How Does Network Structure Impact Follow-On Financing through Syndication? Evidence from the Renewable Energy Industry
Abstract
:1. Introduction
2. Theoretical Background
2.1. Renewable Energy Industry
2.2. Syndicated Venture Capital Investments
2.3. Social Capital Benefits of Networks
2.4. Research Gaps
3. Hypotheses
3.1. Hypothesized Direct Effects
3.1.1. Trust and Follow-On Financing through Syndication
3.1.2. Access and Follow-On Financing through Syndication
3.1.3. Small-World Structure and Follow-On Financing through Syndication
3.2. Hypothesized Interaction Effects
3.2.1. Trust × Access and Follow-On Financing through Syndication
3.2.2. Trust × Small-World Structure and Follow-On Financing through Syndication
3.2.3. Access × Small-World Structure and Follow-On Financing through Syndication
4. Methodology
4.1. Empirical Setting
4.2. Data and Sample
4.3. Variables and Measures
4.3.1. Dependent Variables
4.3.2. Independent Variables
Illustration
4.3.3. Control Variables
4.4. Statistical Analyses
5. Results
5.1. Direct Effects
5.2. Interaction Effects
5.3. Robustness
6. Discussion and Conclusions
6.1. Key Contributions
6.2. Theoretical Implications
6.3. Managerial Implications
6.4. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Gupta, A.K.; Hallen, B.L. The conditional importance of prior ties: A group-level analysis of venture capital syndication. Acad. Manag. J. 2017, 60, 1360–1386. [Google Scholar] [CrossRef]
- Zhang, Y. Gain or pain? New evidence on mixed syndication between governmental and private venture capital firms in China. Small Bus. Econ. 2018, 51, 995–1031. [Google Scholar] [CrossRef]
- Yang, S.; Li, Y.; Wang, X. Cohesiveness or competitiveness: Venture capital syndication networks and firms’ performance in China. J. Bus. Res. 2018, 91, 295–303. [Google Scholar] [CrossRef]
- Zhang, C.; Dang, X.; Peng, T.; Xue, C. Dynamic evolution of venture capital network in clean energy industries based on STERGM. Sustainability 2019, 11, 6313. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Yang, S.; Tan, J. Impacts of government R&D subsidies on venture capital and renewable energy investment—An empirical study in China. Resour. Policy 2020, 68, 101715. [Google Scholar] [CrossRef]
- Ren, J.; Luo, J.D.; Rong, K. How do venture capitals build up syndication ecosystems for sustainable development? Sustainability 2020, 12, 4385. [Google Scholar] [CrossRef]
- Hörisch, J. The role of sustainable entrepreneurship in sustainability transitions: A conceptual synthesis against the background of the multi-level perspective. Adm. Sci. 2015, 5, 286–300. [Google Scholar] [CrossRef]
- Anton, S.G.; Nucu, A.E.A. The effect of financial development on renewable energy consumption. A panel data approach. Renew. Energy 2020, 147, 330–338. [Google Scholar] [CrossRef]
- Mina, A.; Lahr, H.; Hughes, A. The demand and supply of external finance for innovative firms. Ind. Corp. Chang. 2013, 22, 869–901. [Google Scholar] [CrossRef]
- Stucki, T. Success of start-up firms: The role of financial constraints. Ind. Corp. Chang. 2014, 23, 25–64. [Google Scholar] [CrossRef]
- Painuly, J.P. Barriers to renewable energy penetration; a framework for analysis. Renew. Energy 2001, 24, 73–89. [Google Scholar] [CrossRef]
- Surie, G. Creating the innovation ecosystem for renewable energy via social entrepreneurship: Insights from India. Technol. Forecast. Soc. Chang. 2017, 121, 184–195. [Google Scholar] [CrossRef]
- Gabriel, C.A. What is challenging renewable energy entrepreneurs in developing countries? Renew. Sustain. Energy Rev. 2016, 64, 362–371. [Google Scholar] [CrossRef]
- Nguyen, G.; Vu, L. Does venture capital syndication affect mergers and acquisitions? J. Corp. Financ. 2021, 67, 101851. [Google Scholar] [CrossRef]
