The Occurrence of Potentially Pathogenic and Antibiotic Resistant Gram-Negative Bacteria Isolated from the Danube Delta Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Microbiological Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sivanandham, V.; Krishnan, M.; Rathinam, A.J. Antibiotic resistant pathogens versus human impacts. A study from three eco-regions of the Chennai coast, southern India. Mar. Pollut. Bull. 2012, 64, 790–800. [Google Scholar] [CrossRef]
- Palaniappan, M.; Gleik, P.H.; Allen, L.; Cohen, M.J.; Christian-Smith, J.; Smith, C. Cleaning the Waters: A Focus on Water Quality Solutions; UNEP: Nairobi, Kenya, 2010; p. 91. [Google Scholar]
- Jorgensen, S.E.; Fath, B.D.; Bastianoni, S.; Marques, J.; Muller, F.; Nielsen, S.N.; Patten, B.; Tiezzi, E.; Ulanowicz, R. A New Ecology System Perspective, 1st ed.; Elsevier: Oxford, UK, 2007; pp. 1–2. [Google Scholar]
- Cirtina, D. Aspects regarding surface water quality monitoring. Ann. Constantin Brancusi Univ. Targu-Jiu 2011, 1, 101–112. [Google Scholar]
- Nita-Lazar, M.; Galaon, T.; Banciu, A.; Paun, I.; Stoica, C.; Lucaciu, I. Screening of various harmful compounds in a new bacterial biological model. J. Environ. Prot. Ecol. 2016, 17, 237–247. [Google Scholar]
- Velimirov, B.; Milosevik, N.; Kavka, G.; Farnleitner, A.; Kirschner, A. Development of the bacterial compartment along the Danube River: A continuum despite local influences. Microb. Ecol. 2011, 61, 955–957. [Google Scholar] [CrossRef]
- Savichtcheva, O.; Okabe, S. Alternative indicators of fecal pollution: Relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Res. 2006, 40, 2463–2476. [Google Scholar] [CrossRef]
- Prisacari, V. Guide to the Surveillance and Control of Nosocomial Infections; USAID: Washington, DC, USA, 2008; ISBN 978-9975-106-19-1.
- Wellington, E.M.; Boxall, A.B.; Cross, P.; Feil, E.J.; Gaze, W.H.; Hawkey, P.M.; Johnson-Rollings, A.S.; Jones, D.L.; Lee, M.N.; Otten, W.; et al. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Infect. Dis. 2013, 13, 155–165. [Google Scholar] [CrossRef]
- Van Van Hoek, A.H.A.M.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J.M. Aquired antibiotic resistance genes: An overview. Front. Microbiol. 2011, 2, 203. [Google Scholar] [CrossRef] [Green Version]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance a global emerging threat to public health systems. Crit. Rev. Food. Sci. Nutr. 2015, 57, 2857–2876. [Google Scholar] [CrossRef] [PubMed]
- Wang, W. Houseflies as a Potential Vectors for Antibiotic Resistant Bacteria. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 2013. [Google Scholar]
- Mierla, M.; Romanescu, G.; Nichersu, I.; Grigoras, I. Hydrological Risk Map for the Danube Delta—A case study of Floods within the Fluvial Delta. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 98–104. [Google Scholar] [CrossRef]
- Gasparotti, C. The main factors of water pollution in Danube River basin. EuroEconomica 2014, 33, 91–106. [Google Scholar]
