Long-Term Trial of Tillage Systems for Sugarcane: Effect on Topsoil Hydrophysical Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analytical Procedures
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Surendran, U.; Ramesh, V.; Jayakumar, M.; Marimuthu, S.; Sridevi, G. Improved sugarcane productivity with tillage and trash management practices in semi arid tropical agro ecosystem in India. Soil Tillage Res. 2016, 158, 10–21. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Karlen, D.L.; Franco, A.L.C.; Tormena, C.A.; Cerri, C.C.E.P.; Davies, C.A.; Cerri, C.C.E.P. Soil physical quality response to sugarcane expansion in Brazil. Geoderma 2016, 267, 156–168. [Google Scholar] [CrossRef]
- Awe, G.O.; Reichert, J.M.; Fontanela, E. Sugarcane production in the subtropics: Seasonal changes in soil properties and crop yield in no-tillage, inverting and minimum tillage. Soil Tillage Res. 2020, 196, 104447. [Google Scholar] [CrossRef]
- Nunes, M.R.; Vaz, C.M.P.; Denardin, J.E.; van Es, H.M.; Libardi, P.L.; da Silva, A.P. Physicochemical and Structural Properties of an Oxisol under the Addition of Straw and Lime. Soil Sci. Soc. Am. J. 2017, 81, 1328–1339. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. Elementos da Natureza e Propriedades do Solo, 3rd ed.; Bookman: Porto Alegre, Brazil, 2013; ISBN 9788565837743. [Google Scholar]
- Albuquerque, J.A.; Bayer, C.; Ernani, P.R.; Mafra, A.L.; Fontana, E.C. Effects of liming and phosphorus application on the structural stability of an acid soil. Rev. Bras. Ciência Solo 2003, 27, 799–806. [Google Scholar] [CrossRef]
- Scarpare, F.V.; de Jong van Lier, Q.; de Camargo, L.; Pires, R.C.M.; Ruiz-Corrêa, S.T.; Bezerra, A.H.F.; Gava, G.J.C.; Dias, C.T.S. Tillage effects on soil physical condition and root growth associated with sugarcane water availability. Soil Tillage Res. 2019, 187, 110–118. [Google Scholar] [CrossRef]
- Carpenedo, V.; Mielniczuk, J. Estado de agregação e qualidade de agregados de Latossolos Roxos, submetido a diferentes sistemas de manejo. Rev. Bras. Ciência Solo 1990, 14, 99–105. [Google Scholar]
- Blanco-Canqui, H.; Wienhold, B.J.; Jin, V.L.; Schmer, M.R.; Kibet, L.C. Long-term tillage impact on soil hydraulic properties. Soil Tillage Res. 2017, 170, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Reichert, J.M.; da Rosa, V.T.; Vogelmann, E.S.; da Rosa, D.P.; Horn, R.; Reinert, D.J.; Sattler, A.; Denardin, J.E. Conceptual framework for capacity and intensity physical soil properties affected by short and long-term (14 years) continuous no-tillage and controlled traffic. Soil Tillage Res. 2016, 158, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Coquet, Y.; Vachier, P.; Labat, C. Vertical variation of near-saturated hydraulic conductivity in three soil profiles. Geoderma 2005, 126, 181–191. [Google Scholar] [CrossRef]
- Singh, B.P.; Setia, R.; Wiesmeier, M.; Kunhikrishnan, A. Agricultural Management Practices and Soil Organic Carbon Storage. In Soil Carbon Storage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 207–244. [Google Scholar]
- Denardin, J.E.; Kochhann, R.A.; Faganello, A.; Denardin, N.D.; Santi, A. Diretrizes do Sistema Plantio Direto no Contexto da Agricultura Conservacionista; Embrapa Trigo: Passo Fundo, Brazil, 2012. [Google Scholar]
- Strudley, M.W.; Green, T.R.; Ascough, J.C. Tillage effects on soil hydraulic properties in space and time: State of the science. Soil Tillage Res. 2008, 99, 4–48. [Google Scholar] [CrossRef]
- Martíni, A.F.; Valani, G.P.; Boschi, R.S.; Bovi, R.C.; Simões da Silva, L.F.; Cooper, M. Is soil quality a concern in sugarcane cultivation? A bibliometric review. Soil Tillage Res. 2020, 204, 104751. [Google Scholar] [CrossRef]
