Target Detection-Based Tree Recognition in a Spruce Forest Area with a High Tree Density—Implications for Estimating Tree Numbers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction to Research Objectives
2.2. Study Area
2.3. Data Acquisition and Preprocessing
2.4. Methods
2.4.1. SSD
2.4.2. YOLOv3
2.4.3. YOLOv4
2.4.4. Faster-RCNN
3. Results
Accuracy Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y.; Zang, R.G.; Huang, J.H.; Xu, Y.; Lu, X.H.; Guo, Z.J.; Ren, W. Intraspecific trait variation and neighborhood competition drive community dynamics in an old-growth spruce forest in northwest China. Sci. Total. Environ. 2019, 678, 25–532. [Google Scholar] [CrossRef]
- Jiao, L.; Jiang, Y.; Wang, M.C.; Kang, X.Y.; Zhang, W.T.; Zhang, L.N.; Zhao, S.D. Responses to climate change in radial growth of Picea schrenkiana along elevations of the eastern Tianshan Mountains, northwest China. Dendrochronologia 2016, 40, 117–127. [Google Scholar] [CrossRef]
- Sullivan, B.W.; Alvarez-Clare, S.; Castle, S.C.; Porder, S.; Reed, S.C.; Schreeg, L.; Townsend, A.R.; Cleveland, C.C. Assessing nutrient limitation in complex forested ecosystems: Alternatives to large-scale fertilization experiments. Ecology 2014, 95, 668–681. [Google Scholar] [CrossRef] [Green Version]
- Van der Sande, M.T.; Peña-Claros, M.; Ascarrunz, N.; Arets, E.J.M.M.; Licona, J.C.; Toledo, M.; Poorter, L. Abiotic and biotic drivers of biomass change in a Neotropical forest. J. Ecol. 2017, 105, 1223–1234. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.S.; Bell, D.M.; Hersh, M.H.; Nichols, L. Climate change vulnerability of forest biodiversity: Climate and competition tracking of demographic rates. Glob. Chang. Biol. 2011, 17, 1834–1849. [Google Scholar] [CrossRef]
- Ozdemir, I.; Karnieli, A. Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 701–710. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, X.L.; Ye, L. Tree crown extraction based on segmentation of high-resolution remote sensing image improved peak-climbing algorithm. Trans. Chin. Soc. Agric. Eng. 2014, 45, 294–300. [Google Scholar]
- Wagner, F.H.; Ferreira, M.P.; Sanchez, A.; Hirye, M.C.; Zortea, M.; Gloor, E.; Phillips, O.L.; de Souza Filho, C.R.; Shimabukuro, Y.E.; Aragão, L.E. Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images. ISPRS J. Photogramm. Remote Sens. 2018, 145, 362–377. [Google Scholar] [CrossRef]
- Koc-San, D.; Selim, S.; Aslan, N.; San, B.T. Automatic citrus tree extraction from UAV images and digital surface models using circular Hough transform. Comput. Electron. Agric. 2018, 150, 289–301. [Google Scholar] [CrossRef]
- Aubry-Kientz, M.; Dutrieux, R.; Ferraz, A.; Saatchi, S.; Hamraz, H.; Williams, J.; Coomes, D.; Piboule, A.; Vincent, G. A comparative assessment of the performance of individual tree crowns delineation algorithms from als data in tropical forests. Remote Sens. 2019, 11, 1086. [Google Scholar] [CrossRef] [Green Version]
- Duncanson, L.; Cook, B.; Hurtt, G.; Dubayah, R. An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems. Remote Sens. Environ. 2014, 154, 378–386. [Google Scholar] [CrossRef]
- Gini, R.; Passoni, D.; Pinto, L.; Sona, G. Use of unmanned aerial systems for multispectral survey and tree classification: A test in a park area of northern Italy. Eur. J. Remote Sens. 2014, 47, 251–269. [Google Scholar] [CrossRef]
- Deng, X.; Tong, Z.; Lan, Y.; Huang, Z. Detection and location of dead trees with pine wilt disease based on deep learning and UAV remote sensing. AgriEngineering 2020, 2, 294–307. [Google Scholar] [CrossRef]
- Schiefer, F.; Kattenborn, T.; Frick, A.; Frey, J.; Schall, P.; Koch, B.; Schmidtlein, S. Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2020, 170, 205–215. [Google Scholar] [CrossRef]
- Ding, R.; Dai, L.; Li, G.; Liu, H. TDD-Net: A tiny defect detection network for printed circuit boards. CAAI Trans. Intell. Technol. 2019, 4, 110–116. [Google Scholar] [CrossRef]
- Lan, Y.; Zhu, Z.; Deng, X.; Lian, B.; Huang, J.; Huang, Z.; Hu, J. Monitoring and classification of citrus Huanglongbing based on UAV hyperspectral remote sensing. Trans. Chin. Soc. Agric. Eng. 2019, 35, 92–100. [Google Scholar]
- Tang, L.; Shao, G. Drone remote sensing for forestry research and practices. J. For. Res. 2015, 26, 791–797. [Google Scholar] [CrossRef]
- Lebourgeois, V.; Bégué, A.; Labbé, S.; Mallavan, B.; Prévot, L.; Roux, B. Can commercial digital cameras be used as multispectral sensors? A crop monitoring test. Sensors 2008, 8, 7300–7322. [Google Scholar] [CrossRef]
