Family Farming Plays an Essential Role in Preserving Soil Functionality: A Study on Active Managed and Abandoned Traditional Tree Crop-Based Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Sites
- Vitis vinifera L.: vineyards placed on hills of Bolsena lake (northern Latium);
- Corylus avellana: hazelnut orchards, located in the agricultural district of Cimini hills (northern Latium);
- Citrus x sinensis: Citrus groves in the coastal plain of Terracina and Fondi (southern Latium).
- Abandoned crops (A): natural recolonization of former agro-systems. The status of abandonment was attributed to “agricultural land on which it has not been exercised agricultural activity for at least ten years” (Italian Decree-Law 20 June2017, n. 91, art.3);
- Extensive cultivation (E): mixed cropping systems (mainly consociation with trees belonging to different species and/or genotypes), small surface, low planting density, low level of external inputs and mechanization, low yield;
- Intensive cultivation (I): large surface, monocultural systems, high density planting, high level of external inputs, mechanization, high yield.
2.2. Soil Sampling Design and Analyses
2.3. Data Analysis
3. Results
3.1. Soil Chemical and Biological Properties
3.2. Soil Enzymes
3.3. Multivariate Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robinson, D.A.; Lebron, I.; Vereecken, H. On the definition of the natural capital of soils: A framework for description, evaluation, and monitoring. Soil Sci. Soc. Am. J. 2009, 73, 1904–1911. [Google Scholar] [CrossRef]
- Robinson, D.A.; Fraser, I.; Dominati, E.J.; Davíðsdótti, B.; Jónsson, J.O.G.; Jones, L.; Jones, S.B.; Tuller, M.; Lebron, I.; Bristow, K.L.; et al. On the value of soil resources in the context of natural capital and ecosystem service delivery. Soil Sci. Soc. Am. J. 2014, 78, 685–700. [Google Scholar] [CrossRef] [Green Version]
- Dominati, E.; Patterson, M.; Mackay, A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econom. 2010, 69, 1858–1868. [Google Scholar] [CrossRef]
- Francaviglia, R.; Ledda, L.; Farina, R. Organic carbon and ecosystem services in agricultural soils of the Mediterranean Basin. In Sustainable Agriculture Reviews; Gaba, S., Smith, B., Lichtfouse, E., Eds.; Springer: Cham, Switzerland, 2008; Volume 28, pp. 183–210. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, R.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/srccl/ (accessed on 30 January 2021).
- Struik, P.C.; Kuyper, T.W.; Brussaard, L.; Leeuwis, C. Deconstructing and unpacking scientific controversies in intensification and sustainability: Why the tensions in concepts and values? Curr. Opin. Environ. Sustain. 2014, 8, 80–88. [Google Scholar] [CrossRef]
- Noordwijk, M.; Brussaard, L. Minimizing the ecological footprint of food: Closing yield and efficiency gaps simultaneously? Curr. Opin. Environ. Sustain. 2014, 8, 62–70. [Google Scholar] [CrossRef]
- Hassan, R.; Scholes, R.; Ash, N. Ecosystems and Human Well-Being: Current State and Trends; Island Press: Washington, DC, USA, 2005; Volume 1, ISBN 1-55963-227-5. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- FAO. “Climate-Smart” AgriculturePolicies, Practices and Financing for Food Security, Adaptation and Mitigation; Food and Agriculture Organization: Rome, Italy, 2010; Available online: http://www.fao.org/3/i1881e/i1881e00.pdf (accessed on 30 January 2021).
