Farmers’ Preference, Yield, and GGE-Biplot Analysis-Based Evaluation of Four Sweet Potato (Ipomoea batatas L.) Varieties Grown in Multiple Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Locations
2.2. Experimental Design and Plant Materials
2.3. Experimental Procedures
2.4. Farmers-Preference-Based Variety Selections
2.5. Statistical Analysis
3. Results and Discussion
3.1. Combined Analysis of Variance
3.2. Average Yield Performance of the Genotypes in Multiple Environments
3.3. Organoleptic Evaluation
3.4. Winning Genotype and Mega-Environment
3.5. Ranking of Genotypes
3.5.1. Ranking Genotypes Relative to the Perfect Genotypes
3.5.2. Ranking Environment Relative to the Perfect Environment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bovell-Benjamin, A.C. Sweet potato: A review of its past, present, and future role in human nutrition. Adv. Food Nutr. Res. 2007, 52, 1–59. [Google Scholar] [CrossRef]
- Rumbaoa, R.G.O.; Cornago, D.F.; Geronimo, I.M. Phenolic content and antioxidant capacity of Philippine sweet potato (Ipomoea batatas) varieties. Food Chem. 2009, 113, 1133–1138. [Google Scholar] [CrossRef]
- Yoshimoto, M.; Okuno, S.; Yoshinaga, M.; Yamakawa, O.; Yamaguchi, M.; Yamada, J. Antimutagenicity of sweet potato (Ipomoea batatas) roots. Biosci. Biotechnol. Biochem. 1999, 63, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Islam, S. Sweetpotato (Ipomoea batatas L.) leaf: Its potential effect on human health and nutrition. J. Food Sci. 2006, 71, R13–R121. [Google Scholar] [CrossRef]
- Szalay, J. Sweet Potatoes: Health Benefits, Risks & Nutrition Facts. Live Science 2017. Available online: https://www.livescience.com/45838-potato-nutrition.html (accessed on 3 January 2021).
- Islam, M.S.; Yoshimoto, M.; Terahara, N.; Yamakawa, O. Anthocyanin compositions in sweet potato (Ipomoea batatas L.) leaves. Biosci Biotechnol Biochem. 2002, 66, 2483–2486. [Google Scholar] [CrossRef]
- Banglapedia. National Encyclopedia of Bangladesh. Night Blindness 2019. Available online: http://en.banglapedia.org/index.php?title=Night_Blindness (accessed on 3 January 2021).
- FAOSTAT. Food and Agriculture Data; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 3 January 2021).
- FAOSTAT. Food and Agriculture Data; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 3 January 2021).
- BARI (Bangladesh Agricultural Research Institute). Annual Report. 2018–19; On-Farm Research Division; Bangladesh Agricultural Research Institute: Gazipur, Bangladesh, 2019; p. 402. [Google Scholar]
- Chueyen, H.V.; Eun, J.B. Nutritional quality of foods: Sweet potato. In Diet Quality: An Evidence-Based Approach; Preedy, V.R., Hunte, L., Patel, V.B., Eds.; Springer Science + Business Media: New York, NY, USA, 2013; pp. 243–256. [Google Scholar] [CrossRef]
- Low, J.; Ball, A.; Magezi, S.; Njoku, J.; Mwanga, R.; Andrade, M.; Tomlins, K.; Dove, R.; Van Mourik, T. Sweet potato development and delivery in sub-Saharan Africa. Afr. J. Food Agric. Nutr. Dev. 2017, 17, 11955–11972. [Google Scholar] [CrossRef]
- Wolfgang, J.G.; Manrique, K.; Zhang, D.; Hermann, M. Genotype x environment interactions for a diverse set of Sweet potatoclones evaluated across varying ecogeographic conditions in Peru. Crop Sci. 2005, 45, 2160–2171. [Google Scholar] [CrossRef]
- Chiona, M. Towards Enhancement of β-Carotene Content of High Dry Mass Sweetpotato Genotypes in Zambia. Ph.D. Thesis, Department of Plant Breeding, College of Agriculture, Engineering and Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2009. Available online: http://hdl.handle.net/10413/614 (accessed on 3 January 2021).
