Short-Term Solar Power Forecasting: A Combined Long Short-Term Memory and Gaussian Process Regression Method
Abstract
:1. Introduction
2. Methodology
2.1. Long Short-Term Memory Network (LSTM)
2.2. Gaussian Process Regression (GPR)
2.3. Combination of LSTM and GPR (LSTM-GPR)
3. Modeling Based on LSTM-GPR
3.1. Feature Selection Based on Weather Variables Correlation
3.2. Feature Selection Based on Time Correlation
3.3. LSTM-GPR Based Forecasting Modeling
4. Experimental Results and Discussion
4.1. Experimental Data
4.2. Model Assessment Criteria
4.2.1. Assessment Criteria of Point Prediction
4.2.2. Assessment Criteria of Interval Forecasting
4.3. Experimental Results
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wang, F.; Zhen, Z.; Liu, C.; Mi, Z.; Hodge, B.-M.; Shafifie-khah, M.; Catalão, J.P. Image phase shift invariance based cloud motion displacement vector calculation method for ultra short-term solar PV power forecasting. Energy Convers. Manag. 2018, 157, 123–135. [Google Scholar] [CrossRef]
- Masa-Bote, D.; Castillo-Cagigal, M.; Matallanas, E.; Caamaño-Martín, E.; Gutiérrez, A.; Monasterio-Huelín, F.; Jiménez-Leube, J. Improving photovoltaics grid integration through short time forecasting and self-consumption. Appl. Energy 2014, 125, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Xue, W.; Li, D.; Zhu, H.; Su, Z.-G. Quantitative Tuning of Active Disturbance Rejection Controller for FOPDT Model with Application to Power Plant Control. IEEE Trans. Ind. Electron. 2021, 1. [Google Scholar] [CrossRef]
- Wang, F.; Xiang, B.; Li, K.; Ge, X.; Lu, H.; Lai, J.; Dehghanian, P. Smart Households’ Aggregated Capacity Forecasting for Load Aggregators Under Incentive-Based Demand Response Programs. IEEE Trans. Ind. Appl. 2020. [Google Scholar] [CrossRef]
- Ismail, A.M.; Ramirez-Iniguez, R.; Asif, M.; Munir, A.B.; Muhammad-Sukki, F. Progress of solar photovoltaic in ASEAN countries: A review. Renew. Sustain. Energy Rev. 2015, 48, 399–412. [Google Scholar] [CrossRef]
- Sun., L.; Jin, Y.; Shen, J.; You, F. Sustainable Residential Micro-Cogeneration System Based on a Fuel Cell Using Dynamic Programming-Based Economic Day-Ahead Scheduling. ACS Sustain. Chem. Eng. 2021. [Google Scholar] [CrossRef]
- Van Haaren, R.; Morjaria, M.; Fthenakis, V. An energy storage algorithm for ramp rate control of utility scale PV (photovoltaics) plants. Energy 2015, 91, 894–902. [Google Scholar] [CrossRef]
- Wang, F.; Xuan, Z.; Zhen, Z.; Li, K.; Wang, T.; Shi, M. A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework. Energy Convers. Manag. 2020, 212, 112766. [Google Scholar] [CrossRef]
- Alonso-Montesinos, J.; Monterreal, R.; Fernández-Reche, J.; Ballestrín, J.; Carra, E.; Polo, J.; Barbero, J.; Batlles, F.; López, G.; Enrique, R.; et al. Intra-hour energy potential forecasting in a central solar power plant receiver combining Meteosat images and atmospheric extinction. Energy 2019, 188, 116034. [Google Scholar] [CrossRef]
- Ohtake, H.; Uno, F.; Oozeki, T.; Yamada, Y. The Latest Update of JMA Numerical Weather Prediction Models and its Solar Power Forecasting Errors. IEEJ Trans. Power Energy 2018, 138, 881–892. [Google Scholar] [CrossRef]
- Qing, X.; Niu, Y. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy 2018. [Google Scholar] [CrossRef]
- Pattanaik, D.; Mishra, S.; Khuntia, G.P.; Dash, R.; Swain, S.C. An innovative learning approach for solar power forecasting using genetic algorithm and artificial neural network. Open Eng. 2020, 10, 630–641. [Google Scholar] [CrossRef]
- Lin, K.-P.; Pai, P.-F. Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression. J. Clean. Prod. 2016, 134, 456–462. [Google Scholar] [CrossRef]
- Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers. Manag. 2019, 198, 111799. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Wang, H.; Zhang, S.; Xin, J.; Liu, H. Recurrent Neural Networks Based Photovoltaic Power Forecasting Approach. Energies 2019, 12, 2538. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhang, Y.; Yang, L.; Liu, Q.; Yan, K.; Du, Y. Short-term Photovoltaic Power Forecasting based on Long Short Term Memory Neural Network and Attention Mechanism. IEEE Access 2019, 7, 78063–78074. [Google Scholar] [CrossRef]
- Lee, W.; Kim, K.; Park, J.; Kim, J.; Kim, Y. Forecasting Solar Power Using Long-Short Term Memory and Convolutional Neural Networks. IEEE Access 2018, 6, 73068–73080. [Google Scholar] [CrossRef]
- Mitsuru, K.; Yusuke, E.; Hiromasa, S.; Ikeda, R.; Kusaka, H. Probabilistic Solar Irradiance Forecasting by Conditioning Joint Probability Method and its Application to Electric Power Trading. IEEE Trans. Sustain. Energy 2018, 10, 983–993. [Google Scholar]
- Wen, Y.; Alhakeem, D.; Mandal, P.; Chakraborty, S.; Wu, Y.-K.; Senjyu, T.; Paudyal, S.; Tseng, T.-L. Performance Evaluation of Probabilistic Methods Based on Bootstrap and Quantile Regression to Quantify PV Power Point Forecast Uncertainty. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 1134–1144. [Google Scholar] [CrossRef]
- Sheng, H.; Xiao, J.; Wang, P. Lithium Iron Phosphate Battery Electric Vehicle State of Charge Estimation based on Evolutionary Mixture Gaussian Regression. IEEE Trans. Ind. Electron. 2016, 64, 544–551. [Google Scholar] [CrossRef]
- Samuelsson, O.; Björk, A.; Zambrano, J.; Carlsson, B. Gaussian process regression for monitoring and fault detection of wastewater treatment processes. Water Sci. Technol. 2017, 75, 2952. [Google Scholar] [CrossRef]
- Kushwaha, V.; Pindoriya, N.M. A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast. Renew. Energy 2019, 140, 124–139. [Google Scholar] [CrossRef]
- Rana, M.; Koprinska, I.; Agelidis, V.G. Univariate and multivariate methods for very short-term solar photovoltaic power forecasting. Energy Convers. Manag. 2016, 121, 380–390. [Google Scholar] [CrossRef]
- Bouzerdoum, M.; Mellit, A.; Pavan, A.M. A hybrid model (SARIMA–SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant. Sol. Energy 2013, 98, 226–235. [Google Scholar] [CrossRef]
- Kim, J.G.; Kim, D.H.; Yoo, W.S.; Lee, J.; Kim, Y.B. Daily prediction of solar power generation based on weather forecast information in Korea. IET Renew. Power Gener. 2017, 11, 1268–1273. [Google Scholar] [CrossRef]
- Lu, H.J.; Chang, G.W. A Hybrid Approach for Day-Ahead Forecast of PV Power Generation. IFAC-PapersOnLine 2018, 51, 634–638. [Google Scholar] [CrossRef]
- Wessam, E.B.; Peter, T.; Ulrich, W. Day-ahead probabilistic PV generation forecast for buildings energy management systems. Sol. Energy 2018, 171, 478–490. [Google Scholar]
- Sun, G.; Jiang, C.; Wang, X.; Yang, X. Short-term building load forecast based on a data-mining feature selection and LSTM-RNN method. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 1002–1010. [Google Scholar] [CrossRef]
- Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 2017, 270, 654–669. [Google Scholar] [CrossRef] [Green Version]
- Tolba, H.; Dkhili, N.; Nou, J.; Eynard, J.; Thil, S.; Grieu, S. GHI forecasting using Gaussian process regression: Kernel study. IFAC-PapersOnLine 2019, 52, 455–460. [Google Scholar] [CrossRef]
- Wojtkiewicz, J.; Hosseini, M.; Gottumukkala, R.; Chambers, T.L. Hour-Ahead Solar Irradiance Forecasting Using Multivariate Gated Recurrent Units. Energies 2019, 12, 4055. [Google Scholar] [CrossRef] [Green Version]
- Kuzmiakova, A.; Colas, G.; McKeehan, A. Machine Learning for Solar Energy Prediction. Available online: https://github.com/ColasGael/Machine-Learning-for-Solar-Energy-Prediction (accessed on 1 July 2020).