- Birkinshaw, J.; van Basten Batenburg, R.; Murray, G. Corporate Venturing: The State of the Art and the Prospects for the Future; London Business School: London, UK, 2002; pp. 64–70. [Google Scholar]
- Wright, M.; Lockett, A. The Structure and Management of Alliances: Syndication in the Venture Capital Industry. J. Manag. Stud. 2003, 40, 2073–2102. [Google Scholar] [CrossRef]
- Tian, X. The role of venture capital syndication in value creation for entrepreneurial firms. Rev. Financ. 2012, 16, 245–283. [Google Scholar] [CrossRef]
- Gulati, R. Social Structure and Alliance Formation Patterns: A Longitudinal Analysis. Adm. Sci. Q. 1995, 40, 619. [Google Scholar] [CrossRef]
- Powell, W.W.; Koput, K.W.; Smith-Doerr, L. Interorganizational Collaboration and the Locus of Innovation: Networks of Learning in Biotechnology. Adm. Sci. Q. 1996, 41, 116–145. [Google Scholar] [CrossRef] [Green Version]
- Shafi, K.; Mohammadi, A.; Johan, S.A. Investment ties gone awry. Acad. Manag. J. 2020, 63, 295–327. [Google Scholar] [CrossRef]
- Khavul, S.; Deeds, D. The Evolution of Initial Co-investment Syndications in an Emerging Venture Capital Market. J. Int. Manag. 2016, 22, 280–293. [Google Scholar] [CrossRef]
- Wang, P. Syndication and Foreignness: Venture Capital Investments in Emerging and Developed Markets. J. Int. Manag. 2017, 23, 1–15. [Google Scholar] [CrossRef]
- Dimov, D.; Milanov, H. The interplay of need and opportunity in venture capital investment syndication. J. Bus. Ventur. 2010, 25, 331–348. [Google Scholar] [CrossRef] [Green Version]
- Gu, Q.; Lu, X. Unraveling the mechanisms of reputation and alliance formation: A study of venture capital syndication in China. Strateg. Manag. J. 2014, 35, 739–750. [Google Scholar] [CrossRef]
- Hochberg, Y.V.; Ljungqvist, A.; Lu, Y. Whom you know matters: Venture capital networks and investment performance. J. Financ. 2007, 62, 251–301. [Google Scholar] [CrossRef] [Green Version]
- Alexy, O.T.; Block, J.H.; Sandner, P.; Ter Wal, A.L.J. Social capital of venture capitalists and start-up funding. Small Bus. Econ. 2012, 39, 835–851. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.Q.; McCarthy, K.J.; Schoenmakers, W.W.M.E. How Central Is Too Central? Organizing Interorganizational Collaboration Networks for Breakthrough Innovation. J. Prod. Innov. Manag. 2017, 34, 526–542. [Google Scholar] [CrossRef]
- Coleman, J.S. Social capital in the creation of human capital. Am. J. Sociol. 1988, 94, S95–S120. [Google Scholar] [CrossRef]
- Burt, R.S. The Social Structure of Competition. Networks and Organizations: Structure, Form, and Action; Harvard Business School Press: Boston, MA, USA, 1992; pp. 57–91. [Google Scholar]
- Gu, W.; Luo, J.D.; Liu, J. Exploring small-world network with an elite-clique: Bringing embeddedness theory into the dynamic evolution of a venture capital network. Soc. Netw. 2019, 57, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Hsu, D.H. Venture capitalists and cooperative start-up commercialization strategy. Manag. Sci. 2006, 52, 204–219. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Zhang, J.; Yan, Y. The impact of multilevel networks on innovation. Res. Policy 2015, 44, 545–559. [Google Scholar] [CrossRef]
- Schwab, A. Incremental organizational learning from multilevel information sources: Evidence for cross-level interactions. Org. Sci. 2007, 18, 233–251. [Google Scholar] [CrossRef]
- Buerer, M.J.; Wuestenhagen, R. Which renewable energy policy is a venture capitalist’s best friend? Empirical evidence from a survey of international cleantech investors. Energy Policy 2009, 37, 4997–5006. [Google Scholar] [CrossRef] [Green Version]