- Altieri, M.A.; Nicholls, C.I.; Montalba, R. Technological approaches to sustainable agriculture at a crossroads: An agroecological perspective. Sustainability 2017, 9, 349. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.H.; Lovell, S.T. Agroforestry—The next step in sustainable and resilient agriculture. Sustainability 2016, 8, 574. [Google Scholar] [CrossRef] [Green Version]
- Altieri, M.; Nicholls, C. Biodiversity and Pest Management in Agroecosystems; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Biasi, R.; Botti, F.; Cullotta, S.; Barbera, G. The role of Mediterranean fruit tree orchards and vineyards in maintaining the Traditional Agricultural Landscape. Acta Hortic. 2012, 940, 79–88. [Google Scholar] [CrossRef]
- Biasi, R.; Brunori, E. The on-farm conservation of grapevine (Vitis vinifera L.) landraces assures the habitat diversity in the viticultural agro-ecosystem. Vitis 2015, 54, 265–269. [Google Scholar] [CrossRef]
- Brunori, E.; Cirigliano, P.; Biasi, R. Sustainable use of genetic resources: The characterization of an Italian local grapevine variety (Grechetto rosso) and its own landscape. Vitis 2015, 54, 261–264. [Google Scholar] [CrossRef]
- Dabkienė, V.; Baležentis, T.; Štreimikienė, D. Calculation of the carbon footprint for family farms using the Farm Accountancy Data Network: A case from Lithuania. J. Clean. Prod. 2020, 262, 121509. [Google Scholar] [CrossRef]
- Biasi, R.; Brunori, E.; Smiraglia, D.; Salvati, L. Linking traditional tree-crop landscapes and agro-biodiversity in central Italy using a database of typical and traditional products: A multiple risk assessment through a data mining analysis. Biodivers. Conserv. 2015, 24, 3009–3031. [Google Scholar] [CrossRef]
- Biasi, R.; Barbera, G.; Marino, E.; Brunori, E.; Nieddu, G. Viticulture as crucial cropping system for counteracting the desertification of coastal land. Acta Hortic. 2012, 931, 71–77. [Google Scholar] [CrossRef]
- Brunori, E.; Salvati, L.; Antongiovanni, A.; Biasi, R. Worrying about ‘vertical landscapes’: Terraced olive groves and ecosystem services in marginal land in central Italy. Sustainability 2018, 10, 1164. [Google Scholar] [CrossRef] [Green Version]
- Biasi, R.; Brunori, E.; Ferrara, C.; Salvati, L. Towards sustainable rural landscapes? A multivariate analysis of the structure of traditional tree cropping systems along a human pressure gradient in Mediterranean region. Agrofor. Syst. 2017, 91, 1199–1217. [Google Scholar] [CrossRef]
- Biasi, R.; Brunori, E.; Serra, P.; Perini, L.; Salvati, L. Towards resilient agro-forest systems in Mediterranean cities. Acta Hortic. 2017, 1189, 125–130. [Google Scholar] [CrossRef]
- Brunori, E.; Maesano, M.; Moresi, F.V.; Matteucci, G.; Biasi, R.; Scarascia Mugnozza, G. The hidden land conservation benefits of olive-based (Olea europaea L.) landscapes: An agroforestry investigation in the southern Mediterranean (Calabria region, Italy). Land Degrad. Dev. 2020, 31, 801–815. [Google Scholar] [CrossRef]
- Moresi, F.V.; Maesano, M.; Collalti, A.; Sidle, R.C.; Matteucci, G.; Scarascia Mugnozza, G. Mapping Landslide Prediction through a GIS-Based Model: A Case Study in a Catchment in Southern Italy. Geosciences 2020, 10, 309. [Google Scholar] [CrossRef]
- Bertolozzi-Caredio, D.; Bardaji, I.; Coopmans, I.; Soriano, B.; Garrido, A. Key steps and dynamics of family farm succession in marginal extensivelivestock farming. J. Rural Stud. 2020, 76, 131–141. [Google Scholar] [CrossRef]
- Quendler, E.; Ikerd, J.; Driouech, N. Family farming between its past and potential future with the focus on multifunctionality and sustainability. CAB Rev. 2020, 15, 1–18. [Google Scholar] [CrossRef]
