Land-Use and Land-Cover (LULC) Change Detection and the Implications for Coastal Water Resource Management in the Wami–Ruvu Basin, Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land-Use and Land-Cover Data
2.2.1. Landsat Satellite Imagery Acquisitions and Pre-Processing
2.2.2. LULC Classification
2.2.3. Accuracy Assessment of LULCCs Classification
2.3. Hydro-Climatic Data
2.4. Population Data
- refers to the projected number of people in the future.
- refers to the number of people at the initial year (i.e., 2012).
- is the base of the natural logarithms (i.e., 2.71828).
- is the rate of increase in population (i.e., natural increase divided by 100).
- is the time difference from the beginning to the projected year.
3. Results
3.1. LULC Types
3.2. Temporal Change and Spatial Distribution of LULC
3.3. Water Discharge Trends in the Basin
3.4. Precipitation and Temperature Trends
3.5. Population Trends
4. Discussion
4.1. Key Issues Identified from LULCC over the Past 28 Years (1990–2018)
4.2. Implication of LULCC for Water Resource Management
4.3. Strategies for Sustaining Water Resource in the Basin
4.3.1. Strengthening Management of Water and Adopting Efficient Water Uses
4.3.2. Considering Reviews and Effective Implementation of the Legal Frameworks for Water Resource Management
4.3.3. Periodic LULCC Monitoring
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zhou, P.; Huang, J.; Pontius, R.G.; Hong, H. Land classification and change intensity analysis in a coastal watershed of Southeast China. Sensors 2014, 14, 11640–11658. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Liu, Z. Using satellite imagery and GIS for land-use and land-cover change mapping in an estuarine watershed. Int. J. Remote Sens. 2005, 26, 5275–5296. [Google Scholar] [CrossRef]
- Castillo, C.R.; Güneralp, İ.; Güneralp, B. Influence of changes in developed land and precipitation on hydrology of a coastal Texas watershed. Appl. Geogr. 2014, 47, 154–167. [Google Scholar] [CrossRef]
- Sugimoto, R.; Kasai, A.; Tait, D.R.; Rihei, T.; Hirai, T.; Asai, K.; Tamura, Y.; Yamashita, Y. Traditional land use effects on nutrient export from watersheds to coastal seas. Nutr. Cycl. Agroecosyst. 2021, 119, 7–21. [Google Scholar] [CrossRef]
- Huang, J.; Pontius, R.G.; Li, Q.; Zhang, Y. Use of intensity analysis to link patterns with processes of land change from 1986 to 2007 in a coastal watershed of southeast China. Appl. Geogr. 2012, 34, 371–384. [Google Scholar] [CrossRef]
- Rawat, J.S.; Biswas, V.; Kumar, M. Changes in land use/cover using geospatial techniques: A case study of Ramnagar town area, district Nainital, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2013, 16, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Kumari, M.; Das, A.; Sharma, R.; Saikia, S. Change detection analysis using multi temporal satellite data of Poba reserve forest, Assam and Arunachal Pradesh. Int. J. Geomat. Geosci. 2014, 4, 517–527. [Google Scholar]
- Rawat, J.S.; Kumar, M. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2015, 18, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Gebru, B.; Lamchin, M.; Kayastha, R.; Lee, W.-K. Land Use and Land Cover Change Detection and Prediction in the Kathmandu District of Nepal Using Remote Sensing and GIS. Sustainability 2020, 12, 3925. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, Y.; Shi, P.; Zhang, L.; Pan, J.; Zhao, H. Land use and land cover change and driving mechanism in the arid inland river basin: A case study of Tarim River, Xinjiang, China. Environ. Earth Sci. 2013, 68, 591–604. [Google Scholar] [CrossRef]
- Munoth, P.; Goyal, R. Impacts of land use land cover change on runoff and sediment yield of Upper Tapi River Sub-Basin, India. Int. J. River Basin Manag. 2020, 18, 177–189. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Y.; Zhang, Z. Coupled effects of natural and anthropogenic controls on seasonal and spatial variations of river water quality during baseflow in a coastal watershed of Southeast China. PLoS ONE 2014, 9, e91528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, D.; Dac Ve, N.; Su, J.; Vuong, B.; Tran Dinh, L. Coastal morphological changes in the Red River Delta under increasing natural and anthropic stresses. Anthr. Coasts 2019, 2, 51–71. [Google Scholar] [CrossRef]
