The Budget as a Basis for Ecological Management of Urbanization Projects. Case Study in Seville, Spain
Abstract
:Glossary of Terms
1. Introduction
2. Methodology
2.1. Cost Analysis
2.2. Environmental Analysis
2.2.1. Machinery
2.2.2. Building Materials
3. Case Studies
3.1. Project 1. Renovation of Water Networks
3.2. Project 2. Integral Action
4. Results
4.1. Sensitivity Analysis
4.2. Environmental Assessment Criteria and the Environmental Label
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- United Nations UN General Assembly Resolution. The Future we want. Gen. Assem. 2012, 1–53. [Google Scholar]
- Renukappa, S.; Akintoye, A.; Egbu, C.; Suresh, S. Sustainable procurement strategies for competitive advantage: An empirical study. Proc. Inst. Civ. Eng. Manag. Procure. Law 2016, 169, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Lützkendorf, T. Sustainability in Building Construction-A Multilevel Approach. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Prague, Czech Republic, 2–4 July 2019; Volume 290. [Google Scholar]
- ISO 14040. Environmental Management: Life Cycle Assessment, Principles and Framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- ISO 14044. Environmental Management, Life Cycle Assessment, Requirements and Guidelines; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- European Union Green Procurement. Handbook on Green Public Procurement, 3rd ed.; European Comission: Luxembourg, 2016. [Google Scholar]
- Directive_2014/23/EU. Directive EU of the European Parliament and of the Council of 26 February 2014 on the award of Concession Contracts; European Comission: Brussles, Belgium, 2014. [Google Scholar]
- Yu, A.T.W.; Yevu, S.K.; Nani, G. Towards an integration framework for promoting electronic procurement and sustainable procurement in the construction industry: A systematic literature review. J. Clean. Prod. 2020, 250, 119493. [Google Scholar] [CrossRef]
- López-Toledo, P. La protección del medio ambiente en el derecho comunitario de contratos públicos: Perspectiva y situación actual/Environmental protection in community public procurement law: Outlook and current situation. Rev. Esc. Jacobea Posgrado 2014, 7, 1–32. [Google Scholar]
- Davies, P.J.; Emmitt, S.; Firth, S.K. On-site energy management challenges and opportunities: A contractor’s perspective. Build. Res. Inf. 2013, 41, 450–468. [Google Scholar] [CrossRef]
- Du, G.; Safi, M.; Pettersson, L.; Karoumi, R. Life cycle assessment as a decision support tool for bridge procurement: Environmental impact comparison among five bridge designs. Int. J. Life Cycle Assess. 2014, 19, 1948–1964. [Google Scholar] [CrossRef]
- Srdić, A.; Šelih, J. Integrated quality and sustainability assessment in construction: A conceptual model. Technol. Econ. Dev. Econ. 2011, 17, 611–626. [Google Scholar] [CrossRef]
- Kottner, A.; Štofová, L.; Szaryszová, P.; Lešková, Ľ. Indicators of green public procurement for sustainable production. In Proceedings of the Production Management and Engineering Sciences—Scientific Publication of the International Conference on Engineering Science and Production Management, Tatranská Štrba, Slovakia, 16–17 April 2015; pp. 435–442. [Google Scholar]
- Varnäs, A.; Balfors, B.; Faith-Ell, C. Environmental consideration in procurement of construction contracts: Current practice, problems and opportunities in green procurement in the Swedish construction industry. J. Clean. Prod. 2009, 17, 1214–1222. [Google Scholar] [CrossRef]
- Pires, B.; Teixeira, J.C. Environmental criteria in public procurement of construction work in Portugal. In Proceedings of the CIB Joint International Symposium, Rotterdam, The Netherlands, 27–30 September 2009; pp. 742–751. [Google Scholar]
- AlNuaimi, B.K.; Khan, M. Public-sector green procurement in the United Arab Emirates: Innovation capability and commitment to change. J. Clean. Prod. 2019, 233, 482–489. [Google Scholar] [CrossRef]
- LPSC_9/2017 Law 9/2017 of 8 November, on Public Sector Contracts, Which Transposes into Spanish Law the Directives of the European Parliament and Council 2014/23/EU and 2014/24/EU, of 26 February 2014; Government of Spain: Madrid, Spain, 2017.