- Hockerts, K.; Wüstenhagen, R. Greening Goliaths versus emerging Davids—Theorizing about the role of incumbents and new entrants in sustainable entrepreneurship. J. Bus. Ventur. 2010, 25, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, D.F.; Dean, T.J.; Payne, D.S. Escaping the green prison: Entrepreneurship and the creation of opportunities for sustainable development. J. Bus. Ventur. 2010, 25, 464–480. [Google Scholar] [CrossRef]
- Shepherd, D.A.; Patzelt, H. The new field of sustainable entrepreneurship: Studying entrepreneurial action linking “what is to be sustained” with “what is to be developed”. Entrep. Theory Pract. 2011, 35, 137–163. [Google Scholar] [CrossRef]
- Gompers, P.; Lerner, J. The Venture Capital Cycle; The MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Gupta, A.K.; Sapienza, H.J. Determinants of venture capital firms’ preferences regarding the industry diversity and geographic scope of their investments. J. Bus. Ventur. 1992, 7, 347–362. [Google Scholar] [CrossRef]
- Lee, D.; Lin, K.C. How to transform sustainable energy technology into a unicorn start-up: Technology review and case study. Sustainability 2020, 12, 3018. [Google Scholar] [CrossRef] [Green Version]
- Teker, D.; Teker, S.; Teraman, Ö. Venture Capital Markets: A Cross Country Analysis. Procedia Econ. Financ. 2016, 38, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Jääskeläinen, M. Venture Capital Syndication: Synthesis and future directions. Int. J. Manag. Rev. 2012, 14, 444–463. [Google Scholar] [CrossRef] [Green Version]
- Milosevic, M.; Le Pendeven, B.; Fendt, J. Follow-on financing through syndication in the VC industry–A signaling perspective of VC human capital and fund characteristics. Ventur. Cap. 2020, 22, 35–69. [Google Scholar] [CrossRef]
- Lerner, J. The syndication of venture capital investments. Financ. Manag. 1994, 23, 16–27. [Google Scholar] [CrossRef]
- Cumming, D.J. Agency costs, institutions, learning, and taxation in venture capital contracting. J. Bus. Ventur. 2005, 20, 573–622. [Google Scholar] [CrossRef]
- Brander, J.A.; Amit, R.; Antweiler, W. Venture capital syndication: Improved venture selection vs. the value-added hypothesis. J. Econ. Manag. Strateg. 2002, 11, 423–452. [Google Scholar] [CrossRef] [Green Version]
- Podolny, J.M. Networks as the pipes and prisms of the market. Am. J. Sociol. 2001, 107, 33–60. [Google Scholar] [CrossRef]
- Cumming, D. The Determinants of Venture Capital Portfolio Size: Empirical Evidence. J. Bus. 2006, 79, 1083–1126. [Google Scholar] [CrossRef]
- Manigart, S.; Lockett, A.; Meuleman, M.; Wright, M.; Landstrom, H.; Bruining, H.; Desbrières, P.; Hommel, U. Venture capitalists’ decision to syndicate. Entrep. Theory Pract. 2006, 30, 131–153. [Google Scholar] [CrossRef]
- Sorenson, O.; Stuart, T.E. Bringing the context back in: Settings and the search for syndicate partners in venture capital investment networks. Adm. Sci. Q. 2008, 53, 266–294. [Google Scholar] [CrossRef]
- Hochberg, Y.V.; Ljungqvist, A.; Lu, Y. Networking as a barrier to entry and the competitive supply of venture capital. J. Financ. 2010, 65, 829–859. [Google Scholar] [CrossRef] [Green Version]
- Freeman, L. The development of social network analysis. A Study. Sociol. Sci. 2004, 1, 159–167. [Google Scholar]
- Granovetter, M.S. The strength of weak ties. Am. J. Sociol. 1973, 78, 1360–1380. [Google Scholar] [CrossRef] [Green Version]
- Coleman, J.S. Foundations of Social Theory; Harvard University Press: Boston, MA, USA, 1994. [Google Scholar]
