Are Energy Consumption, Population Density and Exports Causing Environmental Damage in China? Autoregressive Distributed Lag and Vector Error Correction Model Approaches
Abstract
:1. Introduction
2. Literature Review
2.1. CO2 Emissions and Economic Growth Nexus
2.2. CO2 Emissions, Economic Growth and Energy Consumption Nexus
2.3. CO2 Emissions and Population Density Nexus
2.4. CO2 Emissions–Trade/Exports Nexus
3. Materials and Methods
3.1. Theoretical Notions and the Model
3.2. Unit Root Tests
3.3. Cointegration Tests
3.4. Model Stability and Diagnostic Tests
3.5. Granger Causality Tests
3.6. Data Sources
3.7. Preliminary Examinations of Data
4. Findings and Discussions
4.1. The Findings of Unit Root Tests
4.2. The Results of Cointegration Tests
4.3. The Long-Run and Short-Run Analyses
4.4. The VECM Granger Causality Tests
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIC | Akaike information criterion |
ARDL | Autoregressive Distributed Lag |
CUSUM | Cumulative sum of recursive residuals |
CUSUMSQ | Cumulative sum of squares of recursive residuals |
EKC | Environmental Kuznets Curve |
GDP | Gross Domestic Product |
ECM | Lagged error term |
UN | United Nations |
VECM | Vector Error Correction Model |
WTO | World Trade Organisation |
Ct | CO2 emissions per capita, |
Et | Energy consumption per capita |
Gt (Gt2) | Real GDP (squared) per capita |
Pt | Population density |
Xt | Export per capita |
μt | Error term |
References
- World_bank. World Development Indicators. World Bank. 2020. Available online: http://data.worldbank.org/country/china (accessed on 10 January 2020).
- KNOEMA. World Data Atlas. 2020. Available online: https://knoema.com/atlas (accessed on 31 January 2020).
- Conserve_Energy_Future. Overpopulation: Causes, Effects and Solutions. Conserve Energy Future. 2018. Available online: https://www.conserve-energy-future.com/causes-effects-solutions-of-overpopulation.php (accessed on 31 January 2020).
- Michieka, N.M.; Fletcher, J.J.; Burnett, W. An empirical analysis of the role of China’s exports on CO2 emissions. Appl. Energy 2013, 104, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Dinda, S. Environmental Kuznets Curve Hypothesis: A Survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Murad, W.; Noman, A.H.M.; Ozturk, I. Relationships among carbon emissions, economic growth, energy consumption and population growth: Testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia. Ecol. Indic. 2016, 70, 466–479. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Ozturk, I. Investigating the Environmental Kuznets Curve hypothesis in Kenya: A multivariate analysis. Renew. Sustain. Energy Rev. 2020, 117, 109481. [Google Scholar] [CrossRef]
- Rahman, M.M.; Velayutham, E. Renewable and non-renewable energy consumption-economic growth nexus: New evidence from South Asia. Renew. Energy 2020, 147, 399–408. [Google Scholar] [CrossRef]
- Rahman, A.; Murad, S.M.W.; Ahmad, F.; Wang, X. Evaluating the EKC Hypothesis for the BCIM-EC Member Countries under the Belt and Road Initiative. Sustainability 2020, 12, 1478. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Nasir, M.A.; Roubaud, D. Environmental degradation in France: The effects of FDI, financial development, and energy innovations. Energy Econ. 2018, 74, 843–857. [Google Scholar] [CrossRef] [Green Version]
- Zoundi, Z. CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach. Renew. Sustain. Energy Rev. 2017, 72, 1067–1075. [Google Scholar] [CrossRef]
- Lean, H.H.; Smyth, R. CO2 emissions, electricity consumption and output in ASEAN. Appl. Energy 2010, 87, 1858–1864. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Shahbaz, M.; Hye, Q.M.A. The environmental Kuznets curve and the role of coal consumption in India: Cointegration and causality analysis in an open economy. Renew. Sustain. Energy Rev. 2013, 18, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Ertugrul, H.M.; Cetin, M.; Seker, F.; Dogan, E. The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries. Ecol. Indic. 2016, 67, 543–555. [Google Scholar] [CrossRef] [Green Version]