- Orden PCI/86/2019, de 31 de Enero, por la que se Publica el Acuerdo del Consejo de Ministros de 7 de Diciembre de 2018, por el que se Aprueba el Plan de Contratación Pública Ecológica de la Administración General del Estado, sus Organismos Autónomos y las Entidades Gestoras de la Seguridad Social (2018–2025). 2019, pp. 9572–9597. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2019-1394 (accessed on 1 March 2021).
- SpainGBC LEED en España. Continuamos con el Crecimiento Exponencial Superando las Barreras de los 300 Edificios Inscritos y los 100 Certificados LEED. Available online: http://www.spaingbc.org/recursos/noticias/pdf/LEEDENESPAÑA2015.pdf (accessed on 19 June 2020).
- BREEAM. BREEAM International New Construction, Technical Manual, Version: SD233, Issue 1.0. Available online: http://www.breeam.com (accessed on 3 April 2017).
- GBCe Certificado Verde. Available online: http://www2.gbce.es/en/pagina/verde-certificate (accessed on 19 June 2020).
- Ecómetro, A. Ecómetro Association for the Measurement and Diffusion of Ecology in Architecture. Available online: http://ecometro.org/ (accessed on 19 June 2020).
- ITeC BEDEC—Bases de Datos con Información de Productos de la Construcción. Available online: https://itec.es/servicios/bedec/ (accessed on 18 March 2021).
- SOFIA Situated Learning Opportunities Fostered by Ict Applications in Alternative Agro-Food Networks (SOFIA). Available online: http://sofiaproject.altervista.org/?doing_wp_cron=1592565365.6072499752044677734375 (accessed on 19 June 2020).
- e2CO2cero Software to Calculate the Carbon Footprint of Buildings. Available online: https://www.ingurubide.org/blog/que-es-e2co2cero.html (accessed on 13 February 2019).
- Solís-Guzmán, J.; Rivero-Camacho, C.; Alba-Rodríguez, D.; Martínez-Rocamora, A. Carbon Footprint Estimation Tool for Residential Buildings for Non-Specialized Users: OERCO2 Project. Sustainability 2018, 10, 1359. [Google Scholar] [CrossRef] [Green Version]
- Marrero, M.; Puerto, M.; Rivero-Camacho, C.; Freire-Guerrero, A.; Solís-Guzmán, J. Assessing the economic impact and ecological footprint of construction and demolition waste during the urbanization of rural land. Resour. Conserv. Recycl. 2017, 117, 160–174. [Google Scholar] [CrossRef]
- Ruiz-Pérez, M.R.; Alba-Rodríguez, M.D.; Marrero, M. The water footprint of city naturalisation. Evaluation of the water balance of city gardens. In Proceedings of the 22nd Biennial Conference of the International Society for Ecological Modelling (ISEM), Salzburg, Austria, 1–5 October 2019. [Google Scholar]
- Freire-Guerrero, A.; Alba-Rodríguez, M.D.; Marrero, M. A budget for the ecological footprint of buildings is possible: A case study using the dwelling construction cost database of Andalusia. Sustain. Cities Soc. 2019, 51, 101737. [Google Scholar] [CrossRef]
- Marrero, M.; Rivero-Camacho, C.; Alba-Rodríguez, M.D. What are we discarding during the life cycle of a building? Case studies of social housing in Andalusia, Spain. Waste Manag. 2020, 102, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Marrero, M.; Wojtasiewicz, M.; Martínez-Rocamora, A.; Solís-Guzmán, J.; Alba-Rodríguez, M.D. BIM-LCA Integration for the Environmental Impact Assessment of the Urbanization Process. Sustainability 2020, 12, 4196. [Google Scholar] [CrossRef]
- Institute of Construction Technology of Catalonia ITeC. BEDEC Construction Cost Bases. Available online: https://en.itec.cat/itec/history/ (accessed on 4 March 2019).