- Doran, J.W.; Safley, M. Defining and assessing soil health and sustainable productivity. In Biological Indicators of Soil Health; Pankhurst, C.E., Doube, B.M., Gupta, V.V.S.R., Eds.; CAB International: Wallingford, UK, 1997; pp. 1–28. [Google Scholar]
- Larson, W.E.; Pierce, F.J. Conservation and enhancement of soil quality. In Evaluation for Sustainable Land Management in the Developing World, Vol. 2: Technical Papers; IBSRAM Proceedings No. 12(2); International Board for Research and Management: Bangkok, Thailand, 1991; pp. 175–203. [Google Scholar]
- Larson, W.E.; Pierce, F.J. The dynamics of soil quality as a measure of sustainable management. Defin. Soil Qual. Sustain. Environ. 1994, 35, 37–51. [Google Scholar]
- Bertiller, M.B.; Marone, L.; Baldi, R.; Ares, J.O. Biological interactions at different spatial scales in the Monte desert of Argentina. J. Arid Environ. 2009, 73, 212–221. [Google Scholar] [CrossRef]
- Marinari, S.; Masciandaro, G.; Ceccanti, B.; Grego, S. Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresour. Technol. 2000, 72, 9–17. [Google Scholar] [CrossRef]
- García-Orenes, F.; Morugán-Coronado, A.; Zornoza, R.; Scow, K. Changes in soil microbial community structure influenced by agricultural management practices in a Mediterranean agro-ecosystem. PLoS ONE 2013, 8, e80522. [Google Scholar] [CrossRef] [PubMed]
- Sparkling, G.P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Soil Res. 1992, 30, 195–207. [Google Scholar] [CrossRef]
- Emmerling, C.; Udelhoven, T.; Schröder, D. Response of soil microbial biomass and activity to agricultural de-intensification over a 10 year period. Soil Biol. Biochem. 2001, 33, 2105–2114. [Google Scholar] [CrossRef]
- Dick, R.P.; Breakwell, D.P.; Turco, R.F. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. Methods Assess. Soil Qual. 1997, 49, 247–271. [Google Scholar] [CrossRef]
- Utobo, E.B.; Tewari, L. Soil enzymes as bioindicators of soil ecosystem status. Appl. Ecol. Environ. Res. 2015, 13, 147–169. [Google Scholar] [CrossRef]
- Gispert, M.; Emran, M.; Pardini, G.; Doni, S.; Ceccanti, B. The impact of land management and abandonment on soil enzymatic activity, glomalin content and aggregate stability. Geoderma 2013, 202, 51–61. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Aparna, K.; Dotaniya, C.K.; Singh, M.; Regar, K.L. Role of soil enzymes in sustainable crop production. In Enzymes in Food Biotechnology; Academic Press: Cambridge, MA, USA, 2019; pp. 569–589. [Google Scholar]
- Nannipieri, P. Role of stabilised enzymes in microbial ecology and enzyme extraction from soil with potential applications in soil proteomics. In Nucleic Acids and Proteins in Soil; Springer: Berlin/Heidelberg, Germany, 2006; pp. 75–94. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen–Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Blasi, C.; Capotorti, G.; Copiz, R.; Guida, D.; Mollo, B.; Smiraglia, D.; Zavattero, L. Classification and mapping of the ecoregions of Italy. Plant Biosyst. 2004, 148, 1255–1345. [Google Scholar] [CrossRef]
- Napoli, R.; Paolanti, M.; Di Ferdinando, S. (Eds.) Atlante dei Suoli del Lazio; ARSIAL: Regione Lazio, Italy, 2019; ISBN 978-88-904841-2-4. [Google Scholar]
- De Santis, D.; Frangipane, M.T.; Brunori, E.; Cirigliano, P.; Biasi, R. Biochemical markers for enological potentiality in a grapevine aromatic variety under different soil types. J. Enol. Vitic. 2017, 68, 100–111. [Google Scholar] [CrossRef]
- Rugini, E.; Cristofori, V. Hazelnut cultivation in Viterbo province: Technological and agronomic innovations preserving products’ typicality. Corylus Co 2010, 2011, 9–20. [Google Scholar]
- Biasi, R.; Botti, F. Hazelnut landscape transformation in the northern Latium: The study case of the Monti Cimini. Corylus Co 2010, 2011, 39–48. [Google Scholar]