- Alletto, L.; Coquet, Y. Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management systems. Geoderma 2009, 152, 85–94. [Google Scholar] [CrossRef]
- Carvalho, J.L.N.; Nogueirol, R.C.; Menandro, L.M.S.; de Oliveira Bordonal, R.; Borges, C.D.; Cantarella, H.; Franco, H.C.J. Agronomic and environmental implications of sugarcane straw removal: A major review. GCB-Bioenergy 2016, 9, 1181–1195. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; USDA, Ed.; NRCS: Washington, DC, USA, 1999. [Google Scholar]
- de Miranda, E.E.; Fonseca, M.F. Considerações Fitogeográficas e Históricas Sobre o Bioma Cerrado no Estado de São Paulo; Embrapa: Campinas, Brazil, 2013. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análises de Solo, 3th ed.; Teixeira, P.C., Donagemma, G.K., Fontana, A., Teixeira, W.G., Eds.; Embrapa: Brasilia-DF, Barzil, 2017; ISBN 9788570357717. [Google Scholar]
- de Camargo, O.A.; Moniz, A.C.; Jorge, J.A.; Valadares, J.M.A.S. Boletim Técnico 106: Métodos de Análise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas; Instituto Agronomico de Campinas: Campinas-SP, Barzil, 2009. [Google Scholar]
- Lassabatère, L.; Angulo-Jaramillo, R.; Soria Ugalde, J.M.; Cuenca, R.; Braud, I.; Haverkamp, R. Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments-BEST. Soil Sci. Soc. Am. J. 2006, 70, 521–532. [Google Scholar] [CrossRef]
- Bagarello, V.; Di Prima, S.; Iovino, M. Estimating saturated soil hydraulic conductivity by the near steady-state phase of a Beerkan infiltration test. Geoderma 2017, 303, 70–77. [Google Scholar] [CrossRef]
- White, I.; Sully, M.J. Macroscopic and microscopic capillary length and time scales from field infiltration. Water Resour. Res. 1987, 23, 1514–1522. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Elrick, D.E. Pressure infiltrometer. In Methods of Soil Analysis; Dane, J.H., Topp, G.C., Eds.; Science Society of America: Madison, WI, USA, 2002; pp. 826–836. [Google Scholar]
- Haverkamp, R.; Ross, P.J.; Smettem, K.R.J.; Parlange, J.Y. Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation. Water Resour. Res. 1994, 30, 2931–2935. [Google Scholar] [CrossRef] [Green Version]
- Di Prima, S.; Lassabatere, L.; Bagarello, V.; Iovino, M.; Angulo-Jaramillo, R. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma 2016, 262, 20–34. [Google Scholar] [CrossRef]
- Raats, P. Analytical Solutions of a Simplified Flow Equation. Trans. ASAE 1976, 19, 0683–0689. [Google Scholar] [CrossRef]
- Di Prima, S.; Stewart, R.D.; Castellini, M.; Bagarello, V.; Abou Najm, M.R.; Pirastru, M.; Giadrossich, F.; Iovino, M.; Angulo-Jaramillo, R.; Lassabatere, L. Estimating the macroscopic capillary length from Beerkan infiltration experiments and its impact on saturated soil hydraulic conductivity predictions. J. Hydrol. 2020, 589, 125159. [Google Scholar] [CrossRef]
- Bagarello, V.; Di Prima, S.; Giordano, G.; Iovino, M. A test of the Beerkan Estimation of Soil Transfer parameters (BEST) procedure. Geoderma 2014, 221–222, 20–27. [Google Scholar] [CrossRef]
- Grossman, R.B.; Reinsch, T.G. Bulk Density e Linear Extensibility. In Methods of Soil Analysis—Part 4—Physical Methods; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 201–228. [Google Scholar]
- Flint, A.L.; Flint, L.E. Particle Density. In Methods of Soil Analysis—Part 4—Physical Methods; Campbell, G.S., Horton, R., Jury, W.A., Nielsen, D.R., van ES, H.M., Wierenga, P.J., Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 229–240. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 2 December 2020).