- Komarek, J. The perspective of unmanned aerial systems in forest management. Do we really need such details? Appl. Veg. Sci. 2020, 23, 718–721. [Google Scholar] [CrossRef]
- He, Y.; Zhou, X.C.; Huang, H.Y.; Xu, X.Q. Counting tree number in subtropical forest districts based on UAV remote sensing images. Remote Sens. Technol. Appl. 2018, 33, 168–176. [Google Scholar]
- Hernandez, J.G.; Ferreiro, E.G.; Sarmento, A.; Silva, J.; Nunes, A.; Correia, A.C.; Fontes, L.; de Brito Tavares, M.M.B.; Varela, R.A.D. Using high resolution UAV imagery to estimate tree variables in Pinus pinea plantation in Portugal. For. Syst. 2016, 25, 16. [Google Scholar] [CrossRef] [Green Version]
- Li, M.H.; He, F.H.; Liu, Y.; Pan, C.D. Spatial distribution pattern of tree individuals in the Schrenk spruce forest, northwest China. Acta Ecol. Sin. 2005, 25, 1000–1006, (In Chinese with English Abstract). [Google Scholar]
- Zhang, H.; Xu, M.; Zhuo, L.; Havyarimana, V. A novel optimization framework for salient object detection. Visual Comput. 2016, 32, 31–41. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, H.; Cheng, B. How do deep convolutional features affect tracking performance: An experimental study. Visual Comput. 2018, 34, 1701–1711. [Google Scholar] [CrossRef]
- Li, T.; Ye, M.; Ding, J. Discriminative Hough context model for object detection. Visual Comput. 2014, 30, 59–69. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Brill, M.H. Computer vision and pattern recognition: CVPR 92. Color Res. Appl. 2010, 17, 426–427. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot Multi-Box Detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; 9905, pp. 21–37. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Zhu, Q.; Zheng, H.; Wang, Y.; Cao, Y.; Guo, S. Study on the evaluation method of sound phase cloud maps based on an improved YOLOv4 algorithm. Sensors 2020, 20, 4314. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodla, N.; Singh, B.; Chellappa, R.; Davis, L.S. Soft-NMS improving object detection with one line of code. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5562–5570. [Google Scholar]
- Bao, J.; Wei, S.; Lv, J.; Zhang, W. Optimized faster-RCNN in real-time facial expression classification. IOP Conf. Ser. Mater. Sci. Eng. 2020, 790, 012148. [Google Scholar] [CrossRef]
- Fattal, A.K.; Karg, M.; Scharfenberger, C.; Adamy, J. Saliency-guided region proposal network for CNN based object detection. In Proceedings of the Saliency-Guided Region Proposal Network for CNN Based Object Detection, Yokohama, Japan, 16–19 October 2017; pp. 1–8. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolo9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Yu, Z.W.; Shen, Y.G.; Shen, C.K. A real-time detection approach for bridge cracks based on YOLOv4-FPM. Automat. Construct. 2021, 122, 103514. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
Test Area1, Nv = 165 | Test Area2, Nv = 245 | Test Area3, Nv = 359 | |||||||
---|---|---|---|---|---|---|---|---|---|
Nd | No | OA (%) | Nd | No | OA (%) | Nd | No | OA (%) | |
SSD | 44 | 3 | 24.85 | 37 | 1 | 14.69 | 66 | 0 | 18.38 |
YOLOv3 | 135 | 12 | 74.55 | 167 | 7 | 65.31 | 150 | 2 | 41.23 |
YOLOv4 | 146 | 10 | 82.42 | 211 | 10 | 82.04 | 209 | 7 | 56.27 |
Faster-RCNN | 191 | 32 | 96.36 | 280 | 44 | 96.32 | 362 | 19 | 95.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emin, M.; Anwar, E.; Liu, S.; Emin, B.; Mamut, M.; Abdukeram, A.; Liu, T. Target Detection-Based Tree Recognition in a Spruce Forest Area with a High Tree Density—Implications for Estimating Tree Numbers. Sustainability 2021, 13, 3279. https://doi.org/10.3390/su13063279
Emin M, Anwar E, Liu S, Emin B, Mamut M, Abdukeram A, Liu T. Target Detection-Based Tree Recognition in a Spruce Forest Area with a High Tree Density—Implications for Estimating Tree Numbers. Sustainability. 2021; 13(6):3279. https://doi.org/10.3390/su13063279
Chicago/Turabian StyleEmin, Mirzat, Erpan Anwar, Suhong Liu, Bilal Emin, Maryam Mamut, Abduwali Abdukeram, and Ting Liu. 2021. "Target Detection-Based Tree Recognition in a Spruce Forest Area with a High Tree Density—Implications for Estimating Tree Numbers" Sustainability 13, no. 6: 3279. https://doi.org/10.3390/su13063279
APA StyleEmin, M., Anwar, E., Liu, S., Emin, B., Mamut, M., Abdukeram, A., & Liu, T. (2021). Target Detection-Based Tree Recognition in a Spruce Forest Area with a High Tree Density—Implications for Estimating Tree Numbers. Sustainability, 13(6), 3279. https://doi.org/10.3390/su13063279