Production of High Added-Value Chemicals in Basfia succiniciproducens: Role of Medium Composition
Abstract
:1. Introduction
Bacterial Strain | Reached Titer (g·L−1) | Substrate | Reference |
---|---|---|---|
Anaerobiospirillum succiniciproducens | 100 | Sorbitol, glycerol | [32] |
Actinobacillus succinogenes | 50 | Corn stover | [33] |
A. succinogenes | 109 | Glucose | [4] |
Corynebacterium glutamicum | 113 | Glucose | [34] |
B. succiniciproducens | 17 | Arundo donax hydrolysate | [3] |
B. succiniciproducens | 5.21 | Crude glycerol | [35] |
B. succiniciproducens | 26 | Xylose | [36] |
2. Materials and Methods
2.1. In Silico Simulations
subject to Sv = 0
vlb < v < vub
2.2. Strain
2.3. Microplate Experiments
2.4. Bioreactor Fermentation and Metabolic Profile Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Approval and Consent to Participate
References
- Kuhnert, P.; Scholten, E.; Haefner, S.; Mayor, D.; Frey, J. Basfia succiniciproducens gen. nov., sp. nov., a new member of the family Pasteurellaceae isolated from bovine rumen. Int. J. Syst. Evol. Microbiol. 2010, 60, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Becker, J.; Lange, A.; Fabarius, J.; Wittmann, C. Top value platform chemicals: Bio-based production of organic acids. Curr. Opin. Biotechnol. 2015, 36, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Cimini, D.; Argenzio, O.; D’Ambrosio, S.; Lama, L.; Finore, I.; Finamore, R.; Pepe, O.; Faraco, V.; Schiraldi, C. Production of succinic acid from Basfia succiniciproducens up to the pilot scale from Arundo donax hydrolysate. Bioresour. Technol. 2016, 222, 355–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nghiem, N.P.; Kleff, S.; Schwegmann, S. Succinic Acid: Technology Development and Commercialization. Fermentation 2017, 3, 26. [Google Scholar] [CrossRef]
- Szép, R.; Bodor, Z.; Miklóssy, I.; Niță, I.-A.; Oprea, O.A.; Keresztesi, Á. Influence of peat fires on the rainwater chemistry in intra-mountain basins with specific atmospheric circulations (Eastern Carpathians, Romania). Sci. Total Environ. 2019, 647, 275–289. [Google Scholar] [CrossRef]
- Szép, R.; Mateescu, E.; Niță, I.-A.; Birsan, M.-V.; Bodor, Z.; Keresztesi, Á. Effects of the Eastern Carpathians on atmospheric circulations and precipitation chemistry from 2006 to 2016 at four monitoring stations (Eastern Carpathians, Romania). Atmos. Res. 2018, 214, 311–328. [Google Scholar] [CrossRef]
- Szép, R.; Mateescu, E.; Nechifor, A.C.; Keresztesi, Á. Chemical characteristics and source analysis on ionic composition of rainwater collected in the Carpathians ‘Cold Pole,’ Ciuc basin, Eastern Carpathians, Romania. Environ. Sci. Pollut. Res. Int. 2017, 24, 27288–27302. [Google Scholar] [CrossRef] [PubMed]
- Keresztesi, A.; Sandor, P.; Ghita, G.; Dumitru, F.D.; Moncea, M.A.; Ozunu, A.; Szep, R. Ammonium Neutralization Effect on Rainwater Chemistry in the Basins of the Eastern Carpathians—Romania. Rev. Chim. 2018, 69, 57–63. [Google Scholar] [CrossRef]
- Korodi, A.; Petres, S.; Keresztesi, Á. Sustainable Development. Theory or Practice? In Proceedings of the International Multidisciplinary Scientific GeoConference & EXPO SGEM2017, Albena, Bulgaria, 29 June–5 July 2017; p. 8. [Google Scholar]
- Keresztesi, Á.; Birsan, M.-V.; Nita, I.-A.; Bodor, Z.; Robert, S. Assessing the neutralisation, wet deposition and source contributions of the precipitation chemistry over Europe during 2000–2017. Environ. Sci. Eur. 2019, 31. [Google Scholar] [CrossRef] [Green Version]
- Keresztesi, Á.; Nita, I.-A.; Birsan, M.-V.; Bodor, Z.; Pernyeszi, T.; Micheu, M.M.; Szép, R. Assessing the variations in the chemical composition of rainwater and air masses using the zonal and meridional index. Atmos. Res. 2020, 237, 104846. [Google Scholar] [CrossRef]
- Keresztesi, Á.; Nita, I.-A.; Birsan, M.-V.; Bodor, Z.; Szép, R. The risk of cross-border pollution and the influence of regional climate on the rainwater chemistry in the Southern Carpathians, Romania. Environ. Sci. Pollut. Res. 2020, 27, 9382–9402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szep, R.; Keresztes, R.; Deak, G.; Toba, F.; Ghimpusan, M. The Dry Deposition of the PM10 and PM2. 5 to the Vegetation and its Health Effect in the Ciuc Basin. Rev. Chim. 2016, 67, 639–644. [Google Scholar]
- Szep, R.; Matyas, L. The role of regional atmospheric stability in high-PM10 concentration episodes in Miercurea Ciuc (Harghita). Carpathian J. Earth Environ. Sci. 2014, 9, 241–250. [Google Scholar]
- Petres, S.; Szabolcs, L.; Piriianu, M.; Keresztesi, Á.; Nechifor, A. Evolution of Tropospheric Ozone and Relationship with Temperature and NOx for the 2007-2016 Decade in the Ciuc Depression. Rev. Chim. 2018, 69. [Google Scholar] [CrossRef]
- Ferone, M.; Ercole, A.; Raganati, F.; Olivieri, G.; Salatino, P.; Marzocchella, A. Efficient succinic acid production from high-sugars-content beverages (HSCBs) by Actinobacillus succinogenes. Biotechnol. Prog. 2019, 35. [Google Scholar] [CrossRef] [PubMed]
- Louasté, B.; Eloutassi, N. Succinic acid production from whey and lactose by Actinobacillus succinogenes 130Z in batch fermentation. Biotechnol. Rep. 2020, 27, e00481. [Google Scholar] [CrossRef]
- Zhang, A.Y.-Z.; Sun, Z.; Leung, C.C.J.; Han, W.; Lau, K.Y.; Li, M.; Lin, C.S.K. Valorisation of bakery waste for succinic acid production. Green Chem. 2013, 15, 690–695. [Google Scholar] [CrossRef]
- Ramesh, H.P.; Tharanathan, R.N. Carbohydrates—The Renewable Raw Materials of High Biotechnological Value. Crit. Rev. Biotechnol. 2003, 23, 149–173. [Google Scholar] [CrossRef]
- Kuenz, A.; Jäger, M.; Niemi, H.; Kallioinen, M.; Mänttäri, M.; Prüße, U. Conversion of Xylose from Birch Hemicellulose Hydrolysate to 2,3-Butanediol with Bacillus vallismortis. Fermentation 2020, 6, 86. [Google Scholar] [CrossRef]
- Harabi, M.; Bouguerra, S.N.; Marrakchi, F.; Chrysikou, L.P.; Bezergianni, S.; Bouaziz, M. Biodiesel and Crude Glycerol from Waste Frying Oil: Production, Characterization and Evaluation of Biodiesel Oxidative Stability with Diesel Blends. Sustainability 2019, 11, 1937. [Google Scholar] [CrossRef] [Green Version]
- Cimini, D.; Zaccariello, L.; D’Ambrosio, S.; Lama, L.; Ruoppolo, G.; Pepe, O.; Faraco, V.; Schiraldi, C. Improved production of succinic acid from Basfia succiniciproducens growing on A. donax and process evaluation through material flow analysis. Biotechnol. Biofuels 2019, 12, 22. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Yi, J.; Kim, T.Y.; Choi, S.; Ahn, J.H.; Song, H.; Lee, M.-H.; Lee, S.Y. Homo-succinic acid production by metabolically engineered Mannheimia succiniciproducens. Metab. Eng. 2016, 38, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.C.; Kennedy, G.J. Efficient itaconic acid production by Aspergillus terreus: Overcoming the strong inhibitory effect of manganese. Biotechnol. Prog. 2020, 36. [Google Scholar] [CrossRef] [PubMed]
- Miklóssy, I.; Bodor, Z.; Sinkler, R.; Orbán, K.C.; Lányi, S.; Albert, B. In silico and in vivo stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered E. coli. J. Biomol. Struct. Dyn. 2017, 35, 1874–1889. [Google Scholar] [CrossRef] [PubMed]
- Bodor, Z.; Kovács, E.; Albert, B. Systems biology and metabolic engineering for obtaining E. coli mutants capable to produce succinate from renewable resources. Rom. Biotechnol. Lett. 2014, 19, 12. [Google Scholar]
- Bodor, Z.; Tompos, L.; Nechifor, A.C.; Bodor, K. In silico Analysis of 1,4-butanediol Heterologous Pathway Impact on Escherichia coli Metabolism. Rev. Chim. 2019, 70, 3448–3455. [Google Scholar] [CrossRef]
- Bodor, Z.; Lanyi, S.; Albert, B.; Bodor, K.; Nechifor, A.C.; Miklossy, I. Model Driven Analysis of the Biosynthesis of 1,4-butanediol from Renewable Feedstocks in Escherichia coli. Rev. Chim. 2019, 70, 3808–3817. [Google Scholar] [CrossRef]
- Bodor, Z.; Fazakas, A.; Kovács, E.; Szabolcs, L.; Ábrahám, B. Biotechnological production of succinic acid from glycerol; The role of co-substrates. Stud. Univ. Babeș Bolyai Chem. 2014, 59, 33–50. [Google Scholar]
- Fazakas, A.; Csató-Kovács, E.; Bodor, Z.; Lányi, S.; Ábrahám, B. Production of Chemicals with Genetically Modified Escherichia coli Strains from Renewable Resources. Stud. Univ. Babeș Bolyai Chem. 2016, 61, 35–46. [Google Scholar]
- Lange, A.; Becker, J.; Schulze, D.; Cahoreau, E.; Portais, J.-C.; Haefner, S.; Schröder, H.; Krawczyk, J.; Zelder, O.; Wittmann, C. Bio-based succinate from sucrose: High-resolution 13C metabolic flux analysis and metabolic engineering of the rumen bacterium Basfia succiniciproducens. Metab. Eng. 2017, 44, 198–212. [Google Scholar] [CrossRef]
- der Werf, M.J.V.; Guettler, M.V.; Jain, M.K.; Zeikus, J.G. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130 Z. Arch. Microbiol. 1997, 167, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Fang, L.; Xu, Y.; Dong, J.-J.; Ni, Y.; Sun, Z.-H. Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes. Bioresour. Technol. 2010, 101, 7889–7894. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhou, Z.; Wang, C.; Chen, Z.; Cai, H. Enhanced succinic acid production in Corynebacterium glutamicum with increasing the available NADH supply and glucose consumption rate by decreasing H+-ATPase activity. Biotechnol. Lett. 2016, 38, 1181–1186. [Google Scholar] [CrossRef]
- Scholten, E.; Renz, T.; Thomas, J. Continuous cultivation approach for fermentative succinic acid production from crude glycerol by Basfia succiniciproducens DD1. Biotechnol. Lett. 2009, 31, 1947–1951. [Google Scholar] [CrossRef] [PubMed]
- Pateraki, C.; Almqvist, H.; Ladakis, D.; Lidén, G.; Koutinas, A.A.; Vlysidis, A. Modelling succinic acid fermentation using a xylose based substrate. Biochem. Eng. J. 2016, 114, 26–41. [Google Scholar] [CrossRef]
- Chen, K.-Q.; Li, J.; Ma, J.-F.; Jiang, M.; Wei, P.; Liu, Z.-M.; Ying, H.-J. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber. Bioresour. Technol. 2011, 102, 1704–1708. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Liang, L.; Li, F.; Wu, M.; Chen, K.; Ma, J.; Jiang, M.; Wei, P.; Ouyang, P. Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli. Bioresour. Technol. 2013, 149, 84–91. [Google Scholar] [CrossRef]
- Jiang, M.; Ma, J.; Wu, M.; Liu, R.; Weiliang, D.; Xin, F.; Zhang, W.; Jia, H.; Dong, W. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies. Bioresour. Technol. 2017, 245, 1710–1717. [Google Scholar] [CrossRef] [PubMed]
- Scholten, E.; Dägele, D. Succinic acid production by a newly isolated bacterium. Biotechnol. Lett. 2008, 30, 2143–2146. [Google Scholar] [CrossRef]
- Ventorino, V.; Robertiello, A.; Cimini, D.; Argenzio, O.; Schiraldi, C.; Montella, S.; Faraco, V.; Ambrosanio, A.; Viscardi, S.; Pepe, O. Bio-Based Succinate Production from Arundo donax Hydrolysate with the New Natural Succinic Acid-Producing Strain Basfia succiniciproducens BPP7. BioEnergy Res. 2017, 10, 488–498. [Google Scholar] [CrossRef]
- Wallenius, J.; Maaheimo, H.; Eerikäinen, T. Carbon 13-Metabolic Flux Analysis derived constraint-based metabolic modelling of Clostridium acetobutylicum in stressed chemostat conditions. Bioresour. Technol. 2016, 219, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Orth, J.D.; Thiele, I.; Palsson, B.Ø. What is flux balance analysis? Nat. Biotechnol. 2010, 28, 3. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Reinefeld, J.; Stellmacher, R.; Schäfer, R.; Lange, A.; Meyer, H.; Lalk, M.; Zelder, O.; Von Abendroth, G.; Schröder, H.; et al. Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens: Systems-Wide Analysis and Engineering. Biotechnol. Bioeng. 2013, 110, 3013–3023. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.A.; Feist, A.M.; Mo, M.L.; Hannum, G.; Palsson, B.Ø.; Herrgard, M.J. Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox. Nat. Protoc. 2007, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Schellenberger, J.; Que, R.; Fleming, R.M.T.; Thiele, I.; Orth, J.D.; Feist, A.M.; Zielinski, D.C.; Bordbar, A.; Lewis, N.E.; Rahmanian, S.; et al. Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox v2.0. Nat. Protoc. 2011, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Murarka, A.; Dharmadi, Y.; Yazdani, S.S.; Gonzalez, R. Fermentative Utilization of Glycerol by Escherichia coli and Its Implications for the Production of Fuels and Chemicals. Appl. Environ. Microbiol. 2008, 74, 1124–1135. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Dai, C.; Xie, J.; Hu, X. Biochemical Issues in Estimation of Cytosolic Free NAD/NADH Ratio. PLoS ONE 2012, 7, e34525. [Google Scholar] [CrossRef] [Green Version]
- Kim, S. Xylitol Production From Byproducts Generated During Sequential Acid-/Alkali-Pretreatment of Empty Palm Fruit Bunch Fiber by an Adapted Candida tropicalis. Front. Energy Res. 2019, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Salvachúa, D.; Smith, H.; John, P.C.S.; Mohagheghi, A.; Peterson, D.J.; Black, B.A.; Dowe, N.; Beckham, G.T. Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens. Bioresour. Technol. 2016, 214, 558–566. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartos, H.; Balázs, M.; Kuzman, I.H.; Lányi, S.; Miklóssy, I. Production of High Added-Value Chemicals in Basfia succiniciproducens: Role of Medium Composition. Sustainability 2021, 13, 3513. https://doi.org/10.3390/su13063513
Bartos H, Balázs M, Kuzman IH, Lányi S, Miklóssy I. Production of High Added-Value Chemicals in Basfia succiniciproducens: Role of Medium Composition. Sustainability. 2021; 13(6):3513. https://doi.org/10.3390/su13063513
Chicago/Turabian StyleBartos, Hunor, Márta Balázs, Ildikó Hajnalka Kuzman, Szabolcs Lányi, and Ildikó Miklóssy. 2021. "Production of High Added-Value Chemicals in Basfia succiniciproducens: Role of Medium Composition" Sustainability 13, no. 6: 3513. https://doi.org/10.3390/su13063513
APA StyleBartos, H., Balázs, M., Kuzman, I. H., Lányi, S., & Miklóssy, I. (2021). Production of High Added-Value Chemicals in Basfia succiniciproducens: Role of Medium Composition. Sustainability, 13(6), 3513. https://doi.org/10.3390/su13063513