H.W.; Huchzermeyer, B.; Ansari, R.; Zulfiqar, F.; Gul, B. Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defense of Phragmites karka under drought stress. Plant Biol. 2019, 22, 259–266. [Google Scholar] [CrossRef]
- Tanure, M.M.C.; da Costa, L.M.; Huiz, H.A.; Fernandes, R.B.A.; Cecon, P.R.; Junior, J.D.P.; da Luz, J.M.R. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil Tillage Res. 2019, 192, 164–173. [Google Scholar] [CrossRef]
- Agami, R.A. Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. S. Afr. J Bot. 2013, 88, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Riffat, A.; Ahmed, M.S.A. Amelioration of adverse effects of salt stress on maize (Zea mays l.) cultivars by exogenous application of sulfur at seedling stage. Pak. J Bot. 2016, 48, 1323–1334. [Google Scholar]
- Ibrahim, M.H.; Adam, Y.A.A.; Aboagla, M.I.E.; Guisheng, Z.; Nimir, E.A.N.; Irshad, A.; Eltyeb, S.M.S.; Safiya, B.M.E.; Ebtehal, G.I.S. Biochar improved sorghum germination and seedling growth under salinity stress. Agron. J. 2020, 112, 911–920. [Google Scholar] [CrossRef]
- Kanwal, S.; Ilyas, N.; Shabir, S.; Saeed, M.; Gul, R.; Zahoor, M.; Mazhar, R. Application of biochar in mitigation of negative effects of salinity stress in wheat (Triticum aestivum L.). J. Plant Nut 2017, 41, 526–538. [Google Scholar] [CrossRef]
- Omidire, N.S.; Shange, R.; Khan, V.; Bean, R.; Bean, J. Assessing the impacts of inorganic and organic fertilizer on crop performance under a microirrigation-plastic mulch regime. Prof. Agric. Workers J. 2015, 3. [Google Scholar] [CrossRef]
- Sharma, A.; Chetani, R. A review on the effect of organic and chemical fertilizers on plants. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 5, 677–680. [Google Scholar] [CrossRef]
- Chandini, K.R.; Kumar, R.; Prakash, O. The Impact of chemical fertilizers on our environment and ecosystem. Res. Trends Environ. Sci. 2019, 69–86. [Google Scholar]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar]
- Sarfraz, R.; Awais, S.; Muhammad, A.; Ammara, A.; Azhar, H.; Shihe, X. Impact of integrated application of biochar and nitrogen fertilizers on maize growth and nitrogen recovery in alkaline calcareous soil. Soil Sci. Plant Nut. 2017, 63, 488–498. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R. Nature and Properties of Soils, the: Pearson New International Edition; Pearson Higher Ed.: London, UK, 2013. [Google Scholar]
- Xu, G.; Zhang, Y.; Sun, J.; Shao, H. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Sci. Total Environ. 2016, 568, 910–915. [Google Scholar] [CrossRef]
- Lashari, M.S.; Ye, Y.; Ji, H.; Li, L.; Kibue, G.W.; Lu, H.; Pan, G. Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: A 2-year field experiment. J. Sci. Food Agric. 2014, 95, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Naheed, G.; Shahbaz, M.; Latif, A.; Rha, E.S. Alleviation of the adverse effects of salt stress on rice (Oryza sativa L.) by phosphorus applied through rooting medium: Growth and gas exchange characteristics. Pak. J Bot. 2007, 39, 729–737. [Google Scholar]
- Dietrich, C.C.; Rahaman, M.A.; Robles-Aguilar, A.A.; Latif, S.; Intani, K.; Müller, J.; Jablonowski, N.D. Nutrient loaded biochar doubled biomass production in Juvenile maize plants (Zea mays L.). Agronomy 2020, 10, 567. [Google Scholar] [CrossRef] [Green Version]