- Soil Science Division Staff. Soil Survey Manual; Ditzler, C., Scheffer, K., Monger, H.C., Eds.; USDA Handb.; Government Printing Office: Washington, DC, USA, 2017; Volume 18, ISBN 978-1410204172.
- Araujo, M.A.; Tormena, C.A.; Silva, A.P. Propriedades físicas de um Latossolo Vermelho distrófico cultivado e sob mata nativa. Rev. Bras. Ciência Solo 2004, 28, 337–345. [Google Scholar] [CrossRef]
- Silva, A.J.N.; Ribeiro, M.R.; Mermut, A.R.; Benke, M.B. Influência do cultivo contínuo da cana-de-açúcar em latossolos amarelos coesos do estado de Alagoas: Propriedades micromorfológicas. Rev. Bras. Ciência Solo 1998, 22, 515–525. [Google Scholar] [CrossRef] [Green Version]
- Scheffler, R.; Neill, C.; Krusche, A.V.; Elsenbeer, H. Soil hydraulic response to land-use change associated with the recent soybean expansion at the Amazon agricultural frontier. Agric. Ecosyst. Environ. 2011, 144, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Unger, P.W. Infiltration of Simulated Rainfall: Tillage System and Crop Residue Effects. Soil Sci. Soc. Am. J. 1992, 56, 283–289. [Google Scholar] [CrossRef]
- Butierres, M. Efeito do Calcário e Fosfato de Potássio no Ponto de Zero Carga (PZC) e Grau de Floculação de Três Solos do Rio Grande do Sul. Tese de Mestrado, Universidade Federal do Rio Grande do Sul, Santa Maria, Brazil, 1980; 59p. [Google Scholar]
- Morelli, M.; Ferreira, E. Efeito do carbonato de cálcio e do fosfato diamônico em propriedades eletroquímicas e físicas de um Latossolo. Rev. Bras. Ciência Solo 1987, 11, 1–6. [Google Scholar]
- Roth, C.H.; Pavan, M.A. Effects of lime and gypsum on clay dispersion and infiltration in samples of a Brazilian Oxisol. Geoderma 1991, 48, 351–361. [Google Scholar] [CrossRef]
- Segnini, A.; Carvalho, J.L.N.; Bolonhezi, D.; Bastos Pereira Milori, D.M.; Lopes da Silva, W.T.; Simoes, M.L.; Cantarella, H.; de Maria, I.C.; Martin-Neto, L. Carbon stock and humification index of organic matter affected by sugarcane straw and soil management. Sci. Agric. 2013, 70, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Franco, A.L.C.; Cherubin, M.R.; Cerri, C.E.P.; Six, J.; Wall, D.H.; Cerri, C.C. Linking soil engineers, structural stability, and organic matter allocation to unravel soil carbon responses to land-use change. Soil Biol. Biochem. 2020, 150, 107998. [Google Scholar] [CrossRef]
- Haruna, S.I.; Anderson, S.H.; Nkongolo, N.V.; Zaibon, S. Soil Hydraulic Properties: Influence of Tillage and Cover Crops. Pedosphere 2018, 28, 430–442. [Google Scholar] [CrossRef]
- da Luz, F.B.; Carvalho, M.L.; de Borba, D.A.; Schiebelbein, B.E.; Paiva de Lima, R.; Cherubin, M.R. Linking Soil Water Changes to Soil Physical Quality in Sugarcane Expansion Areas in Brazil. Water 2020, 12, 3156. [Google Scholar] [CrossRef]
- León, H.N.; Almeida, B.G.; Almeida, C.D.G.C.; Freire, F.J.; Souza, E.R.; Oliveira, E.C.A.; Silva, E.P. Medium-term influence of conventional tillage on the physical quality of a Typic Fragiudult with hardsetting behavior cultivated with sugarcane under rainfed conditions. Catena 2019, 175, 37–46. [Google Scholar] [CrossRef]
- Baquero, J.E.; Ralisch, R.; Medina, C.D.C.; Filho, J.T.; Guimarães, M.D.F. Soil physical properties and sugarcane root growth in a red oxiso. Rev. Bras. Ciência Solo 2012, 36, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Fan, R.Q.; Yang, X.M.; Drury, C.F.; Reynolds, W.D.; Zhang, X.P. Spatial distributions of soil chemical and physical properties prior to planting soybean in soil under ridge-, no- and conventional-tillage in a maize-soybean rotation. Soil Use Manag. 2014, 30, 414–422. [Google Scholar] [CrossRef]
- Barbosa, L.C.; Magalhães, P.S.G.; Bordonal, R.O.; Cherubin, M.R.; Castioni, G.A.F.; Tenelli, S.; Franco, H.C.J.; Carvalho, J.L.N. Soil physical quality associated with tillage practices during sugarcane planting in south-central Brazil. Soil Tillage Res. 2019, 195, 104383. [Google Scholar] [CrossRef]
- Barbosa, L.C.; de Souza, Z.M.; Franco, H.C.J.; Otto, R.; Rossi Neto, J.; Garside, A.L.; Carvalho, J.L.N. Soil texture affects root penetration in Oxisols under sugarcane in Brazil. Geoderma Reg. 2018, 13, 15–25. [Google Scholar] [CrossRef]
- USDA-NRCS Soil Quality Resource Concerns: Compaction. Available online: https://web.extension.illinois.edu/soil/sq_info/compact.pdf (accessed on 2 December 2020).