- Marrero, M.; Ramirez-De-Arellano, A. The building cost system in Andalusia: Application to construction and demolition waste management. Constr. Manag. Econ. 2010, 28, 495–507. [Google Scholar] [CrossRef]
- Banco de Precios. ACCD Andalusia Construction Cost Database. Available online: https://www.juntadeandalucia.es/organismos/fomentoinfraestructurasyordenaciondelterritorio/areas/vivienda-rehabilitacion/planes-instrumentos/paginas/bcca-sept-2017.html (accessed on 18 March 2021).
- Ramírez-de-Arellano-Agudo, A. Presupuestación de Obras/Budgeting of Works; Construcciones Arquitectónicas II: Sevilla, Spain, 2010; ISBN 844721205X, 9788447212057. [Google Scholar]
- Pulselli, R.M.; Simoncini, E.; Pulselli, F.M.; Bastianoni, S. Emergy analysis of building manufacturing, maintenance and use: Em-building indices to evaluate housing sustainability. Energy Build. 2007, 39, 620–628. [Google Scholar] [CrossRef]
- Pulselli, R.M.; Pulselli, F.M.; Mazzali, U.; Peron, F.; Bastianoni, S. Emergy based evaluation of environmental performances of Living Wall and Grass Wall systems. Energy Build. 2014, 73, 200–211. [Google Scholar] [CrossRef]
- Alba-Rodríguez, M.D.; Machete, R.; Glória Gomes, M.; Paula Falcão, A.; Marrero, M. Holistic model for the assessment of restoration projects of heritage housing. Case studies in Lisbon. Sustain. Cities Soc. 2021, 67, 102742. [Google Scholar] [CrossRef]
- Alba-Rodríguez, M.D.; Martínez-Rocamora, A.; González-Vallejo, P.; Ferreira-Sánchez, A.; Marrero, M. Building rehabilitation versus demolition and new construction: Economic and environmental assessment. Environ. Impact Assess. Rev. 2017, 66, 115–126. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Rincón, L.; Vilariño, V.; Pérez, G.; Castell, A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Freire Guerrero, A.; Marrero Meléndez, M.; Muñoz Martín, J. Incorporación de huella de carbono y huella ecológica en las bases de costes de construcción. Estudio de caso de un proyecto de urbanización en Écija, España. Hábitat Sustentable 2016, 6, 6–17. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Rocamora, A.; Solís-Guzmán, J.; Marrero-Meléndez, M. A structure for the quantity surveillance of costs and environmental impact of cleaning and maintenance in buildings. In The Sustainable Renovation of Buildings and Neighbourhoods; Bentham Science Publishers: Sharjah, United Arab Emirates, 2015; pp. 103–118. [Google Scholar]
- Solís-Guzmán, J.; Martínez-Rocamora, A.; Marrero, M. Methodology for Determining the Carbon Footprint of the Construction of Residential Buildings; Springer: Singapore, 2014; pp. 49–83. [Google Scholar]
- Chastas, P.; Theodosiou, T.; Kontoleon, K.J.; Bikas, D. Normalising and assessing carbon emissions in the building sector: A review on the embodied CO2 emissions of residential buildings. Build. Environ. 2018, 130, 212–226. [Google Scholar] [CrossRef]
- Freire Guerrero, A.; Marrero, M. Evaluation of the embodied energy of a construction project using the budget. Habitat Sustentable 2015, 5, 54–63. [Google Scholar]
- Ruiz-Pérez, M.R.; Alba Rodríguez, M.D.; Marrero, M. Systems of Water Supply and Sanitation for Domestic Use. Water Footprint and Carbon Footprint Evaluation: First Results. In Proceedings of the IV International Congress on Construction and Building Research, Santa Cruz de Tenerife, Spain, 14–15 December 2017. [Google Scholar]
- Dixit, M.K. Life cycle recurrent embodied energy calculation of buildings: A review. J. Clean. Prod. 2019, 209, 731–754. [Google Scholar] [CrossRef]
- WFN Water Footprint Network. Available online: https://waterfootprint.org/en/ (accessed on 19 June 2020).