- Borchard, N.; Siemens, J.; Ladd, B.; Möller, A.; Amelung, W. Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil Tillage Res. 2014, 144, 184–194. [Google Scholar] [CrossRef]
- Lashari, M.S.; Bakht-un-Nisa Mangan, I.R.; Ji, H.; Pan, G.; Lashari, A.A.; Nan, J. Improvement of Soil Fertility and Crop Yield through Biochar Amendment from Salt Affected Soil of Central China. J. Agric. Sci. Technol. 2018, 8, 209. [Google Scholar]
- Troeh, F.R.; Thompson, L.M. Soils and Soil Fertility; Blackwell: New York, NY, USA, 2005; Volume 489. [Google Scholar]
- Haider, G.; Diedrich, S.; Gerald, M.; Christoph, M.; Claudia, I.K. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 2017, 237, 80–94. [Google Scholar] [CrossRef]
- Fenta, B.A.; Beebe, S.E.; Kunert, K.J.; Burridge, J.D.; Barlow, K.M.; Lynch, J.P.; Foyer, C.H. Field phenotyping of soybean roots for drought stress tolerance. Agronomy 2014, 4, 418–435. [Google Scholar] [CrossRef] [Green Version]
- West, G.; Inzé, D.; Beemster, G.T. Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol. 2004, 135, 1050–1058. [Google Scholar] [CrossRef]
- Robbins, N.E.; Dinneny, J.R. Growth is required for perception of water availability to pattern root branches in plants. Proc. Natl. Acad. Sci. USA 2018, 115, 822–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao-Hong, Z.H.U.; Xin-Hua, P.E.N.G.; Huang, T.Q.; Zu-Bin, X.I.E.; Holden, N.M. Effect of biochar addition on maize growth and nitrogen use efficiency in acidic red soils. Pedosphere 2014, 24, 699–708. [Google Scholar]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’neill, B.; Neves, E.G. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, S.S.; Andersen, M.N.; Liu, F. Biochar mitigates salinity stress in potato. J. Agron. Crop Sci. 2015, 201, 368–378. [Google Scholar] [CrossRef]
- Kizito, S.; Hongzhen, L.; Jiaxin, L.; Hamidou, B.; Renjie, D.; Shobiao, W. Role of nutrient-enriched biochar as a soil amendment during maize growth: Exploring practical alternatives to recycle agricultural residual and to reduce chemical fertilizer demand. Sustainability 2019, 11, 3211. [Google Scholar] [CrossRef] [Green Version]
Parameters | Soil | Biochar | Salt |
---|---|---|---|
Texture | Silty clay loam | - | - |
pH | 8.51 | 2.52 | - |
EC dS m−1 | 3.31 | - | 17 |
CEC cmol(+) kg−1 | 3.86 | 23.7 | - |
Total nitrogen (mg g−1) | 0.50 | 2.8 | - |
Total phosphorus (mg g−1) | 0.66 | 64.9 | - |
Total potassium (mg g−1) | - | 5.6 | - |
Chloride (g kg−1) | 0.0071 | 0.03 | 70.0 |
Exchangeable K (g kg−1) | - | - | 0.02 |
Exchangeable Na (g kg−1) | 0.018 | 0.50 | 4.46 |
Exchangeable Ca (g kg−1) | 50.43 | - | 0.04 |
Exchangeable Mg (g kg−1) | 18.33 | - | 1.94 |
Selected Nutrients Concentration in Shoot of Maize Seedlings | ||||
---|---|---|---|---|
Treatments | TN (mg g−1) | TP (mg g−1) | TK (mg g−1) | Na (mg g−1) |
CK | 9.10 ± 0.67 ab | 0.99 ± 0.08 b | 3.97 ± 0.58 a | 6.85 ± 0.89 c |
B0S1 | 8.41 ± 0.71 ab | 1.99 ± 0.16 a | 0.93 ± 0.38 b | 14.07 ± 1.15 a |
B30S1 | 10.71 ± 1.14 a | 1.38 ± 0.28 b | 1.65 ± 0.47 b | 9.09 ± 1.02 bc |
B45S1 | 9.45 ± 0.89 ab | 1.29 ± 0.21 b | 1.69 ± 0.17 b | 7.69 ± 1.39 bc |
B0S1.5 | 7.39 ± 0.04 b | 2.46 ± 0.32 a | 0.71 ± 0.25 b | 10.13 ± 0.44 b |
B30S1.5 | 9.22 ± 0.65 ab | 0.97 ± 0.14 b | 1.19 ± 0.59 b | 8.78 ± 0.79 bc |
B45S1.5 | 8.68 ± 0.94 ab | 1.38 ± 0.09 b | 1.74 ± 0.40 b | 7.10 ± 1.21 bc |
Selected Nutrients Concentration in Root of Maize Seedlings | ||||
