Applicability of TiO2 Penetration Method to Reduce Particulate Matter Precursor for Hardened Concrete Road Structures
Abstract
:1. Introduction
2. Literature Review
2.1. Characteristics of Photocatalytic Reaction of TiO2
2.2. Current Status of TiO2 Application
2.3. Application Methods of TiO2 Materials into Existing Concrete Road Structures
3. Evaluation of Penetration and Distribution of TiO2
3.1. Specimen Preparation
3.2. Test Methods to Evaluate the Penetration and Distribution of TiO2
3.3. Characteristics of Penetration Depth and Distribution of TiO2 Paticles
4. NOx Removal Efficiency Using TiO2 Penetration Method
4.1. Test Method to Evaluate the NOx Removal Efficiency
4.2. NOx Removal Efficiency Based on Surface Predicted Mass Ratio of TiO2
4.3. NOx Removal Efficiency Based on Application Amount of TiO2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ballari, M.M.; Hunger, M.; Hüsken, G.; Brouwers, H.J.H. NOx photocatalytic degradation employing concrete pavement containing titanium dioxide. Appl. Catal. B Environ. 2010, 95, 245–254. [Google Scholar] [CrossRef]
- Beeldens, A. An environmental friendly solution for air purification and self-cleaning effect: The application of TiO2 as photocatalyst in concrete. In Proceedings of the Transport Research Arena Europe-TRA, Göoteborg, Sweden, 12–15 June 2006. [Google Scholar]
- Diamantopoulos, G.; Katsiotis, M.; Fardis, M.; Karatasios, I.; Alhassan, S.; Karagianni, M.; Papavassiliou, G.; Hassan, J. The role of titanium dioxide on the hydration of Portland cement: A combined NMR and ultrasonic study. Molecules 2020, 25, 5364. [Google Scholar] [CrossRef]
- Fujishima, A.; Hashimoto, K.; Watanabe, T. TiO2 Photocatalysis: Fundamentals and Applications; Tokyo Bkc: Tokyo, Japan, 1999. [Google Scholar]
- Hashimoto, K.; Wasada, K.; Toukai, N.; Komonami, H.; Kera, Y. Photocatalytic oxidation of nitrogen monoxide over titanium (IV) oxide nanocrystals large size areas. J. Photochem. Photobiol A Chem. 2000, 136, 103–109. [Google Scholar] [CrossRef]
- Chai-Mei, Y.J. Ambient Air Treatment by Titanium Dioxide (TiO2) Based Photocatalyst in Hong Kong; Technical Report; Environmental Protection Department: Hong Kong Special Administrative Region, China, 2002.
- Kim, Y.K.; Hong, S.J.; Lee, K.B.; Lee, S.W. Evaluation of NOx removal efficiency of Photocatalytic concrete for road structure. Int. J. Highw. Eng. Korean Soc. Road Eng. 2014, 16, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Delany, A.C.; Dickerson, R.R.; Melchior, F.L.; Eartburg, A.F. Modification of a commercial NOx detector for high sensitivity. Rev. Sci. Instrum. 1982, 12, 1899–1902. [Google Scholar] [CrossRef]
- Grande, F.; Tucci, P. Titanium Dioxide Nanoparticles: A Risk for Human Health? Mini Rev. Med. Chem. 2016, 16, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Janus, M.; Zatorska, J.; Zając, K.; Kusiak-Nejman, E.; Czyżewski, A.; Morawski, A.W. Study of nitric oxide degradation properties of photoactive concrete containing nitrogen and/or carbon co-modified titanium dioxide—Preliminary findings. Micro Nano Lett. 2016, 11. [Google Scholar] [CrossRef]
- Hong, S.J.; Lee, S.W. An Experimental Study for the Construction of Photocatalytic Method Concrete Road Structure. Int. J. Highw. Eng. Korean Soc. Road Eng. 2013, 15, 1–9. [Google Scholar] [CrossRef]
- Oh, H.M. An Assessment of Concrete Durability Using Inorganic and Organic/Inorganic Surface Penetration Agents. Ph.D. Thesis, Sangji University, Wonju, South Korea, 2004. [Google Scholar]
- ISO 22197-1:2016, Test Method for Air-Purification Performance of Semiconducting Photocatalytic Materials-Part 1: Removal of Nitric Oxide; International Standard: Geneva, Switzerland, 2016.
Type of Concrete Structures | Gmax (mm) | fck (MPa) | Slump (mm) | Air (%) | W/C (%) | S/a (%) | Contents (kg/m3) | AE Water Reducing Agent | |||
---|---|---|---|---|---|---|---|---|---|---|---|
W | C | S | G | ||||||||
Pavement | 25 | 35 | 40 | 5~7 | 45 | 42 | 148.5 | 330 | 759 | 1067 | C × 0.3% |
L-type side ditch | 25 | 24 | 40 | 5~7 | 45 | 47 | 166 | 370 | 863 | 1001 | C × 0.3% |
TiO2 Type | Types of Concrete Structure | Type of Surface Penetration Agent | Mixing Ratio of Penetration Agent and TiO2 | Mass Ratio at 0.1 mm Depth from Surface (%) | Predicted Mass Ratio at the Surface (%) |
---|---|---|---|---|---|
Anatase | Concrete pavement | Silane-siloxane | 8:2 | 38 | 40 |
L-type side ditch | 43 | 57 | |||
Interlocking block | 50 | 55 | |||
Permeable block | 15 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.W.; Ahn, H.R.; Kim, K.S.; Kim, Y.K. Applicability of TiO2 Penetration Method to Reduce Particulate Matter Precursor for Hardened Concrete Road Structures. Sustainability 2021, 13, 3433. https://doi.org/10.3390/su13063433
Lee SW, Ahn HR, Kim KS, Kim YK. Applicability of TiO2 Penetration Method to Reduce Particulate Matter Precursor for Hardened Concrete Road Structures. Sustainability. 2021; 13(6):3433. https://doi.org/10.3390/su13063433
Chicago/Turabian StyleLee, Seung Woo, Hui Rak Ahn, Kyoung Su Kim, and Young Kyu Kim. 2021. "Applicability of TiO2 Penetration Method to Reduce Particulate Matter Precursor for Hardened Concrete Road Structures" Sustainability 13, no. 6: 3433. https://doi.org/10.3390/su13063433
APA StyleLee, S. W., Ahn, H. R., Kim, K. S., & Kim, Y. K. (2021). Applicability of TiO2 Penetration Method to Reduce Particulate Matter Precursor for Hardened Concrete Road Structures. Sustainability, 13(6), 3433. https://doi.org/10.3390/su13063433