- Silvestri, C.; Bacchetta, L.; Bellincontro, A.; Cristofori, V. Advances in cultivar choice, hazelnut orchard management and nuts storage for enhancing product quality and safety: An overview. J. Sci. Food Agric. 2021, 101, 27–43. [Google Scholar] [CrossRef]
- Brunori, E.; Farina, R.; Biasi, R. Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem. Agric. Ecosyst. Environ. 2016, 223, 10–21. [Google Scholar] [CrossRef]
- Fornasier, F.; Margon, A. Bovine serum albumin and Triton X-100 greatly increase phosphomonoesterases and arylsulphatase extraction yield from soil. Soil Biol. Biochem. 2007, 39, 2682–2684. [Google Scholar] [CrossRef]
- Van Veldhoven, P.P.; Mannaerts, G.P. Inorganic and organic phosphate measurements in the nanomolar range. Anal. Biochem. 1987, 161, 45–48. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Cardoso, E.J.B.N.; Vasconcellos, R.L.F.; Bini, D.; Miyauchi, M.Y.H.; Santos, C.A.D.; Alves, P.R.L.; Nogueira, M.A. Soil health: Looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci. Agric. 2013, 70, 274–289. [Google Scholar] [CrossRef] [Green Version]
- COM. 640 Final. Il Green Deal Europeo. 2019. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_it (accessed on 30 January 2021).
- COM. 788 Final. European Climate Pact. 2020. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2020:0788:FIN:IT:PDF (accessed on 30 January 2021).
- Agnoletti, M. Italian Historical Rural Landscapes: Cultural Values for the Environment and Rural Development; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Barbera, G.; Biasi, R.; Marino, D. I Paesaggi Agrari Tradizionali: Un Percorso Per la Conoscenza; Franco Angeli—CURSA—Studi, Piani, Progetti: Milano, Italy, 2014; p. 172. ISBN 889170538. [Google Scholar]
- Barbera, G.; Cullotta, S. The Traditional Mediterranean Polycultural Landscape as Cultural Heritage: Its Origin and Historical Importance, Its Agro-Silvo-Pastoral Complexity and the Necessity for Its identification and Inventory. In Biocultural Diversity in Europe; Switzerland Environmental History 5; Agnoletti, M., Emanueli, F., Eds.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Mann, C.; Garcia-Martin, M.; Raymond, C.M.; Shaw, B.J.; Plieninger, T. The potential for integrated landscape management to fulfil Europe’s commitments to the Sustainable Development Goals. Landsc. Urban Plan. 2018, 177, 75–82. [Google Scholar] [CrossRef]
- Marino, D. I Paesaggi Agrari Tradizionali del Lazio. Una Lettura Delle Trasformazioni a Scala Regionale; Franco Angeli: Milano, Italy, 2020; ISBN 9788835114253. [Google Scholar]
- Brunori, E.; Salvati, L.; Mancinelli, R.; Smiraglia, D.; Biasi, R. Multi-temporal land use and cover changing analysis: The environmental impact in Mediterranean area. Int. J. Sustain. Dev. World 2017, 24, 276–288. [Google Scholar] [CrossRef]
- Munafò, M. Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici; Report SNPA 15/20; Edizione: Treviso, Italy, 2020; ISBN 9788844810139. [Google Scholar]
- National Strategy for Inner Areas (NSIA). Available online: https://enrd.ec.europa.eu/sites/enrd/files/tg_smart-villages_case-study_it.pdf (accessed on 30 January 2021).
- Salvati, L.; Zitti, M. Assessing the impact of ecological and economic factors on land degradation vulnerability through multiway analysis. Ecol. Indic. 2009, 9, 357–363. [Google Scholar] [CrossRef]
- Salvati, L.; Ferrara, C. The local-scale impact of soil salinization on the socioeconomic context: An exploratory analysis in Italy. Catena 2015, 127, 312–322. [Google Scholar] [CrossRef]
- OIV 2010. RESOLUTION OIV/VITI 333/2010. Available online: https://www.oiv.int/public/medias/379/viti-2010-1-en.pdf (accessed on 30 January 2021).