- Arshad, M.A.C.; Lowery, B.; Grossman, B. Physical Tests for Monitoring Soil Quality. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 123–141. [Google Scholar]
- Letey, J. Relationship between Soil Physical Properties and Crop Production. In Advances in Soil Science; Stewart, B., Ed.; Springer: New York, NY, USA, 1958; pp. 277–294. [Google Scholar]
- Erickson, A.E. Tillage Effects on Soil Aeration. In Predicting Tillage Effects On Soil Physical Properties And Processes; Unger, P., Van Doren, D., Jr., Skidmore, F.D., Whisler, E.L., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 91–104. [Google Scholar]
- Tormena, C.A.; Silva, A.P.; Libardi, P.L. Caracterização do intervalo hídrico ótimo de um latossolo roxo sob plantio direto. Rev. Bras. Ciência Solo 1998, 22, 573–581. [Google Scholar] [CrossRef]
- Tormena, C.; Silva, A.P.; Libardi, P.L. Soil physical quality of a Brazilian Oxisol under two tillage systems using the least limiting water range approach. Soil Tillage Res. 1999, 52, 223–232. [Google Scholar] [CrossRef]
- de Lima, C.L.R.; Miola, E.C.C.; Timm, L.C.; Pauletto, E.A.; da Silva, A.P. Soil compressibility and least limiting water range of a constructed soil under cover crops after coal mining in Southern Brazil. Soil Tillage Res. 2012, 124, 190–195. [Google Scholar] [CrossRef]
- da Silva, Á.P.; Tormena, C.A.; Fidalski, J.; Imhoff, S. Funções de pedotransferência para as curvas de retenção de água e de resistência do solo à penetração. Rev. Bras. Ciência Solo 2008, 32, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Duarte Júnior, J.; Coelho, F. A cana-de-açúcar em sistema de plantio direto comparado ao sistema convencional com e sem adubação. Rev. Bras. Eng. Agric. Ambient. 2008, 12, 576–583. [Google Scholar] [CrossRef] [Green Version]
- Prove, B.G.; Doogan, V.J.V.; Truong, P.N. V Nature and Magnitude of Soil Erosion in Sugarcane Land on the Wet Tropical Coast of North-Eastern Queensland. Aust. J. Exp. Agric. 1995, 35, 641–649. [Google Scholar] [CrossRef]
- La Scala, N.; Bolonhezi, D.; Pereira, G.T. Short-term soil CO2 emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil. Soil Tillage Res. 2006, 91, 244–248. [Google Scholar] [CrossRef]
- Canisares, L.P.; Cherubin, M.R.; da Silva, L.F.S.; Franco, A.L.C.; Cooper, M.; Mooney, S.J.; Cerri, C.E.P. Soil microstructure alterations induced by land use change for sugarcane expansion in Brazil. Soil Use Manag. 2019, 1–11. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.-J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Cavalieri, K.M.V.; da Silva, A.P.; Tormena, C.A.; Leão, T.P.; Dexter, A.R.; Håkansson, I. Long-term effects of no-tillage on dynamic soil physical properties in a Rhodic Ferrasol in Paraná, Brazil. Soil Tillage Res. 2009, 103, 158–164. [Google Scholar] [CrossRef]