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. Water Footprint Manual: State of the Art 2009; Water Footprint Network: Enschede, The Netherlands, 2009. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual; Water Footprint Network: Enschede, The Netherlands, 2011; ISBN 9781849712798. [Google Scholar]
- Martínez-Rocamora, A.; Solís-Guzmán, J.; Marrero, M. LCA databases focused on construction materials: A review. Renew. Sustain. Energy Rev. 2016, 58, 565–573. [Google Scholar] [CrossRef]
- EN 15804:2012+A1:2013. Sustainability of Construction Works—Environmental Product Declarations—Core Rules for the Product Category of Construction Products. 2012. Available online: https://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT,FSP_ORG_ID:40703,481830&cs=1B0F862919A7304F13AE6688330BBA2FF (accessed on 1 March 2020).
- IDAE Factores de emisión de CO2/CO2 emission factors. Available online: https://www.idae.es/node/269 (accessed on 3 March 2020).
- REE. El Sistema Eléctrico Español/The Spanish Electric System; Red Eléctrica Española: Alcobendas, Spain, 2014. Available online: https://www.ree.es/sites/default/files/downloadable/inf_sis_elec_ree_2014_v2.pdf (accessed on 4 March 2019).
- Ecoinvent Association Ecoinvent Database v3. Available online: http://www.ecoinvent.org/database/database.html (accessed on 22 February 2018).
- IDAE Factores de Emisión de CO2/CO2 Emission Factors, Instituto para la Diversificación y Ahorro de la Energía. Available online: https://energia.gob.es/desarrollo/EficienciaEnergetica/RITE/Reconocidos/Reconocidos/Otros%20documentos/Factores_emision_CO2.pdf (accessed on 4 March 2019).
- IETcc Construction Elements Catalogue/Catálogo de Elementos Constructivos del CTE. Eduardo Torroja Institute of Construction Sciences/Instituto Eduardo Torroja de Ciencias de la Construcción (IETcc). Available online: https://www.csic.es/en/investigacion/institutos-centros-y-unidades/eduardo-torroja-institute-construction-science or https://www.ietcc.csic.es/en/ (accessed on 1 March 2021).