---|---|---|---|---|
Treatments | TN (mg g−1) | TP (mg g−1) | TK (mg g−1) | Na (mg g−1) |
CK | 26.34 ± 0.39 c | 1.88 ± 0.01 d | 19.46 ± 1.22 ab | 26.41 ± 0.70 b |
B0S1 | 33.62 ± 0.20 a | 3.02 ± 0.03 a | 20.20 ± 1.29 ab | 38.18 ± 1.10 a |
B30S1 | 24.84 ± 0.16 d | 2.41 ± 0.04 c | 20.19 ± 1.56 ab | 21.67 ± 1.29 c |
B45S1 | 25.19 ± 0.09 d | 2.55 ± 0.07 bc | 21.52 ± 1.56 a | 15.25 ± 1.41 d |
B0S1.5 | 26.40 ± 0.22 c | 2.03 ± 0.03 d | 16.63 ± 1.30 b | 21.69 ± 1.75 c |
B30S1.5 | 30.50 ± 0.19 b | 2.87 ± 0.05 a | 19.47 ± 0.87 ab | 17.75 ± 0.55 d |
B45S1.5 | 26.45 ± 0.18 c | 2.67 ± 0.14 b | 20.81 ± 0.71 a | 9.09 ± 0.98 e |
Treatments | pH | EC (dS m−1) | TN (mg g−1) | TP (mg g−1) | TK (mg g−1) | Na (mg g−1) |
---|---|---|---|---|---|---|
CK | 8.23 ± 0.04 b | 1.69 ± 0.18 ab | 0.42 ± 0.01 c | 0.64 ± 0.00 c | 0.20 ± 0.02 ab | 1.13 ± 0.10 a |
B0S1 | 8.47 ± 0.08 a | 1.87 ± 0.32 a | 0.38 ± 0.01 cd | 1.05 ± 0.43 c | 0.22 ± 0.02 ab | 1.33 ± 0.20 a |
B30S1 | 7.84 ± 0.02 c | 1.29 ± 0.11 b | 0.49 ± 0.02 b | 1.66 ± 0.02 b | 0.21 ± 0.01 ab | 1.07 ± 0.15 a |
B45S1 | 7.61 ± 0.02 d | 1.26 ± 0.09 b | 0.53 ± 0.02 a | 2.15 ± 0.02 a | 0.23 ± 0.02 a | 1.04 ± 0.18 a |
B0S1.5 | 8.24 ± 0.03 b | 1.46 ± 0.15 ab | 0.37 ± 0.01 d | 0.65 ± 0.01 c | 0.18 ± 0.01 b | 0.95 ± 0.13 a |
B30S1.5 | 7.80 ± 0.05 c | 1.30 ± 0.04 b | 0.48 ± 0.02 b | 1.67 ± 0.04 b | 0.19 ± 0.00 ab | 1.08 ± 0.14 a |
B45S1.5 | 7.60 ± 0.02 d | 1.26 ± 0.04 b | 0.54 ± 0.02 a | 2.25 ± 0.06 a | 0.20 ± 0.01 ab | 0.97 ± 0.11 a |
NL | LA | SFW | RFW | SDW | RDW | SNa | RNa | |
---|---|---|---|---|---|---|---|---|
PH | 0.68 ** | 0.94 *** | 0.87 ** | 0.71 ** | 0.87 ** | 0.66 ** | −0.62 ** | −0.87 ** |
NL | 0.73 ** | 0.78 ** | 0.64 ** | 0.79 ** | 0.57 ** | Ns | −0.47 * | |
LA | 0.92 ** | 0.69 ** | 0.92 ** | 0.63 ** | −0.56 ** | −0.86 ** | ||
SFW | 0.73 ** | 0.99 ** | 0.68 ** | −0.45 * | −0.79 ** | |||
RFW | 0.75 ** | 0.99 *** | −0.52 * | −0.58 ** | ||||
SDW | 0.69 ** | −0.45 * | −0.79 ** | |||||
RDW | −0.47 * | −0.54 * | ||||||
SNa | 0.65 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soothar, M.K.; Mounkaila Hamani, A.K.; Kumar Sootahar, M.; Sun, J.; Yang, G.; Bhatti, S.M.; Traore, A. Assessment of Acidic Biochar on the Growth, Physiology and Nutrients Uptake of Maize (Zea mays L.) Seedlings under Salinity Stress. Sustainability 2021, 13, 3150. https://doi.org/10.3390/su13063150
Soothar MK, Mounkaila Hamani AK, Kumar Sootahar M, Sun J, Yang G, Bhatti SM, Traore A. Assessment of Acidic Biochar on the Growth, Physiology and Nutrients Uptake of Maize (Zea mays L.) Seedlings under Salinity Stress. Sustainability. 2021; 13(6):3150. https://doi.org/10.3390/su13063150
Chicago/Turabian StyleSoothar, Mukesh Kumar, Abdoul Kader Mounkaila Hamani, Mahendar Kumar Sootahar, Jingsheng Sun, Gao Yang, Saleem Maseeh Bhatti, and Adama Traore. 2021. "Assessment of Acidic Biochar on the Growth, Physiology and Nutrients Uptake of Maize (Zea mays L.) Seedlings under Salinity Stress" Sustainability 13, no. 6: 3150. https://doi.org/10.3390/su13063150
APA StyleSoothar, M. K., Mounkaila Hamani, A. K., Kumar Sootahar, M., Sun, J., Yang, G., Bhatti, S. M., & Traore, A. (2021). Assessment of Acidic Biochar on the Growth, Physiology and Nutrients Uptake of Maize (Zea mays L.) Seedlings under Salinity Stress. Sustainability, 13(6), 3150. https://doi.org/10.3390/su13063150