- Pall, E.; Niculae, M.; Kiss, T.; Sandru, C.D.; Spinu, M. Human impact on the microbiological water quality of the rivers. J. Med. Microbiol. 2013, 62, 1635–1640. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Ortega, A.; Acuna, V.; Belin, A.; Burek, P.; Cassiani, G.; Chourk-Allah, R.; Doledec, S.; Elosegi, A.; Ferarri, F.; Ginebreda, A.; et al. Managing the effects of multiple stressors on aquatic ecosystems under water scarcity. The Global Aqua project. Sci. Total. Environ. 2015, 503–504, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Stoica, C.; Camejo, J.; Banciu, A.; Nita-Lazar, M.; Paun, I.; Cristofor, S.; Rocha Pacheco, O.; Guevara Lopez, M. Water quality of Danube Delta systems: Ecological status and prediction using machine-learning algoritms. Water. Sci. Technol. 2016, 73, 2413–2421. [Google Scholar] [CrossRef]
- Stoica, C.; Gheorghe, S.; Petre, J.; Lacaciu, I.; Nita-Lazar, M. Tools for assessing Danube Delta systems with macro invertebrates. EEMJ 2014, 13, 2243–2252. [Google Scholar] [CrossRef]
- Florescu, L.; Parpala, L.; Dumitrache, A.; Moldoveanu, M. Spatial and temporal distribution of the zooplankton biomass in Sfantu Gheorghe Branch (the Danube Delta Romania) in relation to environmental factors. Trav. Mus. d’Historie Nturelle Grigore Antipa 2013, 56, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Ajeagah, G.; Cioroi, M.; Praister, M.; Constantin, O.; Palela, M.; Bahrim, G. Bacteriological and environmental characterization of the water quality in the Danube River basin in the Galati area of Romania. Afr. J. Microbiol. Res. 2012, 6, 292–301. [Google Scholar] [CrossRef]
- Stevens, M.; Ashbolt, N.; Cunliffe, D. Microbial Indicators of Water Quality: An NHMRC Dissemination Paper; National Health and Medical Council: Canberra, Australia, 2001; pp. 4–6.
- Matyar, F.; Kaya, A.; Dincer, S. Antibacterial agents and havy metals resistance in Gram negative bacteria isolated from seawater, shrimp and sediment in Iskenderum Bay, Turkey. Sci. Total. Environ. 2008, 407, 279–285. [Google Scholar] [CrossRef]
- Baquero, F.; Martinez, J.L.; Canton, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotech. 2008, 19, 260–265. [Google Scholar] [CrossRef]
- Pitout, J.D.D.; Nordmann, P.; Laupland, K.B.; Poirel, L. Emergence of Enterobacteriaceae producing extended spectrum β-lactamases (ESBLs) in the community. J. Antimicrob. Chemother. 2005, 56, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Antimicrobial Consumption in the EU/EEA. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Antimicrobial-consumption-in-the-EU-Annual-Epidemiological-Report-2019.pdf (accessed on 21 November 2020).
- ISO 19458:2007—Water Quality. Sampling for Microbiological Analysis. Available online: https://www.en-standard.eu/une-en-iso-19458-2007-water-quality-sampling-for-microbiological-analysis-iso-19458-2006/ (accessed on 21 November 2020).
- ISO 9308-2:1990—Water Quality. Detection and Enumeration of Coliform Organisms, Thermotolerant Coliform Organisms and Presumptive Escherichia coli—Part 2: Multiple Tube (Most Probable Number) Method. Available online: https://www.iso.org/standard/16967.html (accessed on 21 November 2020).
- CLSI 2012, M100-S22—Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. Available online: https://www.scienceopen.com/document?vid=cafe92ec-d545-40a5-917d-0e960305bed0 (accessed on 21 November 2020).
- Global Temperature Report for 2019. Available online: http://berkeleyearth.org/2019-temperatures/ (accessed on 26 November 2020).