- Osiru, M.O.; Olanya, O.M.; Adipala, E.; Kapinga, R.; Lemaga, B. Yield stability analysis of Ipomoea batatas L. cultivars in diverse environments. Aust. J. Crop Sci. 2009, 3, 213–220. [Google Scholar]
- Moussa, S.A.; El-Aal, H.A.; El-Fadl, N.A. Stability study of sweet potato yield and its component characters under different environments by joint regression analysis. J. Hort. Sci. Ornament. Plants 2011, 3, 43–54. [Google Scholar]
- Rahaman, E.H.; Hossain, M.M.; Hoque, M.E.; Ali, M.R.; Mahmud, A.A.; Hasan, M.M.; Mohanta, H.C.; Bhuiyan, M.K.; Islam, M.S.; Hossain, M.J. Farrmers preference and suitability assessment of BARI released Orange-Fleshed Sweetpotato varieties in Charlands of Gaibandha. Bangladesh Hort. 2015, 2, 1–11. [Google Scholar]
- Yan, W.; Kang, M.S.; Ma, B.; Woods, S.; Cornelius, P.L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 2007, 47, 643–653. [Google Scholar] [CrossRef]
- Yan, W.; Cornelius, P.L.; Crossa, J.; Hunt, L.A. Two types of GGE biplots for analyzing multi-environment trial data. Crop Sci. 2001, 41, 656–663. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Tinker, N. Biplot analysis of multi-environment trial data; principles and application. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Yan, W. Singular-value partitioning in biplot analysis of multi-environment trial data. Agron. J. 2002, 94, 990–996. [Google Scholar] [CrossRef] [Green Version]
- Hossain, A.; Farhad, M.; Jahan, M.A.; Mahboob, M.G.; Timsina, J.; Teixeira da Silva, J.A. Biplot yield analysis of heat-tolerant spring wheat genotypes (Triticum aestivum L.) in multiple growing environments. Open Agric. 2018, 3, 404–413. [Google Scholar] [CrossRef]
- Wangchuk, P.; De Haan, S.; Dochen, R. A Guide to Conduct Participatory Varietal Selection Using Mother and Baby Trial Design in Potato; Department of Agriculture, Ministry of Agriculture and Forests: Thimphu, Bhutan, 2018; 38p.
- BAMIS. Bangladesh Agro-Meteorological Information Portal: Agro-Meteorological Information Systems Development Project: Department of Agricultural Extension. 2020. Available online: https://www.bamis.gov.bd/en/page/aezs-maps/ (accessed on 3 August 2020).
- R Core Team. R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 3 August 2020).
- Gabriel, K.R. The biplot graphic display of matrices with application to principal component analysis. Biometrika 1971, 58, 453–467. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists; CRC Press: Boca Raton, FL, USA, 2003; 288p. [Google Scholar]
- Gurmu, F. Stability Analysis of Fresh Root Yield of Sweetpotato in Southern Ethiopia Using GGE Bi-Plot. Int. J. Pure Agric. Adv. 2017, 1, 1–9. Available online: https://ideas.repec.org/a/onl/ijopaa/2017p1-9.html (accessed on 3 August 2020). [CrossRef]
- Aina, O.O.; Dixon, A.G.O.; Paul, I.; Akinrinde, E.A. G × E interaction effects on yield and yield components of cassava (landraces and improved) genotypes in the savanna regions of Nigeria. Afr. J. Biotechnol. 2009, 8, 4933–4945. [Google Scholar]
- Xu, F.F.; Tang, F.F.; Shao, Y.F.; Chen, Y.L.; Chuan, T.; Bao, J.S. Genotype× environment interactions for agronomic traits of rice revealed by association mapping. Rice Sci. 2014, 21, 133–141. [Google Scholar] [CrossRef]
- Rafique, F.; Fatema, K.; Rahman, M.H.; Hossain, M.M. Vegetative growth and yield performance of eight sweet potato genotypes. Bangladesh Hort. 2015, 1–2, 103–110. [Google Scholar]
- Anonymous (2014–16) Annual Research Reports 2013–14 to 2014–16; Tuber Crops Research Centre, BARI: Gazipur, Bangladesh, 2016.