- Dada, O.A.; Agbaje, A.O.; Adesina, R.B.; Asiwaju-Bello, Y.A. Effect of coastal land use change on coastline dynamics along the Nigerian Transgressive Mahin mud coast. Ocean Coast. Manag. 2019, 168, 251–264. [Google Scholar] [CrossRef]
- Barnieh, B.; Jia, L.; Menenti, M.; Zhou, J. Mapping Land Use Land Cover Transitions at Different Spatiotemporal Scales in West Africa. Sustainability 2020, 12, 8565. [Google Scholar] [CrossRef]
- Ervinia, A.; Huang, J.; Zhang, Z. Nitrogen sources, processes, and associated impacts of climate and land-use changes in a coastal China watershed: Insights from the INCA-N model. Mar. Pollut. Bull. 2020, 159, 111502. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Cui, S.; Xu, L.; Ding, S.; Nie, W. Linking land-use change, landscape patterns, and ecosystem services in a coastal watershed of southeastern China. Glob. Ecol. Conserv. 2020, 23, e01177. [Google Scholar] [CrossRef]
- Bosch, D.D.; Sullivan, D.G.; Sheridan, J.M. Hydrologic Impacts of Land-Use Changes in Coastal Plain Watersheds. Trans. ASABE 2006, 49, 423–432. [Google Scholar] [CrossRef]
- Langat, P.K.; Kumar, L.; Koech, R.; Ghosh, M.K. Monitoring of land use/land-cover dynamics using remote sensing: A case of Tana River Basin, Kenya. Geocarto Int. 2019, 1–19. [Google Scholar] [CrossRef]
- Rimal, B.; Sharma, R.; Kunwar, R.; Keshtkar, H.; Stork, N.E.; Rijal, S.; Rahman, S.A.; Baral, H. Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosyst. Serv. 2019, 38, 100963. [Google Scholar] [CrossRef]
- Twisa, S.; Buchroithner, M. Land-Use and Land-Cover (LULC) Change Detection in Wami River Basin, Tanzania. Land 2019, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Nobert, J.; Jeremiah, J. Hydrological response of watershed systems to land use/cover change. A case of Wami River Basin. Open Hydrol. J. 2012, 6, 78–87. [Google Scholar] [CrossRef]
- Twisa, S.; Mwabumba, M.; Kurian, M.; Buchroithner, M.F. Impact of Land-Use/Land-Cover Change on Drinking Water Ecosystem Services in Wami River Basin, Tanzania. Resources 2020, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- FIU-GLOWS. Water Atlas of the Wami/Ruvu Basin. Available online: http://dpanther.fiu.edu/sobek/FIGW000010/00001 (accessed on 18 May 2020).
- Ngondo, J.M.; Cheng, H.; Dubi, A.M.; Norbet, J. Sustainable adaption strategies for freshwater supply-related challenges in coastal cities, Tanzania. J. East China Norm. Univ. 2020, 2020, 114–119. [Google Scholar]
- Nobert, J.; Skinner, J. Meeting Future Demand for Drinking Water Supply in Dar es Salaam: Hydrological Modelling of the Ruvu River and Assessment of Flows; IIED Working Paper; IIED: London, UK, 2016. [Google Scholar]
- Aziz, N.; Minallah, N.; Junaid, A.; Gul, K. Performance analysis of artificial neural network based land cover classification. Int. J. Mar. Environ. Sci. 2017, 11, 422–426. [Google Scholar]
- WRBWO. Wami/Ruvu Basin Annual Hydrological Report; WRBWO: Morogoro, Tanzania, 2008. [Google Scholar]
- USGS. Global Visualization Viewer 2020. Available online: https://glovis.usgs.gov/app?fullscreen=1 (accessed on 17 April 2020).
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press, Inc.: New York, NY, USA, 1995; p. 482. [Google Scholar]
- Thakkar, A.K.; Desai, V.R.; Patel, A.; Potdar, M.B. Post-classification corrections in improving the classification of Land Use/Land Cover of arid region using RS and GIS: The case of Arjuni watershed, Gujarat, India. Egypt. J. Remote Sens. Space Sci. 2017, 20, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.M.; Ventura, S.J. The integration of geographic data with remotely sensed imagery to improve classification in an urban area. Photogramm. Eng. Remote Sens. 1995, 61, 993–998. [Google Scholar]
- Rwanga, S.S.; Ndambuki, J.M. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci. 2017, 8, 611. [Google Scholar] [CrossRef] [Green Version]
- Tilahun, A.; Teferie, B. Accuracy assessment of land use land cover classification using Google Earth. Am. J. Environ. Prot. 2015, 4, 193–198. [Google Scholar] [CrossRef]
- UNDESA-PD. Population Division. In World Population Prospects: The 2015 Revision, Key Findings and Advance Tables; Working Paper No. ESA/P/WP.241; Available online: https://www.un.org/en/development/desa/publications/world-population-prospects-2015-revision.html (accessed on 12 January 2021).