- Lin, N. Social Capital: A Theory of Social Structure and Action; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Ter Wal, A.L.J.; Alexy, O.; Block, J.; Sandner, P.G. The Best of Both Worlds: The Benefits of Open-specialized and Closed-diverse Syndication Networks for New Ventures’ Success. Adm. Sci. Q. 2016, 61, 393–432. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Maula, M. Local partnering in foreign ventures: Uncertainty, experiential learning, and syndication in cross-border venture capital investments. Acad. Manag. J. 2016, 59, 1407–1429. [Google Scholar] [CrossRef]
- Watts, D.; Strogatz, S. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.D.; Rong, K.; Yang, K.; Guo, R.; Zou, Y.Q. Syndication through social embeddedness: A comparison of foreign, private and state-owned venture capital (VC) firms. Asia Pac. J. Manag. 2019, 36, 499–527. [Google Scholar] [CrossRef]
- Schilling, M.A.; Phelps, C.C. Interfirm collaboration networks: The impact of large-scale network structure on firm innovation. Manag. Sci. 2007, 53, 1113–1126. [Google Scholar] [CrossRef]
- Sullivan, B.N.; Tang, Y.; Marquis, C. Persistently learning: How small-world network imprints affect subsequent firm learning. Strateg. Organ. 2014, 12, 180–199. [Google Scholar] [CrossRef] [Green Version]
- Ravasz, E.; Somera, A.L.; Mongru, D.A.; Oltvai, Z.N.; Barabási, A.L. Hierarchical organization of modularity in metabolic networks. Science 2002, 297, 1551–1555. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Guan, J.C. Small-world network effects on innovation: Evidences from nanotechnology patenting. J. Nanoparticle Res. 2016, 18, 329. [Google Scholar] [CrossRef]
- Hung, S.W.; Wang, A.P. Examining the small world phenomenon in the patent citation network: A case study of the radio frequency identification (RFID) network. Scientometrics 2010, 82, 121–134. [Google Scholar] [CrossRef]
- Uzzi, B.; Spiro, J. Collaboration and creativity: The small world problem. Am. J. Sociol. 2005, 111, 447–504. [Google Scholar] [CrossRef] [Green Version]
- Criscuolo, C.; Menon, C. Environmental policies and risk finance in the green sector: Cross-country evidence. Energy Policy 2015, 83, 38–56. [Google Scholar] [CrossRef]
- Burt, R.S. Secondhand brokerage: Evidence on the importance of local structure for managers, bankers and analysts. Acad. Manag. J. 2007, 50, 119–148. [Google Scholar] [CrossRef] [Green Version]
- De Nooy, W.; Mrvar, A.; Batagelj, V. Exploratory Social Network Analysis with Pajek: Revised and Expanded Edition for Updated Software; Cambridge University Press: Cambridge, UK, 2018; p. 189. [Google Scholar]
- Burt, R.S. Structural holes and good ideas. Am. J. Sociol. 2004, 110, 349–399. [Google Scholar] [CrossRef]
- Chen, Z.; Guan, J. The impact of small world on innovation: An empirical study of 16 countries. J. Informetr. 2010, 4, 97–106. [Google Scholar] [CrossRef]
- Gilsing, V.; Nooteboom, B.; Vanhaverbeke, W.; Duysters, G.; van den Oord, A. Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density. Res. Policy 2008, 37, 1717–1731. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, Q.; Shan, L.; Li, S.P. Characteristics of venture capital network and its correlation with regional economy: Evidence from China. PLoS ONE 2015, 10, e0137172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granovetter, M. Economic action and social structure: The problem of embeddedness. Am. J. Sociol. 1985, 9, 481–510. [Google Scholar] [CrossRef]
- Bellavitis, C.; Filatotchev, I.; Souitaris, V. The Impact of Investment Networks on Venture Capital Firm Performance: A Contingency Framework. Br. J. Manag. 2017, 28, 102–119. [Google Scholar] [CrossRef] [Green Version]
- Global Energy Review. 2020. Available online: https://www.iea.org/reports/global-energy-review-2020/renewables (accessed on 6 January 2021).