- Francaviglia, R.; Di Bene, C.; Farina, R.; Salvati, L.; Vicente-Vicente, J.L. Assessing “4 per 1000” soil organic carbon storage rates under Mediterranean climate: A comprehensive data analysis. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 795–818. [Google Scholar] [CrossRef]
- Anderson, T.H. Microbial eco-physiological indicators to assess soil quality. Agric. Ecosyst. Environ. 2003, 98, 285–293. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.; Zhao, J.; Xiao, K.; Wang, K. Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: A meta-analysis. Agric. Ecosyst. Environ 2018, 252, 126–131. [Google Scholar] [CrossRef]
- Farina, R.; Testani, E.; Campanelli, G.; Leteo, F.; Napoli, R.; Canali, S.; Tittarelli, F. Potential carbon sequestration in a Mediterranean organic vegetable cropping system. A model approach for evaluating the effects of compost and Agro-ecological Service Crops (ASCs). Agric. Syst. 2018, 162, 239–248. [Google Scholar] [CrossRef]
- García-Orenes, F.; Guerrero, C.; Roldán, A.; Mataix-Solera, J.; Cerdà, A.; Campoy, M.; Caravaca, F. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil Tillage Res. 2010, 106, 117–123. [Google Scholar] [CrossRef]
- Valarini, P.J.; Alvarez, D.; Gasco, J.M.; Guerrero, F.; Tokeshi, H. Assessment of soil properties by organic matter and EM-microorganism incorporation. Rev. Bras. Cienc. Solo 2003, 27, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Chmolowska, D.; Hamda, N.; Laskowski, R. Cellulose decomposed faster in fallow soil than in meadow soil due to a shorter lag time. J. Soils Sediments 2017, 17, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Sarah, P. Enzyme activities along a climatic transect in the Judean Desert. Catena 2003, 53, 349–363. [Google Scholar] [CrossRef]
TALs | TCs | Coordinate | Farming Systems | Constitutive Traits | Soil and Crops Management Practices |
---|---|---|---|---|---|
CIMINI HILLS | Corylus avellana | 42°18′23″ N 12°12′12″ E | A | Planted in early 1970, and completely abandoned since 1993. Surface of 0.49 ha. Local landrace associated to shrubs, herbs, and weeds that colonize the space between trees and rows. Hazelnut trees, previously grown as multi stemmed bushes, are now as big shrubs. | Spontaneous and permanent grassing. No soil tillage management. No herbicide treatments. No mechanical weed control. |
42°21′10″ N 12°10′26″ E | E | Planted in early 1970. Surface of 0.60 ha. The orchard is grown as multi stemmed bushes with planting distances 7 m × 5 m (between and within the row, respectively). The bushes are periodically renewed by pruning old and bad oriented stems in the bushes. | Spontaneous and temporary grassing. No soil tillage management. Herbicide treatments and mechanical weed control (three times per year). | ||
42°21′09″ N 12°09′53″ E | I | Planted in early 2001. Surface of 1.90 ha. The orchard is grown as multi stemmed bushes and with planting distances 5 m × 4 m (between and within the row, respectively) | Spontaneous and temporary grassing. No soil tillage management. Herbicide treatments and mechanical weed control (three times per year). | ||