- Islam, J.; Choi, S.P.; Azad, O.K.; Kim, J.W.; Lim, Y.-S. Evaluation of Tuber Yield and Marketable Quality of Newly Developed Thirty-Two Potato Varieties Grown in Three Different Ecological Zones in South Korea. Agriculture 2020, 10, 327. [Google Scholar] [CrossRef]
- Gurmu, F.; Mekonen, S. Evaluation of root yield performance of newly bred orange-fleshed sweet potato genotypes in Ethiopia. J. Agric. Crop Res. 2019, 7, 9–17. [Google Scholar]
Location | Representing Agro-Ecological Zone (AEZ) | Major Soil Characters of Agro-Ecological Zone (AEZ) |
---|---|---|
E1 (Rangpur) and E2 (Gaibandha) | AEZ 2: Active Tista Floodplain | Irregular patterns of grey stratified sands and silts, very strongly acidic to slightly acidic (pH range: 3.8 to 6.4). Very low to low organic matter content. Zn and B content with soil fertility level is very low to medium. |
E3 (Bogura) | AEZ 4: Karatoa-Bangali Floodplain | Soils are grey silt loam to silty clay loams on ridges and dark grey clays in basins Soils are strongly acidic to slightly acidic (pH range: 4.1 to 6.5. Organic matter content is low to medium. |
E4 (Jhenidah) | AEZ 11: High Ganges River Floodplain | Common soil types are calcareous brown floodplain soil, silty loam to silty clay loam, acidic to alkaline in nature (pH range: 4.5 to 8.3) with low to medium organic matter content. The general fertility level is low, including N, P, S, B and Zn, with medium to high K-bearing minerals. |
E5 (Manikganj) | AEZ 8: Young Brahmaputra and Jamuna Floodplain | Soils are characterized by silty loam to silty clay loam on the ridges and clays in the basins; slightly acidic to neutral (pH range: 4.5 to 7.2). Soils are deficient in N, P, S, B, K and Zn, with low to medium organic matter content. |
E6 (Kishoreganj) | AEZ 21: Sylhet Basin | In the higher parts, soils are silty clay loam and clay in the wet basins, with low to medium organic matter, slightly acidic (pH range: 4.6 to 6.1) in nature. Fertility level is medium to high with extremely low N and low to medium P content. |
E7 (Sylhet) | AEZ 20: Eastern Surma Kushiyara Floodplain | Common soil types are non-calcareous grey floodplain, silty clay loams on the ridges and clays in the basins. pH ranges from 3.8 to 7.7. Organic matter content is low to medium. Soil is deficient in N, P, B and Zn. |
E8 (Narsingdi) | AEZ 9: Old Brahmaputra Floodplain | Soils are mainly silt loams to silt clay loams on the ridges and clay in the basins. Top soils are strongly acidic to neutral, and sub-soils are neutral in reaction (pH ranges from 3.8 to 7.2). Organic matter content is low on the ridges and moderate in the basins, with low fertility status of N, P, K, S and B. |
E9 (Bhola) | AEZ 18: Young Meghna Estuarine Floodplain | The major soils are calcareous silt loam to silt clay loams, which become saline in the dry period. Top-soils and subsoils are mildly alkaline (pH ranges from 4.3 to 8.4). Soil fertility level is low to medium with very low N content. |
Name of the Variety | Pedigree | Year of Release | Major Characters | Image |
---|---|---|---|---|
G1: (BARI Mistialu-8) | CIP-440025 | 2008 | Skin color: Red Flesh color: Yellow Dry matter: 33.71 ± 1% Beta-carotene: 1.08 mg/100 g FW Fe: 7.86 mg/kg Zn: 14.76 mg/kg | |
G2: (BARI Mistialu-12) | CIP-440001 | 2013 | Skin color: Yellow Flesh color: Orange Dry matter: 22.04 ± 1% Beta-carotene: 3.60 mg/100 g FW Fe: 14.76 mg/kg Zn: 8.09 mg/kg | |
G3: (BARI Mistialu-14) | CIP-441132 | 2017 | Skin color: Light orange Flesh color: Orange Dry matter: 29.46 ± 1% Beta-carotene: 10.10 mg/100 g FW Fe: 5.17 mg/kg Zn: 6.47 mg/kg | |
G4: (BARI Mistialu-15) | CIP-440267.2 | 2017 | Skin color: Pink Flesh color: Orange Dry matter: 28.91 ± 1% Beta-carotene: 10.39 mg/100 g FW Fe: 13.25 mg/kg Zn: 6.47 mg/kg |
Crop Season | MLT Sites | Plot Size | Date of Planting | Date of Harvesting | Duration |
---|---|---|---|---|---|