- Kanjilal, K.; Ghosh, S. Environmental Kuznet’s curve for India: Evidence from tests for cointegration with unknown structuralbreaks. Energy Policy 2013, 56, 509–515. [Google Scholar] [CrossRef]
- Sephton, P.; Mann, J. Further evidence of an Environmental Kuznets Curve in Spain. Energy Econ. 2013, 36, 177–181. [Google Scholar] [CrossRef]
- Rahman, M.M. Do population density, economic growth, energy use and exports adversely affect environmental quality in Asian populous countries? Renew. Sustain. Energy Rev. 2017, 77, 506–514. [Google Scholar] [CrossRef]
- Arouri, M.E.H.; Ben Youssef, A.; M’Henni, H.; Rault, C. Energy consumption, economic growth and CO2 emissions in Middle East and North African countries. Energy Policy 2012, 45, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, I.; Acaravci, A. CO2 emissions, energy consumption and economic growth in Turkey. Renew. Sustain. Energy Rev. 2010, 14, 3220–3225. [Google Scholar] [CrossRef]
- Musolesi, A.; Mazzanti, M.; Zoboli, R. A panel data heterogeneous Bayesian estimation of environmental Kuznets curves for CO2 emissions. Appl. Econ. 2010, 42, 2275–2287. [Google Scholar] [CrossRef] [Green Version]
- Pao, H.-T.; Yu, H.-C.; YANG, Y.-H. Modeling the CO2 emissions, energy use, and economic growth in Russia. Energy 2011, 36, 5094–5100. [Google Scholar] [CrossRef]
- He, J.; Richard, P. Environmental Kuznets curve for CO2 in Canada. Ecol. Econ. 2010, 69, 1083–1093. [Google Scholar] [CrossRef] [Green Version]
- Tunç, G.I.; Türüt-Aşık, S.; Akbostancı, E. A decomposition analysis of CO2 emissions from energy use: Turkish case. Energy Policy 2009, 37, 4689–4699. [Google Scholar] [CrossRef]
- Kashem, M.A.; Rahman, M.M. CO2 Emissions and Development Indicators: A Causality Analysis for Bangladesh. Environ. Process. 2019, 6, 433–455. [Google Scholar] [CrossRef]
- Alam, M.J.; Begum, I.A.; Buysse, J.; Rahman, S.; Van Huylenbroeck, G. Dynamic modeling of causal relationship between energy consumption, CO2 emissions and economic growth in India. Renew. Sustain. Energy Rev. 2011, 15, 3243–3251. [Google Scholar] [CrossRef]
- Appiah, M.O. Investigating the multivariate Granger causality between energy consumption, economic growth and CO2 emissions in Ghana. Energy Policy 2018, 112, 198–208. [Google Scholar] [CrossRef]
- Alam, M.J.; Begum, I.A.; Buysse, J.; Van Huylenbroeck, G. Energy consumption, carbon emissions and economic growth nexus in Bangladesh: Cointegration and dynamic causality analysis. Energy Policy 2012, 45, 217–225. [Google Scholar] [CrossRef]
- Koengkan, M.; Losekann, L.D.; Fuinhas, J.A. The relationship between economic growth, consumption of energy, and environmental degradation: Renewed evidence from Andean community nations. Environ. Syst. Decis. 2018, 39, 95–107. [Google Scholar] [CrossRef]
- Koengkan, M.; Fuinhas, J.A.; Santiago, R. The relationship between CO2 emissions, renewable and non-renewable energy consumption, economic growth, and urbanisation in the Southern Common Market. J. Environ. Econ. Policy 2020, 9, 1–19. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kashem, M.A. Carbon emissions, energy consumption and industrial growth in Bangladesh: Empirical evidence from ARDL cointegration and Granger causality analysis. Energy Policy 2017, 110, 600–608. [Google Scholar] [CrossRef]
- Khan, M.K.; Rehan, M. The relationship between energy consumption, economic growth and carbon dioxide emissions in Pakistan. Financ. Innov. 2020, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Uddin, G.S.; Bidisha, S.H.; Ozturk, I. Carbon emissions, energy consumption, and economic growth relationship in Sri Lanka. Energy Sources Part B Econ. Plan. Policy 2016, 11, 282–287. [Google Scholar] [CrossRef]