- Ahlstrom, D.; Bruton, G.D.; Yeh, K.S. Venture capital in China: Past, present, and future. Asia Pac. J. Manag. 2007, 24, 247–268. [Google Scholar] [CrossRef]
- Bruton, G.D.; Ahlstrom, D. An institutional view of China’s venture capital industry: Explaining the differences between China and the West. J. Bus. Ventur. 2003, 18, 233–259. [Google Scholar] [CrossRef]
- Bruton, G.; Ahlstrom, D.; Yeh, K.S. Understanding venture capital in East Asia: The impact of institutions on the industry today and tomorrow. J. World Bus. 2004, 39, 72–88. [Google Scholar] [CrossRef]
- Röhm, P.; Merz, M.; Kuckertz, A. Identifying corporate venture capital investors—A data-cleaning procedure. Financ. Res. Lett. 2020, 32, 101092. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP); Bloomberg New Energy Finance (BNEF). Global Trends in Renewable Energy Investment Report 2018; Frankfurt School of Finance & Management: Frankfurt, Germany, 2018. [Google Scholar]
- Lee, J.J. Heterogeneity, brokerage, and innovative performance: Endogenous formation of collaborative inventor networks. Organ. Sci. 2010, 21, 804–822. [Google Scholar] [CrossRef]
- Wang, C.; Rodan, S.; Fruin, M.; Xu, X. Knowledge networks, collaboration networks, and exploratory innovation. Acad. Manag. J. 2014, 57, 484–514. [Google Scholar] [CrossRef]
- Gulati, R.; Sytch, M.; Tatarynowicz, A. The rise and fall of small worlds: Exploring the dynamics of social structure. Organ. Sci. 2012, 23, 449–471. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Jiang, H. Are distances barriers to sustainability for venture capital syndication? Sustainability 2019, 11, 4126. [Google Scholar] [CrossRef] [Green Version]
- Gompers, P.; Lerner, J. The venture capital revolution. J. Econ. Perspect. 2001, 15, 145–168. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, S. Endogenous networks in investment syndication. J. Corp. Financ. 2012, 18, 640–663. [Google Scholar] [CrossRef]
- Salman, N.; Saives, A.L. Indirect networks: An intangible resource for biotechnology innovation. R&D Manag. 2005, 35, 203–215. [Google Scholar] [CrossRef]
- Shane, S.; Stuart, T. Organizational endowments and the performance of university start-ups. Manag. Sci. 2002, 48, 154–170. [Google Scholar] [CrossRef] [Green Version]
- Aiken, L.S.; West, S.G.; Reno, R.R. Multiple Regression: Testing and Interpreting Interactions; Sage: Los Angeles, CA, USA, 1991. [Google Scholar]
- Gulati, R.; Gargiulo, M. Where Do Interorganizational Networks Come From? Am. J. Sociol. 1999, 104, 1439–1493. [Google Scholar] [CrossRef] [Green Version]
- Hopp, C. When do venture capitalists collaborate?. Evidence on the driving forces of venture capital syndication. Small Bus. Econ. 2010, 35, 417–431. [Google Scholar] [CrossRef]
- Guan, J.; Yan, Y.; Zhang, J.J. The impact of collaboration and knowledge networks on citations. J. Informetr. 2017, 11, 407–422. [Google Scholar] [CrossRef]
- Glaser, L.; Stam, W.; Takeuchi, R. Managing the risks of proactivity: A multilevel study of initiative and performance in the middle management context. Acad. Manag. J. 2016, 59, 1339–1360. [Google Scholar] [CrossRef] [Green Version]