2018–2019 | Pirganj–Rangpur | 10 m × 10 m | 25–26 October 2018 | 15–16 February 2019 | 113 |
Saghata–Gaibandha | 10 m × 10 m | 25–26 October 2018 | 14–16 March 2019 | 140 | |
Sariakandi–Bogura | 10 m × 10 m | 17 November 2018 | 23 March 2019 | 124 | |
Kaliganj–Jhenidah | 10 m × 10 m | 12 November 2018 | 28 March 2019 | 136 | |
Manikganj Sadar | 10 m × 10 m | 4 December 2018 | 04–05 April 2019 | 121 | |
Kishoreganj Sadar | 10 m × 10 m | 19 November 2018 | 25 March 2019 | 126 | |
South Surma, Sylhet | 10 m × 10 m | 24–26 November 2018 | 08–09 April 2019 | 135 | |
Shibpur–Norsingdi | 5 m × 6 m | 19 November 2018 | 15 April 2019 | 147 | |
Daulatkhan–Bhola | 6 m × 6 m | 11 December 2018 | 06 May 2019 | 146 | |
2019–2020 | Saghata–Gaibandha | 40 m × 30 m | 26 October 2019 | 10–12 March 2020 | 135 |
Kaliganj–Jhenidah | 40 m × 30 m | 12 November 2019 | 25 March 2020 | 133 | |
Shibpur–Norsingdi | 40 m × 30 m | 15 November 2019 | 2 April 2020 | 138 |
SOV | DF | SS | MS | PORCENT | PORCENAC |
---|---|---|---|---|---|
ENV | 8 | 365.0834 | 45.63542 | 57.25402 | 57.25402 |
GEN | 3 | 105.9319 | 35.31063 | 16.61272 | 73.86674 |
ENV*GEN | 24 | 166.6401 | 6.94334 | 26.13326 | 100 |
Variety | Yield (t ha−1) | % Yield Increases Over Check Variety | |||
---|---|---|---|---|---|
Gaibandha | Norsingdi | Jhenaidah | Variety Mean | ||
G1 (BARI Mistialu-8) | 29.20 abB | 35.54 bA | 23.96 aC | 29.57 | 57.89 |
G2 (BARI Mistialu-12) | 30.56 aB | 37.67 aA | 22.50 abC | 30.24 | 61.50 |
G3 (BARI Mistialu-14) | 28.50 bB | 30.85 cA | 21.72 bC | 27.02 | 44.30 |
Local cultivar (Check) | 22.30 cA | 18.53 dB | 15.35 cC | 18.73 | - |
Location mean | 27.64 | 30.65 | 20.88 |
Variety | % Weevil Infestation (by Weight) | Infested Root Yield (t ha−1) | Non-Infested Root Yield (t ha−1) | |||
---|---|---|---|---|---|---|
2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | |
G1 (BARI Mistialu-8) | 3.43 b | 3.11 c | 0.90 b | 0.92 | 25.38 b | 28.65 a |
G2 (BARI Mistialu-12) | 4.67 ab | 4.31 b | 1.44 a | 1.30 | 29.46 a | 28.94 a |
G3 (BARI Mistialu-14) | 5.31 a | 4.84 ab | 1.38 a | 1.31 | 24.58 bc | 25.71 b |
G4 (BARI Mistialu-15) | 5.43 a | - | 1.30 a | - | 22.64 c | - |
Local cultivar (Check) | - | 5.80 c | - | 1.09 | - | 17.64 c |
Mean | 4.71 | 4.52 | 1.26 | 1.15 | 25.51 | 25.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmud, A.A.; Hassan, M.M.; Alam, M.J.; Molla, M.S.H.; Ali, M.A.; Mohanta, H.C.; Alam, M.S.; Islam, M.A.; Talukder, M.A.H.; Ferdous, M.Z.; et al. Farmers’ Preference, Yield, and GGE-Biplot Analysis-Based Evaluation of Four Sweet Potato (Ipomoea batatas L.) Varieties Grown in Multiple Environments. Sustainability 2021, 13, 3730. https://doi.org/10.3390/su13073730
Mahmud AA, Hassan MM, Alam MJ, Molla MSH, Ali MA, Mohanta HC, Alam MS, Islam MA, Talukder MAH, Ferdous MZ, et al. Farmers’ Preference, Yield, and GGE-Biplot Analysis-Based Evaluation of Four Sweet Potato (Ipomoea batatas L.) Varieties Grown in Multiple Environments. Sustainability. 2021; 13(7):3730. https://doi.org/10.3390/su13073730
Chicago/Turabian StyleMahmud, Abdullah Al, Mohamed M. Hassan, Md Jahangir Alam, Md Samim Hossain Molla, Md Akkas Ali, Haridas Chandra Mohanta, Md Shahidul Alam, Md Aminul Islam, Md Alamin Hossain Talukder, Md Zannatul Ferdous, and et al. 2021. "Farmers’ Preference, Yield, and GGE-Biplot Analysis-Based Evaluation of Four Sweet Potato (Ipomoea batatas L.) Varieties Grown in Multiple Environments" Sustainability 13, no. 7: 3730. https://doi.org/10.3390/su13073730
APA StyleMahmud, A. A., Hassan, M. M., Alam, M. J., Molla, M. S. H., Ali, M. A., Mohanta, H. C., Alam, M. S., Islam, M. A., Talukder, M. A. H., Ferdous, M. Z., Amin, M. R., Hossain, M. F., Anwar, M. M., Islam, M. S., Dessoky, E. S., & Hossain, A. (2021). Farmers’ Preference, Yield, and GGE-Biplot Analysis-Based Evaluation of Four Sweet Potato (Ipomoea batatas L.) Varieties Grown in Multiple Environments. Sustainability, 13(7), 3730. https://doi.org/10.3390/su13073730