- Kasman, A.; Duman, Y.S. CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis. Econ. Model. 2015, 44, 97–103. [Google Scholar] [CrossRef]
- Shahbaz, M.; Hye, Q.M.A.; Tiwari, A.K.; Leitão, N.C. Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia. Renew. Sustain. Energy Rev. 2013, 25, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Hossain, S. An Econometric Analysis for CO2 Emissions, Energy Consumption, Economic Growth, Foreign Trade and Urbanization of Japan. Low Carbon Econ. 2012, 3, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Adedoyin, F.F.; Zakari, A. Energy consumption, economic expansion, and CO2 emission in the UK: The role of economic policy uncertainty. Sci. Total Environ. 2020, 738, 140014. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Shahbaz, M.; Roubaud, D.; Farhani, S. How economic growth, renewable electricity and natural resources contribute to CO2 emissions? Energy Policy 2018, 113, 356–367. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.; Bhattacharya, M.; Shaikh, Z.; Ramzan, M.; Ozturk, I. Emission intensive growth and trade in the era of the Association of Southeast Asian Nations (ASEAN) integration: An empirical investigation from ASEAN-8. J. Clean. Prod. 2017, 154, 530–540. [Google Scholar] [CrossRef]
- Begum, R.A.; Sohag, K.; Abdullah, S.M.S.; Jaafar, M. CO2 emissions, energy consumption, economic and population growth in Malaysia. Renew. Sustain. Energy Rev. 2015, 41, 594–601. [Google Scholar] [CrossRef]
- Tang, C.F.; Tan, B.W. The impact of energy consumption, income and foreign direct investment on carbon dioxide emissions in Vietnam. Energy 2015, 79, 447–454. [Google Scholar] [CrossRef]
- Ben Mbarek, M.; Saidi, K.; Rahman, M.M. Renewable and non-renewable energy consumption, environmental degradation and economic growth in Tunisia. Qual. Quant. 2018, 52, 1105–1119. [Google Scholar] [CrossRef]
- Soytas, U.; Sari, R.; Ewing, B.T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 2007, 62, 482–489. [Google Scholar] [CrossRef]
- Engelman, R. Profiles in Carbon: An Update on Population, Consumption, and Carbon Dioxide Emissions; Population Action International: Washington, DC, USA, 1998. [Google Scholar]
- O’Neill, B.C.; Mackellar, F.L.; Lutz, W.; Macdonald, G. Population and Climate Change; Cambridge University Press (CUP): Cambridge, UK, 2000. [Google Scholar]
- Mamun, A.; Sohag, K.; Mia, A.H.; Uddin, G.S.; Ozturk, I. Regional differences in the dynamic linkage between CO2 emissions, sectoral output and economic growth. Renew. Sustain. Energy Rev. 2014, 38, 1–11. [Google Scholar] [CrossRef]
- Ohlan, R.P. The impact of population density, energy consumption, economic growth and trade openness on CO2 emissions in India. Nat. Hazards 2015, 79, 1409–1428. [Google Scholar] [CrossRef]
- Chen, J.; Wang, B.; Huang, S.; Song, M. The influence of increased population density in China on air pollution. Sci. Total Environ. 2020, 735, 139456. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Saidi, K.; Ben Mbarek, M. Economic growth in South Asia: The role of CO2 emissions, population density and trade openness. Heliyon 2020, 6, e03903. [Google Scholar] [CrossRef]
- Shi, A. Population growth and global carbon dioxide emissions. In Proceedings of the IUSSP Conference in Brazil/session-s09, Bahia, Brazil, 18–24 August 2001. [Google Scholar]
- Rahman, M.M.; Vu, X.-B. The nexus between renewable energy, economic growth, trade, urbanisation and environmental quality: A comparative study for Australia and Canada. Renew. Energy 2020, 155, 617–627. [Google Scholar] [CrossRef]
- Schmalensee, R.; Stoker, T.M.; Judson, R.A. World carbon dioxide emissions: 1950–2050. Rev. Econ. Stat. 1998, 80, 15–27. [Google Scholar] [CrossRef]