- Fisher, M.; Graham, J.M.; Graham, L.E. Bacterial abundance and activity across sites within two northern Wisconsin Sphagnum bogs. Microbial. Ecol. 1998, 36, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Langenheder, S.; Jurgens, K. Regulation of bacterial biomass and community structure by metazoan and protozoan predation. Limnol. Oceanogr. 2001, 46, 121–134. [Google Scholar] [CrossRef]
- Kent, A.D.; Jones, S.E.; Yannarell, A.C.; Graham, G.M.; Lanster, G.H.; Krantz, T.K.; Triplett, E.W. Annual patterns in bacterioplankton community variability in humic lake. Microbial. Ecol. 2004, 48, 550–560. [Google Scholar] [CrossRef]
- Crump, B.C.; Kling, G.W.; Bahr, M.; Hobbie, J.E. Bacterioplankton community shifts in an Arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol. 2003, 69, 2253–2268. [Google Scholar] [CrossRef] [Green Version]
- Banciu, A.; Niculescu, D.; Nita-Lazar, M.; Lucaciu, I.; Stoica, C.; Mihaescu, G. Potentialy pathogenic and antibiotic resistant bacteria in the Danube Delta aquatic ecosystem. J. Environ. Prot. Ecol. 2016, 17, 127–135. [Google Scholar]
- Lazar, M.N.; Gheorghe, S.; Anghelache, A.; Banciu, A.; Stoica, C.; Lucaciu, I. Modulation of the bacteria defense mechanisms by various chemical structures. Rev. Chim. 2016, 67, 1454–1457. [Google Scholar]
- Ouattara, N.K.; Passerat, J.; Servais, P. Fecal contamination of water and sediment in the rivers of the Scheldt drainage network. Environ. Monit. Assess. 2011, 183, 243–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibecwe, A.M.; Leddy, M.B.; Bold, R.M.; Graves, A.K. Bacterial community composition in low-flowing river water with different sources of pollutants. FEMS Microbiol. Ecol. 2012, 79, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Lenart-Boroń, A.; Wolanin, A.; Jelonkiewicz, E.; Żelazny, M. The effect of anthropogenic pressure shown by microbiological and chemical water quality indicators on the main rivers of Podhale, southern Poland. Environ. Sci. Pollut. Res. 2017, 24, 12938–12948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catrangiu, A.; Niculescu, D.; Lucaciu, I.; Chifiriuc, C.; Mihaescu, G. Virulence factors of Gram negative bacteria isolated from natural aquatic ecosystems. J. Environ. Prot. Ecol. 2015, 16, 33–39. [Google Scholar]
- Bradley, W.C.; Owen, T.L. Multiple carbon substrate utilization by bacteria at the sediment–water interface: Seasonal patterns in a stratified eutrophic reservoir. Hydrobiologia 2007, 586, 43–56. [Google Scholar] [CrossRef]
- Stoica, C.; Stanescu, E.; Paun, I.; Banciu, A.; Gheorghe, S.; Lucaciu, I.; Vasile, G.; Nita-Lazar, M. Danube Delta: Monitoring and ecological status. A link betweeknd the past and the future. RJEEC 2019, 1, 72–81. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banciu, A.R.; Ionica, D.L.; Vaideanu, M.A.; Radulescu, D.M.; Nita-Lazar, M.; Covaliu, C.I. The Occurrence of Potentially Pathogenic and Antibiotic Resistant Gram-Negative Bacteria Isolated from the Danube Delta Ecosystem. Sustainability 2021, 13, 3955. https://doi.org/10.3390/su13073955
Banciu AR, Ionica DL, Vaideanu MA, Radulescu DM, Nita-Lazar M, Covaliu CI. The Occurrence of Potentially Pathogenic and Antibiotic Resistant Gram-Negative Bacteria Isolated from the Danube Delta Ecosystem. Sustainability. 2021; 13(7):3955. https://doi.org/10.3390/su13073955
Chicago/Turabian StyleBanciu, Alina R., Daniela L. Ionica, Monica A. Vaideanu, Dragos M. Radulescu, Mihai Nita-Lazar, and Cristina I. Covaliu. 2021. "The Occurrence of Potentially Pathogenic and Antibiotic Resistant Gram-Negative Bacteria Isolated from the Danube Delta Ecosystem" Sustainability 13, no. 7: 3955. https://doi.org/10.3390/su13073955
APA StyleBanciu, A. R., Ionica, D. L., Vaideanu, M. A., Radulescu, D. M., Nita-Lazar, M., & Covaliu, C. I. (2021). The Occurrence of Potentially Pathogenic and Antibiotic Resistant Gram-Negative Bacteria Isolated from the Danube Delta Ecosystem. Sustainability, 13(7), 3955. https://doi.org/10.3390/su13073955