- Anokhin, S.; Örtqvist, D.; Thorgren, S.; Wincent, J. Corporate Venturing Deal Syndication and Innovation: The Information Exchange Paradox. Long Range Plan. 2011, 44, 134–151. [Google Scholar] [CrossRef]
- De Lange, D.E. Start-up sustainability: An insurmountable cost or a life-giving investment? J. Clean. Prod. 2017, 156, 838–854. [Google Scholar] [CrossRef]
Variable Name | Description |
---|---|
Dependent Variable | |
Follow-on financing through syndication (FollowSyn) | Dummy that equals one if the syndicate participates in the venture’s subsequent financing rounds. |
Independent Variables | |
Clustering coefficient (CC) | The total number of ties between the focal VC firm’s syndicate partners divided by the largest number of ties that all the syndicate partners can create, in a given five-year time window. |
Structural holes (SH) | Subtracting Burt’s constraint measure from 2, in a given five-year time window. |
Small-world quotient (SWQ) | The fraction of clustering coefficient and global average short path length, in a given five-year time window. We scaled this measure by comparing it with the baseline random network. |
Control Variables | |
VC age | The difference value between the deal year and the focal VC firm’s found year. |
VC size | The total amount of the focal VC firm’s capital under management in the deal year. |
VC reputation | The cumulative number of funds the focal VC firm raised. |
PVC | Dummy set to one if the VC firm is a private VC firm. |
CVC | Dummy set to one if the VC firm is a corporate VC firm. |
Foreign | Dummy set to one if the VC firm is non-Chinese. |
Centrality | The proportion of shortest paths of syndication between pairs of other VC firms that contain the focal VC firm, in a given five-year time window. |
Density | The count of actual syndication ties divided by their possible maximum ties number, in a given five-year time window. |
Seed | Dummy equals one if the venture is in the seed stage. |
Growth | Dummy equals one if the venture is in the growth stage. |
Expansion | Dummy equals one if the venture is in the expansion stage. |
Mature | Dummy equals one if the venture is in the mature stage. |
Year | Dummy equals one for a particular year (2006–2018). |
Mean | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 FollowSyn | 0.511 | 0.500 | |||||||||||||||
2 CC | 0.513 | 0.400 | 0.299 | ||||||||||||||
3 SH | 1.509 | 0.320 | −0.204 | 0.124 | |||||||||||||
4 SWQ | 0.654 | 0.393 | 0.079 | 0.031 | −0.193 | ||||||||||||
5 VC age | 12.82 | 11.94 | 0.244 | −0.059 | 0.245 | 0.134 | |||||||||||
6 VC size | 4.466 | 1.011 | −0.124 | 0.056 | −0.163 | −0.057 | −0.323 | ||||||||||
7 Reputation | 13.59 | 20.72 | 0.099 | −0.236 | 0.274 | −0.035 | 0.546 | −0.203 | |||||||||
8 PVC | 0.784 | 0.412 | 0.030 | 0.044 | −0.041 | 0.063 | 0.079 | 0.014 | 0.067 | ||||||||
9 CVC | 0.118 | 0.323 | −0.008 | 0.034 | 0.052 | 0.042 | −0.040 | −0.119 | −0.139 | −0.699 | |||||||
10 Centrality | 0.045 | 0.044 | 0.225 | 0.065 | 0.582 | −0.096 | 0.284 | −0.207 | 0.189 | 0.015 | 0.079 | ||||||
11 Density | 0.031 | 0.015 | 0.036 | 0.208 | −0.183 | −0.369 | 0.003 | −0.109 | −0.051 | 0.109 | −0.044 | −0.034 | |||||
12 Foreign | 3.486 | 0.961 | 0.288 | 0.071 | 0.145 | −0.055 | 0.596 | −0.334 | 0.398 | 0.037 | −0.025 | 0.162 | 0.289 | ||||
13 Seed | 0.217 | 0.413 | 0.126 | 0.081 | 0.071 | −0.004 | 0.004 | −0.008 | −0.110 | 0.098 | −0.015 | −0.081 | −0.015 | 0.085 | |||
14 Growth | 0.593 | 0.492 | −0.098 | −0.093 | −0.002 | 0.063 | −0.027 | −0.084 | −0.015 | −0.037 | 0.088 | 0.119 | −0.012 | −0.099 | −0.636 | ||
15 Expansion | 0.104 | 0.305 | 0.066 | 0.061 | 0.020 | −0.105 | 0.121 | 0.110 | 0.224 | −0.020 | −0.058 | −0.067 | 0.024 | 0.100 | −0.179 | −0.411 | |
16 Mature | 0.082 | 0.274 | −0.074 | −0.017 | −0.120 | 0.017 | −0.100 | 0.031 | −0.053 | −0.042 | −0.065 | −0.009 | 0.032 | −0.060 | −0.157 | −0.360 | −0.102 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | |
---|---|---|---|---|---|---|---|---|---|
CC | 2.007 *** | 2.074 *** | 1.399 *** | 2.183 *** | 1.556 ** | ||||
(6.433) | (6.099) | (3.834) | (4.103) | (2.456) | |||||
SH | 1.632 *** | 2.420 *** | 1.507 *** | 4.344 *** | 3.873 *** | ||||
(2.899) | (4.269) | (2.745) | (3.852) | (3.300) | |||||
SWQ | 2.364 *** | 2.747 *** | 1.986 *** | 7.561 *** | 6.442 *** | ||||
(3.674) | (4.032) | (3.144) | (3.731) | (2.993) | |||||
CC × SH | 3.088 *** | 2.880 *** | |||||||
(3.335) | (3.083) | ||||||||
CC × SWQ | −0.338 | −0.219 | |||||||
(−0.531) | (−0.316) | ||||||||
SH × SWQ | −2.486 ** | −2.197 ** | |||||||
(−2.530) | (−2.096) | ||||||||
VC age | 0.016 | 0.019 * | 0.014 | 0.013 | 0.012 | 0.016 | 0.016 | 0.012 | 0.015 |
(1.275) | (1.837) | (1.107) | (1.006) | (1.155) | (1.522) | (1.517) | (0.906) | (1.297) | |
VC size | −0.070 | −0.125 | −0.028 | −0.073 | −0.069 | −0.050 | −0.129 | −0.018 | −0.042 |
(−0.616) | (−1.179) | (−0.234) | (−0.624) | (−0.571) | (−0.454) | (−1.146) | (−0.137) | (−0.347) | |
Reputation | −0.010 | −0.001 | −0.011 | −0.008 | −0.000 | 0.000 | 0.000 | −0.009 | 0.002 |
(−0.958) | (−0.084) | (−1.035) | (−0.780) | (−0.035) | (0.053) | (0.024) | (−0.789) | (0.180) | |
PVC | −0.174 | −0.251 | −0.216 | −0.231 | −0.375 | −0.257 | −0.305 | −0.259 | −0.315 |
(−0.499) | (−0.733) | (−0.590) | (−0.652) | (−1.022) | (−0.715) | (−0.885) | (−0.674) | (−0.863) | |
CVC | −0.371 | −0.498 | −0.392 | −0.390 | −0.534 | −0.524 | −0.517 | −0.323 | −0.473 |
(−0.849) | (−1.193) | (−0.878) | (−0.889) | (−1.241) | (−1.216) | (−1.241) | (−0.714) | (−1.093) | |
Centrality | 11.166 *** | 12.073 *** | 1.862 | 10.857 *** | −1.437 | −7.946 * | 11.800 *** | −5.283 | −13.066 *** |
(3.858) | (4.343) | (0.499) | (3.788) | (−0.436) | (−1.914) | (4.298) | (−1.441) | (−3.032) | |
Density | 8.889 | −20.535 | 46.524* | −30.629** | −14.347 | 19.825 | −51.787*** | 27.554 | 7.980 |
(0.548) | (−1.448) | (1.901) | (−2.470) | (−0.983) | (0.997) | (−3.994) | (1.425) | (0.447) | |
Foreign | 1.261 *** | 0.966 *** | 1.357 *** | 1.305 *** | 1.141 *** | 1.041 *** | 1.017 *** | 1.449 *** | 1.123 *** |
(4.259) | (3.807) | (4.358) | (4.406) | (3.998) | (3.941) | (3.965) | (4.321) | (3.966) | |
Growth stage | −0.668 *** | −0.575 ** | −0.607 ** | −0.697 *** | −0.502 ** | −0.461 ** | −0.601 ** | −0.637 ** | −0.486 ** |
(−2.722) | (−2.467) | (−2.468) | (−2.794) | (−2.146) | (−1.969) | (−2.537) | (−2.524) | (−2.021) | |
Expansion stage | 0.060 | −0.124 | 0.142 | 0.047 | 0.008 | −0.029 | −0.136 | 0.170 | 0.005 |
(0.172) | (−0.396) | (0.394) | (0.133) | (0.025) | (−0.088) | (−0.430) | (0.453) | (0.014) | |