- TBC. Technical Building Code (TBC): Royal Decree 314/2006 of 17 March 2006, approving the Technical Building Code; Ministerio de Vivienda: Alcobendas, Spain, 2006; ISBN 843401632X. [Google Scholar]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.-J.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G. The ecoinvent database: Overview and methodological framework. Int. J. Life Cycle Assess. 2005, 10, 3–9. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Virtual water trade between nations: A global mechanism affecting regional water systems. IGBP Glob. Chang. News Lett. 2003, 54, 2–4. [Google Scholar]
- Rivero Camacho, C. Estudio de Huellas en el Ciclo de Vida del Edificio Residencial. Ph.D. Thesis, Universidad de Sevilla, Sevilla, Spain, 2020. [Google Scholar]
- González-Vallejo, P.; Muñoz-Sanguinetti, C.; Marrero, M. Environmental and economic assessment of dwelling construction in Spain and Chile. A comparative analysis of two representative case studies. J. Clean. Prod. 2019, 208, 621–635. [Google Scholar] [CrossRef]
- Solís-Guzmán, J.; Marrero, M.; Guisado García, D. Modelo de cuantificación y presupuestación en la gestión de residuos de construcción y demolición. Aplicación a viales. Carreteras 2014, 4, 6–18. [Google Scholar]
- UNE-EN_ISO_14025. Environmental Labels and Declarations—Type III Environmental Declarations—Principles and Procedures; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Eriksen, M.H.; Bjarløv, S.P.; Rode, C. Strengthening requirement specification in sustainable procurement—An investigation of challenges. J. Green Build. 2017, 12, 107–122. [Google Scholar] [CrossRef]
- Gao, G.-X. Sustainable Winner Determination for Public-private Partnership Infrastructure Projects in Multi-Attribute Reverse Auctions. Sustainability 2018, 10, 4129. [Google Scholar] [CrossRef] [Green Version]
Impact Source | |
---|---|
Machinery Impact | No. Equation Number |
IMCOMB: Combustion engine machinery (MJ; tCO2eq; m3 of water) | |
IMCOMB = V × IUCOMB | (1) |
V: diesel consumption (L) | |
V = (P × TU × Per) | (2) |
P: power of the electric engine (kW) | |
TU: time used (hours) | |
Per: performance, liter of diesel or petrol consumed per engine power (L/kWh) | |
IUCOMB: unit impact of diesel or petrol (MJ/L; tCO2eq/L; m3 of water/L), data: [55] | |
IMELEC: Electric engine machinery (MJ; tCO2eq; m3) | |
IUELEC = (Pot × TU) × IUELEC | (3) |
IUELEC: unit impact of electric mix (MJ/L; tCO2eq/L; m3 of water/L), data: [48,56] | |
ECOMB: emission factor of the diesel or petrol (kg CO2/L). In Spain: 2.616 kg CO2/L [56] | |
EELEC: emission factor of electric mix (kg CO2/kWh). In Spain: 0.248 kg CO2/kWh [54] | |
IMPACT of CONSTRUCTION MATERIALS | |
IMAT: EE, CF, HF (MJ; tCO2eq; m3) | |
IMAT = (Σi Cmi × IUMAT) + (IUTRAN × Cmi) | (4) |
IUMAT: unit impact per material (MJ; tCO2eq.; m3 of water, all per kg of material) | |
IUTRAN: unit impact of material transport (MJ; tCO2eq.; m3 of water, all per kg of material) | |
Cmi: construction material i (kg) |
ACCD Code. | Description | CF (kg CO2 eq./m2) | WF (m3 Water/m2) | EE (MJ/m2) | Cost (€/m2) | ||||
---|---|---|---|---|---|---|---|---|---|
PROJECT | P1 | P2 | P1 | P2 | P1 | P2 | P1 | P2 | |
15A | Civil work | 35.3 | 47.7 | 0.94 | 1.13 | 582.4 | 936.5 | 35.0 | 58.5 |
15R | Connections | 14.9 | 3.6 | 0.42 | 0.10 | 294.1 | 69.4 | 17.9 | 3.5 |
15P | Pavements | 91.0 | 107.7 | 1.34 | 2.27 | 685.8 | 1316.8 | 36.0 | 45.8 |
15J | Gardening and irrigation network | - | 12.4 | - | 0.58 | - | 169.6 | - | 25.2 |
15M | Sustainable urban drainage systems | - | 14.3 | - | 1.26 | - | 355.9 | - | 14.4 |
15W | Other urban systems | - | 70.8 | - | 1.91 | - | 1186.56 | - | 57.91 |
TOTAL | 141.2 | 256.5 | 2.70 | 7.25 | 1562.4 | 4034.8 | 88.9 | 205.3 |
Code | URef | Materials in P1 | Weight (kg/m2) | Weight (%) | CF (tCO2eq/m2) | CF (%) | WF (m3/m2) | WF (%) | EE (MJ/m2) | EE (%) |
CH45020 | m3 | CONCRETE HM-25/P/40/I | 2.92 × 102 | 13.7 | 3.36 × 10−2 | 27.2 | 5.12 × 10−1 | 19.2 | 2.04 × 102 | 15.9 |
UP01800 | u | PAVER VIBRATED CONCRETE | 9.67 × 101 | 4.5 | 2.46 × 10−2 | 19.9 | 2.15 × 10−1 | 8.1 | 1.42 × 102 | 11.0 |
UA0$$$$ | u/m | VITRIFIED CERAMIC PIECES | 2.09 × 101 | 1.0 | 1.73 × 10−2 | 14.0 | 3.15 × 10−1 | 11.8 | 3.21 × 102 | 25.0 |
UP03820 | m | CURB CONCRETE | 5.19 × 101 | 2.4 | 1.49 × 10−2 | 12.1 | 1.83 × 10−1 | 6.9 | 8.74 × 101 | 6.8 |
AW00100 | m3 | ARTIFICIAL AGGREGATES | 5.77 × 102 | 27.1 | 6.40 × 10−3 | 5.2 | 6.93 × 10−1 | 25.9 | 9.26 × 101 | 7.2 |
US1010$ | m | DUCTILE CAST IRON | 2.66 × 100 | 0.1 | 4.33 × 10−3 | 3.5 | 8.13 × 10−2 | 3.0 | 7.37 × 101 | 5.7 |
AP00100 | m3 | SIFTED CHALKY SAND | 4.25 × 102 | 20.0 | 3.86 × 10−3 | 3.1 | 4.25 × 10−2 | 1.6 | 2.23 × 101 | 1.7 |
TOTAL IN PROJECT P1 | 1.47 × 103 | 68.9 | 1.05 × 10−1 | 85.0 | 2.04 × 100 | 76.5 | 9.43 × 102 | 73.3 | ||
Code | URef | Materials in P2 | Weight (kg/m2) | Weight (%) | CF (tCO2eq/m2) | CF (%) | WF (m3/m2) | WF (%) | EE (MJ/m2) | EE (%) |
UA0$$$$ | u/m | VITRIFIED CERAMIC PIECES | 4.06 × 101 | 1.0 | 3.35 × 10−2 | 16.0 | 6.10 × 10−1 | 8.4 | 6.23 × 102 | 18.3 |
UP037$$ | u | PHOTOCATALYTIC CONCRETE | 1.54 × 102 | 3.7 | 3.31 × 10−2 | 15.8 | 4.68 × 10−1 | 6.5 | 2.31 × 102 | 6.8 |
UU01$$$ | u | URBAN FURNITURE (METALLIC) | 4.31 × 100 | 0.1 | 3.27 × 10−2 | 15.6 | 6.85 × 10−1 | 9.5 | 5.47 × 102 | 16.1 |
CH420$$ | m | MASS AND REINFORCED CONCRETE | 2.83 × 102 | 6.8 | 3.18 × 10−2 | 15.2 | 4.76 × 10−1 | 6.6 | 1.75 × 102 | 5.1 |
AW00100 | m3 | ARTIFICIAL AGGREGATES | 1.26 × 103 | 30.2 | 1.34 × 10−2 | 6.4 | 1.50 × 100 | 20.7 | 1.80 × 102 | 5.3 |
AP00100 | m3 | SOILS SEATING AND FILLINGS | 1.63 × 103 | 39.2 | 1.33 × 10−2 | 6.4 | 6.23 × 10−1 | 8.6 | 6.93 × 101 | 2.0 |