Treatment | pH | SOC | Ca | Mg | H+Al | CEC | Clay | Silt | Sand | Texture | Soil Classification |
---|---|---|---|---|---|---|---|---|---|---|---|
g kg−1 | mmolc kg−1 | % | |||||||||
NF | 6.5 | 38 | 107 | 39 | 31 | 183 | 71 | 13 | 16 | Clay | Rhodic Eutrudox |
CT 0 | 5.1 | 22 | 28 | 9 | 62 | 101 | 71 | 14 | 15 | Clay | Rhodic Eutrudox |
CT 4 | 6.0 | 20 | 37 | 27 | 34 | 102 | 70 | 17 | 13 | Clay | Rhodic Eutrudox |
NT 0 | 5.0 | 27 | 35 | 19 | 72. | 129 | 69 | 15 | 16 | Clay | Rhodic Eutrudox |
NT 4 | 6.2 | 30 | 64 | 46 | 40 | 153 | 65 | 19 | 16 | Clay | Rhodic Eutrudox |
Treatment | Soil Hydrophysical Attributes | |||||
---|---|---|---|---|---|---|
Ks (mm h−1) | Bd (g cm−3) | TP (%) | Mic (%) | Mac (%) | RP (MPa) | |
NF | 1262.90 ± 633.00 a | 1.00 ± 0.05 b | 68.04 ± 1.50 a | 40.02 ± 2.57 c | 28.02 ± 3.90 a | 0.54 ± 0.18 c |
CT0 | 201.63 ± 48.78 b | 1.17 ± 0.11 ab | 62.73 ± 3.49 ab | 41.18 ± 3.72 bc | 21.56 ± 6.84 ab | 0.77 ± 0.47 bc |
CT4 | 55.91 ± 28.56 d | 1.30 ± 0.11 a | 58.45 ± 3.52 b | 45.22 ± 3.64 ab | 13.23 ± 6.98 b | 1.50 ± 0.69 ab |
NT0 | 78.04 ± 18.39 cd | 1.29 ± 0.21 a | 58.71 ± 6.62 b | 45.57 ± 2.37 a | 13.14 ± 8.64 b | 1.53 ± 0.53 a |
NT4 | 94.56 ± 7.99 c | 1.21 ± 0.13 a | 61.20 ± 4.12 b | 44.18 ± 2.20 abc | 17.02 ± 5.99 b | 1.18 ± 0.56 abc |
Variable | PC1 (85.6% of Data Variability) | PC2 (8.4% of Data Variability) |
---|---|---|
Bd | 0.967 | 0.065 |
TP | −0.968 | −0.065 |
Mic | 0.920 | 0.136 |
Mac | −0.992 | −0.096 |
RP | 0.939 | 0.158 |
Ks | −0.745 | 0.665 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martíni, A.F.; Valani, G.P.; da Silva, L.F.S.; Bolonhezi, D.; Di Prima, S.; Cooper, M. Long-Term Trial of Tillage Systems for Sugarcane: Effect on Topsoil Hydrophysical Attributes. Sustainability 2021, 13, 3448. https://doi.org/10.3390/su13063448
Martíni AF, Valani GP, da Silva LFS, Bolonhezi D, Di Prima S, Cooper M. Long-Term Trial of Tillage Systems for Sugarcane: Effect on Topsoil Hydrophysical Attributes. Sustainability. 2021; 13(6):3448. https://doi.org/10.3390/su13063448
Chicago/Turabian StyleMartíni, Aline Fachin, Gustavo Pereira Valani, Laura Fernanda Simões da Silva, Denizart Bolonhezi, Simone Di Prima, and Miguel Cooper. 2021. "Long-Term Trial of Tillage Systems for Sugarcane: Effect on Topsoil Hydrophysical Attributes" Sustainability 13, no. 6: 3448. https://doi.org/10.3390/su13063448
APA StyleMartíni, A. F., Valani, G. P., da Silva, L. F. S., Bolonhezi, D., Di Prima, S., & Cooper, M. (2021). Long-Term Trial of Tillage Systems for Sugarcane: Effect on Topsoil Hydrophysical Attributes. Sustainability, 13(6), 3448. https://doi.org/10.3390/su13063448