- Jebli, M.B.; Youssef, S.B.; Apergis, N. The dynamic linkage between renewable energy, tourism, CO 2 emissions, economic growth, foreign direct investment, and trade. Lat. Am. Econ. Rev. 2019, 28, 2. [Google Scholar] [CrossRef] [Green Version]
- Gasimli, O.; Haq, I.U.; Gamage, S.K.N.; Shihadeh, F.; Rajapakshe, P.S.K.; Shafiq, M. Energy, Trade, Urbanization and Environmental Degradation Nexus in Sri Lanka: Bounds Testing Approach. Energies 2019, 12, 1655. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, H.; Maalel, N.; Zarrad, O. Trade Openness and CO2 Emissions: Evidence from Tunisia. Sustainability 2019, 11, 3295. [Google Scholar] [CrossRef] [Green Version]
- Murad, M.W.; Mazumder, M.N.H. Trade and environment: Review of relationship and implication of environmental Kuznets curve hypothesis for Malaysia. J. Soc. Sci. 2009, 19, 83–90. [Google Scholar] [CrossRef]
- Halicioglu, F. An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy 2009, 37, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.; Ali, M.; Jinyu, L.; Shahbaz, M.; Siqun, Y. Consumption-based carbon emissions and trade nexus: Evidence from nine oil exporting countries. Energy Econ. 2020, 89, 104806. [Google Scholar] [CrossRef]
- Muhammad, S.; Long, X.; Salman, M.; Dauda, L. Effect of urbanization and international trade on CO2 emissions across 65 belt and road initiative countries. Energy 2020, 196, 117102. [Google Scholar] [CrossRef]
- Haq, I.U.; Zhu, S.; Shafiq, M. Empirical investigation of environmental Kuznets curve for carbon emission in Morocco. Ecol. Indic. 2016, 67, 491–496. [Google Scholar] [CrossRef]
- Shahbaz, M.; Lean, H.H.; Shabbir, M.S. Environmental Kuznets Curve hypothesis in Pakistan: Cointegration and Granger causality. Renew. Sustain. Energy Rev. 2012, 16, 2947–2953. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Saidi, K.; Mbarek, M.B. The effects of population growth, environmental quality and trade openness on economic growth: A panel data application. J. Econ. Stud. 2017, 44, 456–474. [Google Scholar] [CrossRef]
- Haug, A.A.; Ucal, M. The role of trade and FDI for CO2 emissions in Turkey: Nonlinear relationships. Energy Econ. 2019, 81, 297–307. [Google Scholar] [CrossRef]
- Hasanov, F.J.; Liddle, B.; Mikayilov, J.I. The impact of international trade on CO2 emissions in oil exporting countries: Territory vs consumption emissions accounting. Energy Econ. 2018, 74, 343–350. [Google Scholar] [CrossRef]
- Jalil, A.; Feridun, M. The impact of growth, energy and financial development on the environment in China: A cointegration analysis. Energy Econ. 2011, 33, 284–291. [Google Scholar] [CrossRef]
- Kuznets, S. Economic Growth and Income Inequality. Am. Econ. Rev. 1955, 45, 1–28. [Google Scholar]
- Saidi, K.; Hammami, S. The effect of energy consumption and economic growth on CO2 emissions: Evidence from 58 countries. Bull. Energy Econ. Bee 2015, 3, 91–104. [Google Scholar]
- Benjamin, D. Is free trade good for the environment? Perc. Rep. 2002, 20. Available online: https://www.perc.org/2002/03/01/is-free-trade-good-for-the-environment/ (accessed on 20 June 2020).
- OECD. Trade and Environment. Organisation for Economic Co-operation and Development. 2018. Available online: https://www.oecd.org/trade/topics/trade-and-the-environment/ (accessed on 20 June 2020).
- Antweiler, W.; Copeland, B.R.; Taylor, M.S. Is Free Trade Good for the Environment? Am. Econ. Rev. 2001, 91, 877–908. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Li, R.; Crittenden, J.C.; Chen, Y. CO2 emissions embodied in China’s exports from 2002 to 2008: A structural decomposition analysis. Energy Policy 2011, 39, 7381–7388. [Google Scholar] [CrossRef]
- WTO. China and the WTO. World Trade Organization. 2019. Available online: https://www.wto.org/english/thewto_e/countries_e/china_e.htm (accessed on 20 June 2020).