- Ranran, L.; Yu, J. A wind speed interval prediction system based on multi-objective optimization for machine learning method. Appl. Energy 2018, 228, 2207–2220. [Google Scholar]
Weather Attribute | Unit | Correlation Coefficient |
---|---|---|
Cloud coverage | % | −0.2604 |
Visibility | Miles | 0.3311 |
Temperature | °C | 0.3038 |
Dew point | °C | 0.0819 |
Relative humidity | % | −0.4150 |
Wind speed | Mph | 0.0408 |
Pressure | inchHg | 0.0999 |
Altimeter | inchHg | 0.0801 |
Datasets | Training Data | Test Data | ||
---|---|---|---|---|
Period | m | Period | n | |
Dataset1 | 2016.5.31–2017.8.7 | 5136 | 2017.8.8–2017.8.9 | 24 |
Dataset2 | 2016.2.1–2016.9.25 | 2856 | 2016.9.26–2016.9.27 | 24 |
Dataset | Model | RMSE | MAE | MAPE/% | CR/% | MIW | MC * 100 |
---|---|---|---|---|---|---|---|
Dataset1 | BPNN | 374.99 | 301.23 | 16.91 | - | - | - |
LSTM | 296.25 | 221.56 | 14.78 | - | - | - | |
LSTM_GPR | 264.98 | 201.77 | 9.43 | 100 | 1627.91 | 16.28 | |
GPR | 403.20 | 311.23 | 10.64 | 100 | 2797.76 | 27.98 | |
Dataset2 | BPNN | 501.45 | 372.71 | - | - | - | - |
LSTM | 288.81 | 227.07 | - | - | - | - | |
LSTM_GPR | 280.89 | 219.49 | - | 83.33 | 852.62 | 10.23 | |
GPR | 601.18 | 478.86 | - | 95.83 | 2550.21 | 26.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Feng, B.; Hua, Q.-S.; Sun, L. Short-Term Solar Power Forecasting: A Combined Long Short-Term Memory and Gaussian Process Regression Method. Sustainability 2021, 13, 3665. https://doi.org/10.3390/su13073665
Wang Y, Feng B, Hua Q-S, Sun L. Short-Term Solar Power Forecasting: A Combined Long Short-Term Memory and Gaussian Process Regression Method. Sustainability. 2021; 13(7):3665. https://doi.org/10.3390/su13073665
Chicago/Turabian StyleWang, Ying, Bo Feng, Qing-Song Hua, and Li Sun. 2021. "Short-Term Solar Power Forecasting: A Combined Long Short-Term Memory and Gaussian Process Regression Method" Sustainability 13, no. 7: 3665. https://doi.org/10.3390/su13073665
APA StyleWang, Y., Feng, B., Hua, Q. -S., & Sun, L. (2021). Short-Term Solar Power Forecasting: A Combined Long Short-Term Memory and Gaussian Process Regression Method. Sustainability, 13(7), 3665. https://doi.org/10.3390/su13073665