COASTAL PLAIN OF TERRACINA-FONDI | Citrus x sinensis | 41°22′25.96″ N 13°23′44.47″ E | A | Planted in early 1960, and abandoned since 2007. Surface of 0.55 ha. Local landrace associated to shrubs, herbs, and weeds that colonized the space between trees and rows. Consociated with apple, medlar, fig, mulberry, pomegranate, and cherry trees. | Spontaneous and permanent grassing. No soil tillage management. No herbicide treatments. No mechanical weed control. |
41°21′48.26″ N 13°23′47.82″ E | E | Planted in 1987. Surface of 0.33 ha. Orchard characterized by local landraces consociated with grape, pomegranate, medlar and prickly pea, and annual crops. | Spontaneous and temporary grassing. No soil tillage. No herbicide treatments. Mechanical weed control (Twice per year) | ||
41°20′55.62″ N 13°21′26.92″ E | I | Intensive orchards planted in 1997. Surface of 0.42 ha, high tree density (>250 plants per hectare), international Citrus varieties. | Spontaneous and temporary grassing. Shallow tillage. No herbicide treatments. Mechanical weed control (Twice per year) | ||
BOLSENA LAKE HILLS | Vitis vinifera L. | 42°38′17.6″ N 11°51′59.2″ E | A | Planted in early 1970 and abandoned in 2008. Surface of 0.25 ha. Local landrace associated to shrubs, herbs, and weeds that colonized the space between trees and rows. Consociated with olive, chestnut, Figure trees | Spontaneous and permanent grassing. No soil tillage management. No herbicide treatments. No mechanical weed control. |
42°38′32.13″ N 11°53′7.38″ E | E | Planted in 1970. Surface of 0.33 ha. Orchard characterized by local landraces consociated with olive trees and local annual crops. | Spontaneous and temporary grassing. No soil tillage. No herbicide treatments. Mechanical weed control (Three times per year) | ||
42°38′12.02″ N 11°52′36.58″ E | I | Intensive orchards planted in 1980, Surface of 0.21 ha, high vine density (4000 vines per hectares), local landrace and national/international varieties. | Spontaneous and temporary grassing, shallow tillage (15-cm depth) carried out two times per year. Herbicide treatments and mechanical weed control (three times per year) |
TCs | Farming Systems | TOC (%) | TN (g∙kg−1) | C/N | Cmic (µg∙g−1 Soil DW) | Cmic- to Corg Ratio (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Corylus avellana | A | 2.72 | b | 0.21 | a | 13.55 | b | 25.99 | a | 0.955 | a | |
E | 3.66 | a | 0.25 | a | 14.93 | a | 11.24 | b | 0.307 | b | ||
I | 2.34 | b | 0.22 | a | 10.53 | b | 19.40 | b | 0.829 | a | ||
Citrus x sinensis | A | 2.69 | a | 0.27 | a | 10.19 | a | 38.31 | a | 1.424 | a | |
E | 2.80 | a | 0.26 | a | 10.77 | a | 41.99 | a | 1.499 | a | ||
I | 1.91 | b | 0.13 | b | 14.73 | b | 20.38 | b | 1.067 | b | ||
Vitis vinifera L. | A | 1.65 | a | 0.14 | a | 12.75 | b | 24.20 | b | 1.467 | b | |
E | 1.72 | a | 0.12 | a | 14.71 | a | 35.91 | a | 2.088 | a | ||
I | 1.17 | b | 0.08 | b | 15.58 | a | 19.64 | b | 1.679 | b |
EFFECT | TOC (%) | TN (g∙kg−1) | TOC/TN | Cmic-to Corg Ratio |
---|---|---|---|---|
TCs | ** | ** | * | ** |
Farming system | * | * | ns | ns |
TCs x Farming system | ns | ns | ns | ** |