- UN. Kyoto Protocol: China’s Ratification status. United Nations Climate Change. 2019. Available online: https://unfccc.int/node/180417 (accessed on 20 June 2020).
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Elliott, G.; Rothenberg, T.J.; Stock, J.H. Efficient Tests for an Autoregressive Unit Root. Econometrica 1996, 64, 813. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, M.H.; Shin, Y.; Smithc, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econ. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Pesaran, B. Working with Microfit 4.0: Interactive Econometric Analysis; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Shabbir, A.H.; Zhang, J.; Liu, X.; Lutz, J.A.; Valencia, C.; Johnston, J.D. Determining the sensitivity of grassland area burned to climate variation in Xilingol, China, with an autoregressive distributed lag approach. Int. J. Wildland Fire 2019, 28, 628. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y. An autoregressive distributed-lag modelling approach to cointegration analysis. Econom. Soc. Monogr. 1998, 31, 371–413. [Google Scholar]
- Brown, S.P.; McDonough, I.K. Using the Environmental Kuznets Curve to evaluate energy policy: Some practical considerations. Energy Policy 2016, 98, 453–458. [Google Scholar] [CrossRef]
- Johansen, S. Statistical analysis of cointegration vectors. J. Econ. Dyn. Control 1988, 12, 231–254. [Google Scholar] [CrossRef]
- Johansen, S. Estimation and hypothesis testing of cointegration vectors in Gaussian vector. Econometrica 1991, 59, 1551–1580. [Google Scholar] [CrossRef]
- Brown, R.L.; Durbin, J.; Evans, J.M. Techniques for Testing the Constancy of Regression Relationships over Time. J. R. Stat. Soc. Ser. B Stat. Methodol. 1975, 37, 149–163. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 1969, 37, 424. [Google Scholar] [CrossRef]
- WDI. World Development Indicators. 2019. Available online: https://data.worldbank.org/indicator/EG.FEC.RNEW.ZS (accessed on 10 January 2020).
- BP. BP Statistical Review of World Energy. 2019. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf (accessed on 15 January 2020).
- Jalil, A.; Mahmud, S.F. Environment Kuznets curve for CO2 emissions: A cointegration analysis for China. Energy Policy 2009, 37, 5167–5172. [Google Scholar] [CrossRef] [Green Version]
- Ang, J.B. CO2 emissions, energy consumption, and output in France. Energy Policy 2007, 35, 4772–4778. [Google Scholar] [CrossRef]
- Say, N.P.; Yücel, M. Energy consumption and CO2 emissions in Turkey: Empirical analysis and future projection based on an economic growth. Energy Policy 2006, 34, 3870–3876. [Google Scholar] [CrossRef]
- Hamilton, C.; Turton, H. Determinants of emissions growth in OECD countries. Energy Policy 2002, 30, 63–71. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. A review on Environmental Kuznets Curve hypothesis using bibliometric and meta-analysis. Sci. Total Environ. 2019, 649, 128–145. [Google Scholar] [CrossRef]
- Diao, X.; Zeng, S.; Tam, C.; Tam, V.W. EKC analysis for studying economic growth and environmental quality: A case study in China. J. Clean. Prod. 2009, 17, 541–548. [Google Scholar] [CrossRef]
- Riti, J.S.; Song, D.; Shu, Y.; Kamah, M. Decoupling CO2 emission and economic growth in China: Is there consistency in estimation results in analyzing environmental Kuznets curve? J. Clean. Prod. 2017, 166, 1448–1461. [Google Scholar] [CrossRef]
- Tao, S.; Zheng, T.; Lianjun, T. An empirical test of the environmental Kuznets curve in China: A panel cointegration approach. China Econ. Rev. 2008, 19, 381–392. [Google Scholar]
- He, J. China’s industrial SO2 emissions and its economic determinants: EKC’s reduced vs. structural model and the role of international trade. Environ. Dev. Econ. 2009, 14, 227–262. [Google Scholar] [CrossRef]
- Fodha, M.; Zaghdoud, O. Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve. Energy Policy 2010, 38, 1150–1156. [Google Scholar] [CrossRef]
- Kan, J. Environmentally Friendly Consumers Emerge. China Business Review. 2010. Available online: https://www.chinabusinessreview.com/environmentally-friendly-consumers-emerge/ (accessed on 25 January 2020).
- Li, D.; Yang, D. Does Non-Fossil Energy Usage Lower CO2 Emissions? Empirical Evidence from China. Sustainability 2016, 8, 874. [Google Scholar] [CrossRef] [Green Version]
- STATISTA. Teritorial Carbon Dioxide Emissions in China from 2001 to 2017. 2019. Available online: https://www.statista.com/statistics/239093/co2-emissions-in-china/ (accessed on 10 March 2020).
- Climate-Action-Tracker. Climate Action Tracker-Country Summary-China. 2021. Available online: https://climateactiontracker.org/countries/china/ (accessed on 15 March 2021).
- Power, C. How is China Managing Its Greenhouse Gas Emissions. 2020. Available online: https://chinapower.csis.org/china-greenhouse-gas-emissions/ (accessed on 15 March 2021).
- Slater, H.; Shu, W.; Boer, D.D. China Dialogue. China’s National Carbon Market is about to Launch. 2021. Available online: https://chinadialogue.net/en/climate/chinas-national-carbon-market-is-about-to-launch/ (accessed on 15 March 2021).
LnC | LnE | LnG | LnG2 | LnP | LnX | |
---|---|---|---|---|---|---|
Mean | 1.0020 | 6.8528 | 7.0830 | 51.4217 | 4.8100 | 5.0882 |
Median | 0.9581 | 6.7347 | 7.0640 | 49.9030 | 4.8492 | 5.3625 |
Maximum | 1.9177 | 7.7623 | 8.9560 | 80.2115 | 4.9995 | 7.3220 |
Minimum | 0.0413 | 6.1418 | 5.4740 | 29.9653 | 4.4952 | 1.8942 |
Std. Dev. | 0.6067 | 0.5116 | 1.1309 | 16.2120 | 0.1501 | 1.7830 |
Jarque–Bera | 3.1937 | 4.5296 | 3.5246 | 3.6910 | 4.2287 | 3.8862 |
Probability | 0.2025 | 0.1038 | 0.1716 | 0.1579 | 0.1207 | 0.1432 |
Variables | At Level | At 1st Difference |
---|---|---|
T-Statistic | T-Statistic | |
LnC | −2.8614 (1) | −3.5837 (0) ** |
LnE | −1.6222 (1) | −3.8906 (0) *** |
LnG | −1.9098 (2) | −3.2900 (1) ** |
LnG2 | −1.1937 (1) | −3.3910 (1) ** |
LnP | −1.2731 (5) | −3.2052 (3) *** |
LnX | −0.8788 (0) | −5.8145 (0) *** |
Estimate Equation | ||
---|---|---|
F-statistics | 3.9345 ** | |
Significance level | Critical value (T = 48) | |
Lower bounds, I(0) | Upper bounds, I(1) | |
1% | 3.674 | 3.297 |
5% | 2.694 | 3.829 |
10% | 2.276 | 5.019 |
Diagnostic tests | Statistics (p-value) | |
Adjusted-R2 | 0.9756 | |
Normality test | 0.1043 | |
Heteroskedasticity Test: ARCH | 0.1613 | |
Breusch–Godfrey Serial Correlation LM Test | 0.1123 | |
Ramsey RESET | 0.5245 |
Hypothesised no. of Cointegrated Equation(s) | Trace Statistic | p-Value (Trace Test) | Max-Eigen Statistic | p-Value (Max-Eigen Test) |
---|---|---|---|---|
None * | 200.8215 | 0.0000 | 74.8339 | 0.0000 |
At most 1 * | 125.9875 | 0.0000 | 47.8554 | 0.0006 |
At most 2 * | 78.1321 | 0.0000 | 37.8395 | 0.0017 |
At most 3 * | 40.2925 | 0.0022 | 22.2696 | 0.0345 |
At most 4 * | 18.0229 | 0.0204 | 14.2646 | 0.0471 |
At most 5 | 3.5946 | 0.0580 | 3.8414 | 0.0580 |
Dependent Variable = lnCt | Coefficients | T-Statistics |
---|---|---|
Long-run analysis | ||
Constant | −13.8384 *** | −7.2486 |
lnEt | 1.3505 *** | 16.6183 |
lnGt | 2.3237 *** | 5.0201 |
lnGt2 | −0.1460 *** | −6.5597 |
lnPt | −0.5576 | 0.8100 |
lnXt | −0.1556 ** | −3.4227 |
Time trend (t) | −0.0461 *** | −6.8920 |
Dependent variable = ΔlnCt | ||
Short-run analysis | ||
ΔlnEt | 0.3814 *** | 4.8119 |
ΔlnGt | 3.5963 *** | 6.0981 |
ΔlnG2t | −0.1844 *** | −4.1916 |
ΔlnPt | −7.5719 | −2.0609 |
ΔlnXt | −0.0322 | −1.4846 |
D1978 | −0.0236 | −1.6491 |
D2002 | 0.0327 ** | 2.6126 |
ECMt−1 | −0.2777 *** | −7.1518 |
Dependent Variable | Short-Run Causality | Long-Run ECMt−1 | |||||
---|---|---|---|---|---|---|---|
Independent Variable | |||||||
ΔLnC | ΔLnE | ΔLnG | ΔLnG2 | ΔLnP | ΔLnX | ||
ΔLnC | - | −0.4393 (−0.7889) | −5.4846 ** (−2.2121) | 0.4246 ** (2.1049) | 1.4035 (1.0583) | −0.0612 (−0.9395) | −1.0986 ** (−2.4085) |
ΔLnE | 0.8030 ** (2.5502) | - | −3.8249 ** (−2.0688) | 0.2777 (1.8465) | 5.3682 (0.5428) | −0.0256 (−0.5283) | 0.2178 (0.4678) |
ΔLnG | −0.0062 (−0.0225) | −0.1745 (−0.4776) | - | 0.1969 (1.4871) | 1.2993 (1.4927) | −0.0606 (−1.4164) | −1.1900 (−1.7248) |
ΔLnG2 | 0.8923 (0.2548) | −3.3126 (−0.7172) | −2.8484 (−1.3854) | - | 1.4364 (1.3061) | −0.7280 (−1.3461) | 0.5974 1.0656) |
ΔLnP | 0.0094 (1.3991) | −0.0111 (−1.2538) | 0.0143 (0.3625) | −0.0012 (−0.3808) | - | 0.0009 (0.8651) | −0.0101 (−0.8426) |
ΔLnX | 2.8186 ** (2.1597) | −3.4933 (−2.0296) | −2.2707 *** (−2.9634) | 1.7325 *** (2.7788) | 4.9995 (1.2197) | - | −1.0285 *** (−4.2557) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Vu, X.-B. Are Energy Consumption, Population Density and Exports Causing Environmental Damage in China? Autoregressive Distributed Lag and Vector Error Correction Model Approaches. Sustainability 2021, 13, 3749. https://doi.org/10.3390/su13073749
Rahman MM, Vu X-B. Are Energy Consumption, Population Density and Exports Causing Environmental Damage in China? Autoregressive Distributed Lag and Vector Error Correction Model Approaches. Sustainability. 2021; 13(7):3749. https://doi.org/10.3390/su13073749
Chicago/Turabian StyleRahman, Mohammad Mafizur, and Xuan-Binh (Benjamin) Vu. 2021. "Are Energy Consumption, Population Density and Exports Causing Environmental Damage in China? Autoregressive Distributed Lag and Vector Error Correction Model Approaches" Sustainability 13, no. 7: 3749. https://doi.org/10.3390/su13073749
APA StyleRahman, M. M., & Vu, X. -B. (2021). Are Energy Consumption, Population Density and Exports Causing Environmental Damage in China? Autoregressive Distributed Lag and Vector Error Correction Model Approaches. Sustainability, 13(7), 3749. https://doi.org/10.3390/su13073749