- Kashaigili, J.; Majaliwa, A. Integrated assessment of land use and cover changes in the Malagarasi River Catchment in Tanzania. Phys. Chem. Earth Parts A B C 2010, 35, 730–741. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R. Analysis of spatio-temporal dynamics of land use and cover changes in Western Kenya. Geocarto Int. 2021, 36, 376–391. [Google Scholar] [CrossRef]
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 2015, 18, 251–259. [Google Scholar] [CrossRef] [Green Version]
- JICA. The Study on Water Resources Management and Development in Wami/Ruvu Basin in the United Republic of Tanzania. Available online: https://www.jica.go.jp/tanzania/english/index.html (accessed on 22 April 2020).
- Kabogo, J.E.; Anderson, E.P.; Hyera, P.; Kajanja, G. Facilitating public participation in water resources management: Reflections from Tanzania. Ecol. Soc. 2017, 22, 26. [Google Scholar] [CrossRef] [Green Version]
- URT. The Kilimo Kwanza Resolution; URT: Dar es Salaam, Tanzania, 2009. [Google Scholar]
- Seeteram, A.N.; Hyera, T.P.; Kaaya, T.L.; Lalika, C.S.M.; Anderson, P.E. Conserving Rivers and Their Biodiversity in Tanzania. Water 2019, 11, 2612. [Google Scholar] [CrossRef] [Green Version]
- Cooksey, B. What Difference Has CAADP Made to Tanzanian Agriculture? Available online: https://assets.publishing.service.gov.uk/media/57a08a45ed915d3cfd00069c/FAC_Working_Paper_074.pdf (accessed on 23 September 2020).
- Alfasi, N.; Benenson, I.; Almagor, J. The actual impact of comprehensive land-use plans: Insights from high resolution observations. Land Use Policy 2012, 29, 862–877. [Google Scholar] [CrossRef]
- Loh, C.G. Assessing and Interpreting Non-conformance in Land-use Planning Implementation. Plan. Pract. Res. 2011, 26, 271–287. [Google Scholar] [CrossRef]
- Enoguanbhor, E.; Gollnow, F.; Nielsen, J.; Lakes, T.; Walker, B. Land Cover Change in the Abuja City-Region, Nigeria: Integrating GIS and Remotely Sensed Data to Support Land Use Planning. Sustainability 2019, 11, 1313. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.; Worku, H. Quantification of the land use/land cover dynamics and the degree of urban growth goodness for sustainable urban land use planning in Addis Ababa and the surrounding Oromia special zone. J. Urban Manag. 2019, 8, 145–158. [Google Scholar] [CrossRef]
- Kimaro, D. Land for Agriculture in Tanzania: Challenges and Opportunities. J. Land Soc. 2014, 1, 91–102. [Google Scholar]
- Qian, H.; Wong, C. Master Planning under Urban–Rural Integration: The Case of Nanjing, China. Urban Policy Res. 2012, 30, 403–421. [Google Scholar] [CrossRef]
- Lusugga Kironde, J.M. The regulatory framework, unplanned development and urban poverty: Findings from Dar es Salaam, Tanzania. Land Use Policy 2006, 23, 460–472. [Google Scholar] [CrossRef]
- Miraji, M.; Liu, J.; Zheng, C. The Impacts of Water Demand and Its Implications for Future Surface Water Resource Management: The Case of Tanzania’s Wami Ruvu Basin (WRB). Water 2019, 11, 1280. [Google Scholar] [CrossRef] [Green Version]
- Wambura, F. Stream Flow Response to Skilled and Non-linear Bias Corrected GCM Precipitation Change in the Wami River sub-basin, Tanzania. Br. J. Environ. Clim. Chang. 2014, 4, 389–408. [Google Scholar] [CrossRef]
- Wambura, F.J.; Ndomba, P.M.; Kongo, V.; Tumbo, S.D. Uncertainty of runoff projections under changing climate in Wami River sub-basin. J. Hydrol. Reg. Stud. 2015, 4, 333–348. [Google Scholar] [CrossRef] [Green Version]
- Darwall, W.; Smith, K.; Lowe, T.; Vié, J.-C. The Status and Distribution of Freshwater Biodiversity in Eastern Africa. In IUCN SSC Freshwater Biodiversity Assessment Programme; IUCN: Gland, