Optimal Operation of a Hydrogen Storage and Fuel Cell Coupled Integrated Energy System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Energy Hub Modelling Approach
Description of the Test System
2.2. Problem Formulation
2.2.1. Constrained Optimisation and Mathematical Model
2.2.2. Definition of Scenarios
3. Results and Discussion
3.1. Baseline Scenarios
3.2. Optimal Cost Operation for Low and High Renewable Energy Generation Scenarios
3.3. Summary of Baseline and Optimal Cost Operation Scenarios
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Royal Society. Options for Producing Low-Carbon Hydrogen at Scale; The Royal Society: London, UK, 2018. [Google Scholar]
- Kakoulaki, G.; Kougias, I.; Taylor, N.; Dolci, F.; Moya, J.; Jäger-Waldau, A. Green hydrogen in Europe—A regional assessment: Substituting existing production with electrolysis powered by renewables. Energy Convers. Manag. 2020, 228, 113649. [Google Scholar] [CrossRef]
- Moore, J.; Shabani, B. A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies. Energies 2016, 9, 674. [Google Scholar] [CrossRef]
- Xiang, Y.; Cai, H.; Liu, J.; Zhang, X. Techno-economic design of energy systems for airport electrification: A hydrogen-solar-storage integrated microgrid solution. Appl. Energy 2021, 283, 116374. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, M.; Chen, H.; Yang, Z. Optimization of multi-carrier energy system based on new operation mechanism modelling of power-to-gas integrated with CO2-based electrothermal energy storage. Energy 2021, 216, 119269. [Google Scholar] [CrossRef]
- Ding, X.; Sun, W.; Harrison, G.P.; Lv, X.; Weng, Y. Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid. Energy 2020, 213, 118804. [Google Scholar] [CrossRef]
- Hajimiragha, A.; Canizares, C.; Fowler, M.; Geidl, M.; Andersson, G. Optimal Energy Flow of integrated energy systems with hydrogen economy considerations. In Proceedings of the 2007 iREP Symposium-Bulk Power System Dynamics and Control-VII. Revitalizing Operational Reliability, Charleston, SC, USA, 19–24 August 2007; pp. 1–11. [Google Scholar]
- Kholardi, F.; Assili, M.; Lasemi, M.A.; Hajizadeh, A. Optimal Management of Energy Hub with Considering Hydrogen Network. In Proceedings of the 2018 International Conference on Smart Energy Systems and Technologies (SEST), Seville, Spain, 10–12 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Farahani, S.S.; Bleeker, C.; van Wijk, A.; Lukszo, Z. Hydrogen-based integrated energy and mobility system for a real-life office environment. Appl. Energy 2020, 264, 114695. [Google Scholar] [CrossRef]
- Mansour-Saatloo, A.; Agabalaye-Rahvar, M.; Mirzaei, M.A.; Mohammadi-Ivatloo, B.; Abapour, M.; Zare, K. Robust scheduling of hydrogen based smart micro energy hub with integrated demand response. J. Clean. Prod. 2020, 267, 122041. [Google Scholar] [CrossRef]
- Mansour-Saatloo, A.; Mirzaei, M.A.; Mohammadi-Ivatloo, B.; Zare, K. A Risk-Averse Hybrid Approach for Optimal Participation of Power-to-Hydrogen Technology-Based Multi-Energy Microgrid in Multi-Energy Markets. Sustain. Cities Soc. 2020, 63, 102421. [Google Scholar] [CrossRef]
- Akhoundzadeh, M.H.; Raahemifar, K.; Panchal, S.; Samadani, E.; Haghi, E.; Fraser, R.; Fowler, M. A Conceptualized Hydrail Powertrain: A Case Study of the Union Pearson Express Route. World Electr. Veh. J. 2019, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Nielsen, E.R. Social Impact Assessment of BIG HIT: A Report into the Societal Impact of the Project; Department of Energy Conversion and Storage, Technical University of Denmark: Kongens Lyngby, Denmark, 2018. [Google Scholar]
- Arat, H.T.; Sürer, M.G. State of art of hydrogen usage as a fuel on aviation. Eur. Mech. Sci. 2017, 2, 20–30. [Google Scholar] [CrossRef]
- Geidl, M. Integrated Modeling and Optimization of Multi-Carrier Energy Systems. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2007. [Google Scholar] [CrossRef]
- Zhang, W.; Han, N.; Sun, W.; Li, H.; Tan, Y.; Yan, Z.; Dong, X. Optimal operation of wind-solar-hydrogen storage system based on energy hub. In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017; pp. 1–5. [Google Scholar]
- Alrafea, K.; Fowler, M.; Elkamel, A.; Hajimiragha, A. Integration of renewable energy sources into combined cycle power plants through electrolysis generated hydrogen in a new designed energy hub. Int. J. Hydrog. Energy 2016, 41, 16718–16728. [Google Scholar] [CrossRef]
- Daraei, M.; Campana, P.E.; Thorin, E. Power-to-hydrogen storage integrated with rooftop photovoltaic systems and combined heat and power plants. Appl. Energy 2020, 276, 115499. [Google Scholar] [CrossRef]
- Mendes, P.R.D.C.; Normey-Rico, J.E.; Alba, C.B. Economic Energy Management of a Microgrid Including Electric Vehicles. In Proceedings of the 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), Montevideo, Uruguay, 5–7 October 2015; pp. 869–874. [Google Scholar]
- Proietto, R.; Arnone, D.; Bertoncini, M.; Rossi, A.; La Cascia, D.; Miceli, R.; Sanseverino, E.R.; Zizzo, G. Mixed heuristic-non linear optimization of energy management for hydrogen storage-based multi carrier hubs. In Proceedings of the 2014 IEEE International Energy Conference (ENERGYCON), Dubrovnik, Croatia, 13–16 May 2014; pp. 1019–1026. [Google Scholar]
- Gökçek, M.; Kale, C. Optimal design of a Hydrogen Refuelling Station (HRFS) powered by Hybrid Power System. Energy Convers. Manag. 2018, 161, 215–224. [Google Scholar] [CrossRef]
- Geng, S.; Vrakopoulou, M.; Hiskens, I.A. Optimal Capacity Design and Operation of Energy Hub Systems. Proc. IEEE 2020, 108, 1475–1495. [Google Scholar] [CrossRef]
- Chicco, G.; Riaz, S.; Mazza, A.; Mancarella, P. Flexibility from Distributed Multienergy Systems. Proc. IEEE 2020, 108, 1496–1517. [Google Scholar] [CrossRef]
- Nosratabadi, S.M.; Jahandide, M.; Nejad, R.K. Simultaneous planning of energy carriers by employing efficient storages within main and auxiliary energy hubs via a comprehensive MILP modeling in distribution network. J. Energy Storag. 2020, 30, 101585. [Google Scholar] [CrossRef]
- Vian, A.; Bignucolo, F.; De Carli, M. Modelling and Optimization Approach of Residential Energy Hub: The GHOTEM Project. In Proceedings of the 2019 1st International Conference on Energy Transition in the Mediterranean Area (SyNERGY MED), Cagliary, Italy, 28–30 May 2019; pp. 1–6. [Google Scholar]
- Geidl, M.; Andersson, G. Optimal Power Dispatch and Conversion Systems with Multiple Energy Carriers. In Proceedings of the Power Systems Computation Conference, Liege, Belgium, 22–26 August 2005. [Google Scholar]
- Geidl, M.; Koeppel, G.; Favre-Perrod, P.; Klockl, B.; Andersson, G.; Frohlich, K. Energy hubs for the future. IEEE Power Energy Mag. 2007, 5, 24–30. [Google Scholar] [CrossRef]
- Farnham, T. Using Telemetry Data for Optimising Dual Fuel Hydrogen/Diesel Vehicle Fleets. In Proceedings of the 2018 International Conference on Smart Energy Systems and Technologies (SEST), Seville, Spain, 10–12 September 2018; pp. 1–6. [Google Scholar]
- Levenmouth Community Energy Project. Fife, n.d. Available online: https://www.brightgreenhydrogen.org.uk/levenmouth-community-energy-project/ (accessed on 19 January 2021).
- Pzip—Data Repository Site. Available online: ftp://ldr.toshiba-trel.com/1073 (accessed on 19 January 2021).
- Rizzoni, G.; Guzzella, L.; Baumann, B. Unified modeling of hybrid electric vehicle drivetrains. Asme Trans. Mechatron. 1999, 4, 246–257. [Google Scholar] [CrossRef]
- Pachernegg, S.J. A Closer Look at the Willans-Line. Sae Tech. Pap. Ser. 1969. [Google Scholar] [CrossRef]
- Ball, M.; Weeda, M. The Hydrogen Economy—Vision or Reality? In Compendium of Hydrogen Energy; Energy Series; Ball, M., Basile, A., Veziroğlu, T.N., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 237–266. [Google Scholar]
- Cloete, S.; Ruhnau, O.; Hirth, L. On capital utilization in the hydrogen economy: The quest to minimize idle capacity in renewables-rich energy systems. Int. J. Hydrog. Energy 2021, 46, 169–188. [Google Scholar] [CrossRef]
- Khzouz, M.; Gkanas, E.I.; Shao, J.; Sher, F.; Beherskyi, D.; El-Kharouf, A.; Al Qubeissi, M. Life Cycle Costing Analysis: Tools and Applications for Determining Hydrogen Production Cost for Fuel Cell Vehicle Technology. Energies 2020, 13, 3783. [Google Scholar] [CrossRef]
System Component | Rated Maximum Power Capacity (kW) |
---|---|
Wind Turbine | 750 |
Solar PV | 200 |
Electrolyser | 370 |
Fuel Cell | 100 |
Hydrogen Storage | 3333 |
Scenario | Description |
---|---|
Baseline performance for one week operation of a real system with both low and high renewable energy generation | • Actual operation data from the Levenmouth Community Energy Project for a similar system configuration is used [29]. The data was made available by Toshiba Bristol Research and Innovation Labs [30]. This is used to establish the electricity and hydrogen demands and the renewable generation profiles for subsequent scenarios. • On-site hydrogen storage data is not available. • Fuel cell is not in operation. |
One week cost optimal operation of the test system with low renewable energy generation. | • Electricity demand accounts for 42% of the on-site renewable energy generation. • Electricity and hydrogen demand as in base scenario. • Electrolyser, hydrogen storage and fuel cell operated for cost minimisation. |
One week cost optimal operation of the test system with high renewable energy generation. | • Electricity demand accounts for 16% of the on-site renewable energy generation. • Electricity and hydrogen demand as in base scenario. • Electrolyser, hydrogen storage and fuel cell operated for cost minimisation. |
Low Renewables | High Renewables | |||
---|---|---|---|---|
Baseline | Optimal Operation | Baseline | Optimal Operation | |
Site Electricity Demand (kWh) | 5228.37 | 5228.37 | 5051.71 | 5051.71 |
Site Hydrogen Demand (kWh) | 1722.41 | 1722.41 | 1722.41 | 1722.41 |
Renewable Energy Available (kWh) | 11,981.66 | 11,981.66 | 31,734.60 | 31,734.60 |
Electrolyser energy consumption (kWh) | 9526.21 | 4280.08 | 14,629.35 | 7437.03 |
Fuel Cell energy output (kWh) | - | 2049.66 | - | 3231.74 |
Stored Hydrogen (kWh) | - | 2846.2 | - | 5643.5 |
Discharged Hydrogen (kWh) | - | 4657.2 | - | 6920.3 |
Total Electricity Imports (kWh) | 4081.20 | 515.82 | 6372 | 0.03 |
Total Electricity Exports (kWh) | 5061.20 | 5066.20 | 10,718 | 22,858 |
Total cost of operation (£) | - | −239.8 | - | −1118 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utomo, O.; Abeysekera, M.; Ugalde-Loo, C.E. Optimal Operation of a Hydrogen Storage and Fuel Cell Coupled Integrated Energy System. Sustainability 2021, 13, 3525. https://doi.org/10.3390/su13063525
Utomo O, Abeysekera M, Ugalde-Loo CE. Optimal Operation of a Hydrogen Storage and Fuel Cell Coupled Integrated Energy System. Sustainability. 2021; 13(6):3525. https://doi.org/10.3390/su13063525
Chicago/Turabian StyleUtomo, Oscar, Muditha Abeysekera, and Carlos E. Ugalde-Loo. 2021. "Optimal Operation of a Hydrogen Storage and Fuel Cell Coupled Integrated Energy System" Sustainability 13, no. 6: 3525. https://doi.org/10.3390/su13063525
APA StyleUtomo, O., Abeysekera, M., & Ugalde-Loo, C. E. (2021). Optimal Operation of a Hydrogen Storage and Fuel Cell Coupled Integrated Energy System. Sustainability, 13(6), 3525. https://doi.org/10.3390/su13063525