Sulfur Cycle | Nitrogen Cycle | Carbon Cycle | Phosphorus Cycle | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TCs | Farming Systems | aryS | chit | leu | trip | α-G | β-G | cell | xil | uro | ester-AC | Ester-nona | Ester-palm | acP | bisP | piroP | inositP | alkP | |||||||||||||||||
Corylus avellana | A | 34.99 | a | 4.17 | a | 34.30 | a | 2.01 | a | 0.57 | ab | 6.45 | b | 0.59 | ab | 1.25 | b | 0.58 | b | 1360.67 | a | 120.04 | a | 0.64 | a | 68.81 | a | 37.71 | a | 19.56 | a | 3.57 | a | 139.29 | a |
E | 5.79 | b | 5.15 | a | 12.28 | c | 0.62 | b | 0.24 | b | 6.82 | b | 0.34 | b | 1.69 | b | 0.43 | b | 717.23 | b | 57.95 | c | 0.56 | a | 30.79 | c | 5.92 | b | 1.63 | b | 0.77 | b | 22.76 | b | |
I | 7.07 | b | 6.67 | a | 22.93 | b | 0.97 | b | 0.79 | a | 14.14 | a | 0.81 | a | 4.10 | a | 1.10 | a | 1046.20 | ab | 87.90 | b | 0.97 | a | 54.65 | b | 7.84 | b | 3.34 | b | 1.28 | b | 52.58 | b | |
Citrus x sinensis | A | 5.80 | a | 2.91 | a | 17.51 | a | 1.56 | a | 0.34 | a | 5.41 | a | 0.36 | a | 0.95 | a | 0.52 | a | 620.78 | a | 106.67 | a | 1.98 | a | 27.26 | a | 30.88 | a | 8.75 | a | 1.69 | a | 130.07 | a |
E | 3.04 | b | 2.63 | a | 15.39 | a | 1.24 | b | 0.00 | b | 4.59 | ab | 0.26 | a | 0.91 | a | 0.42 | ab | 437.17 | b | 85.94 | a | 2.28 | a | 18.60 | ab | 23.65 | a | 6.58 | a | 1.47 | a | 90.36 | ab | |
I | 0.80 | c | 1.58 | a | 6.23 | b | 0.51 | c | 0.08 | b | 3.09 | b | 0.17 | a | 0.64 | a | 0.26 | b | 233.61 | c | 36.22 | b | 1.12 | a | 14.42 | b | 4.31 | b | 1.51 | b | 0.62 | b | 22.95 | b | |
Vitisvinifera L. | A | 4.64 | b | 5.54 | a | 21.58 | b | 1.36 | b | 0.55 | ab | 5.91 | b | 0.57 | ab | 1.48 | b | 1.37 | a | 613.81 | b | 66.25 | b | 0.92 | a | 28.95 | b | 21.88 | a | 7.65 | a | 1.51 | a | 91.26 | a |
E | 7.92 | a | 6.28 | a | 45.48 | a | 3.60 | a | 0.68 | a | 9.07 | a | 0.71 | a | 2.46 | a | 0.90 | a | 983.97 | a | 188.38 | a | 1.82 | a | 37.42 | a | 23.36 | a | 9.70 | a | 1.39 | a | 115.71 | a | |
I | 4.06 | b | 3.97 | a | 20.67 | b | 2.16 | b | 0.39 | b | 5.08 | b | 0.41 | b | 1.40 | b | 0.94 | a | 623.23 | b | 98.21 | ab | 1.71 | a | 21.21 | c | 12.31 | a | 5.01 | a | 1.16 | a | 66.64 | a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biasi, R.; Farina, R.; Brunori, E. Family Farming Plays an Essential Role in Preserving Soil Functionality: A Study on Active Managed and Abandoned Traditional Tree Crop-Based Systems. Sustainability 2021, 13, 3967. https://doi.org/10.3390/su13073967
Biasi R, Farina R, Brunori E. Family Farming Plays an Essential Role in Preserving Soil Functionality: A Study on Active Managed and Abandoned Traditional Tree Crop-Based Systems. Sustainability. 2021; 13(7):3967. https://doi.org/10.3390/su13073967
Chicago/Turabian StyleBiasi, Rita, Roberta Farina, and Elena Brunori. 2021. "Family Farming Plays an Essential Role in Preserving Soil Functionality: A Study on Active Managed and Abandoned Traditional Tree Crop-Based Systems" Sustainability 13, no. 7: 3967. https://doi.org/10.3390/su13073967
APA StyleBiasi, R., Farina, R., & Brunori, E. (2021). Family Farming Plays an Essential Role in Preserving Soil Functionality: A Study on Active Managed and Abandoned Traditional Tree Crop-Based Systems. Sustainability, 13(7), 3967. https://doi.org/10.3390/su13073967