UA006$$ | u | PRECAST CONCRETE ELEMENTS | 5.08 × 101 | 1.2 | 9.33 × 10−3 | 4.5 | 1.01 × 10−1 | 1.4 | 5.45 × 101 | 1.6 |
UA03140 | u | PVC PIPE DRAINER, DIAM. 200 mm | 1.09 × 100 | 0.0 | 3.54 × 10−3 | 1.7 | 5.49 × 10−1 | 7.6 | 9.71 × 101 | 2.9 |
UP015$$ | kg | BITUMEN AND ASPHALT MIXTURES | 4.46 × 101 | 1.1 | 1.04 × 10−2 | 5.0 | 3.56 × 10−1 | 4.9 | 4.71 × 102 | 13.8 |
TOTAL IN PROJECT P2 | 3.47 × 103 | 83.2 | 1.81 × 10−1 | 86.4 | 5.36 × 100 | 74.3 | 2.45 × 103 | 74.4 |
CODE | U | Materials in Project P2 | CF (kg CO2 eq.) | CF (%) | WF m3) | WF (%) | EE (GJ) | EE (%) |
---|---|---|---|---|---|---|---|---|
UP03710 | u | PHOTOCATALYTIC CONCRETE PAVEMENT PIECES | 377.66 | 15.79 | 5341 | 6.48 | 2641 | 6.80 |
UP03711 | u | CONCRETE PAVEMENT PIECES WITH EPD | 190.87 | 8.66 | 2656 | 3.33 | 738 | 2.00 |
UP01510 | kg | BITUMEN AND ASPHALT MIXTURES | 119.35 | 4.99 | 4075 | 4.94 | 5372 | 13.83 |
UP01511 | kg | BITUMEN AND ASPHALT MIXTURES WITH EPD | 76.57 | 3.26 | 3982 | 4.84 | 2071 | 5.83 |
UA03140 | u | PVC PIPE DRAINER, DIAM. 200 mm | 42.88 | 1.69 | 6264 | 7.60 | 1390 | 2.85 |
UA04140 | u | PP STRUCTURED WALL DRAINAGE PIPE, DIAM. 200 mm WITH EPD | 45.86 | 1.92 | 2469 | 3.14 | 1783 | 4.54 |
Environmental Classification | Project P1 | Project P2 | Eco-label ISO | ||
---|---|---|---|---|---|
Type III | Type I | Type II | |||
GROUP A | concrete and cement | 3 | 2 | 1 | |
aggregate and stone | |||||
ceramics and brick | metal and alloy | ||||
GROUP B | metal and alloy | ceramics and brick | 2 | 1 | 1 |
plastics | |||||
GROUP C | plastics | water | 1 | 0 | 0 |
water | gardening | ||||
bitumen and asphalt | |||||
gardening | wood | ||||
other | other |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Pérez, M.R.; Alba-Rodríguez, M.D.; Rivero-Camacho, C.; Solís-Guzmán, J.; Marrero, M. The Budget as a Basis for Ecological Management of Urbanization Projects. Case Study in Seville, Spain. Sustainability 2021, 13, 4078. https://doi.org/10.3390/su13074078
Ruiz-Pérez MR, Alba-Rodríguez MD, Rivero-Camacho C, Solís-Guzmán J, Marrero M. The Budget as a Basis for Ecological Management of Urbanization Projects. Case Study in Seville, Spain. Sustainability. 2021; 13(7):4078. https://doi.org/10.3390/su13074078
Chicago/Turabian StyleRuiz-Pérez, María Rocío, María Desirée Alba-Rodríguez, Cristina Rivero-Camacho, Jaime Solís-Guzmán, and Madelyn Marrero. 2021. "The Budget as a Basis for Ecological Management of Urbanization Projects. Case Study in Seville, Spain" Sustainability 13, no. 7: 4078. https://doi.org/10.3390/su13074078
APA StyleRuiz-Pérez, M. R., Alba-Rodríguez, M. D., Rivero-Camacho, C., Solís-Guzmán, J., & Marrero, M. (2021). The Budget as a Basis for Ecological Management of Urbanization Projects. Case Study in Seville, Spain. Sustainability, 13(7), 4078. https://doi.org/10.3390/su13074078