Mature stage | −0.697 | −0.623 | −0.671 | −0.720* | −0.592 | −0.505 | −0.656 | −0.662 | −0.499 |
(−1.620) | (−1.495) | (−1.508) | (−1.662) | (−1.403) | (−1.186) | (−1.568) | (−1.385) | (−1.115) | |
Year dummy | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | −0.089 | −0.377 | −3.406 ** | −0.055 | −5.263 *** | −3.007 ** | −0.509 | −10.966 *** | −9.806 *** |
(−0.109) | (−0.502) | (−2.238) | (−0.068) | (−3.508) | (−1.968) | (−0.648) | (−3.384) | (−2.777) | |
Log-likelihood | −453.456 | −421.090 | −448.350 | −447.845 | −406.396 | −408.145 | −417.196 | −435.249 | −399.125 |
Wald chi-square | 65.65 | 89.54 | 72.44 | 73.67 | 91.91 | 94.03 | 96.83 | 72.30 | 89.56 |
N | 760 | 760 | 760 | 760 | 760 | 760 | 760 | 760 | 760 |
Model 10 | Model 11 | Model 12 | |
---|---|---|---|
Add Path Length | Probit Regression | Without Controls | |
CC | 1.552 ** | 0.893 ** | 2.024 *** |
(2.448) | (2.554) | (3.075) | |
SH | 3.919 *** | 2.242 *** | 3.278 *** |
(3.294) | (3.457) | (2.915) | |
SWQ | 5.757 ** | 3.709 *** | 5.319 ** |
(2.172) | (3.148) | (2.490) | |
CC × SH | 2.863 *** | 1.703 *** | 2.286 ** |
(3.064) | (3.449) | (2.394) | |
CC × SWQ | −0.216 | −0.108 | −0.329 |
(−0.313) | (−0.280) | (−0.452) | |
SH × SWQ | −2.237 ** | −1.264 ** | −1.796 * |
(−2.111) | (−2.175) | (−1.734) | |
VC age | 0.015 | 0.009 | |
(1.323) | (1.365) | ||
VC size | −0.043 | −0.023 | |
(−0.353) | (−0.338) | ||
Reputation | 0.001 | 0.001 | |
(0.152) | (0.191) | ||
PVC | −0.322 | −0.188 | |
(−0.882) | (−0.867) | ||
CVC | −0.482 | −0.286 | |
(−1.110) | (−1.128) | ||
Centrality | −13.115 *** | −7.833 *** | |
(−3.034) | (−3.162) | ||
Density | −6.293 | 5.701 | |
(−0.167) | (0.534) | ||
Foreign | 1.120 *** | 0.648 *** | |
(3.952) | (4.065) | ||
Growth stage | −0.490 ** | −0.282 ** | |
(−2.044) | (−2.035) | ||
Expansion stage | 0.001 | 0.010 | |
(0.002) | (0.047) | ||
Mature stage | −0.508 | −0.264 | |
(−1.138) | (−0.975) | ||
Average path | 0.294 | ||
(0.383) | |||
Year dummy | Yes | Yes | Yes |
Constant | −10.265 *** | −5.691 *** | −9.285 *** |
(−2.672) | (−2.942) | (−2.924) | |
Log-likelihood | −396.064 | −399.521 | −427.527 |
Wald chi-square | 89.76 | 108.42 | 52.25 |
N | 760 | 760 | 760 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; McCarthy, K.J.; Wang, X.; Tian, Z. How Does Network Structure Impact Follow-On Financing through Syndication? Evidence from the Renewable Energy Industry. Sustainability 2021, 13, 4050. https://doi.org/10.3390/su13074050
Zhang R, McCarthy KJ, Wang X, Tian Z. How Does Network Structure Impact Follow-On Financing through Syndication? Evidence from the Renewable Energy Industry. Sustainability. 2021; 13(7):4050. https://doi.org/10.3390/su13074050
Chicago/Turabian StyleZhang, Ruling, Killian J. McCarthy, Xiao Wang, and Zengrui Tian. 2021. "How Does Network Structure Impact Follow-On Financing through Syndication? Evidence from the Renewable Energy Industry" Sustainability 13, no. 7: 4050. https://doi.org/10.3390/su13074050
APA StyleZhang, R., McCarthy, K. J., Wang, X., & Tian, Z. (2021). How Does Network Structure Impact Follow-On Financing through Syndication? Evidence from the Renewable Energy Industry. Sustainability, 13(7), 4050. https://doi.org/10.3390/su13074050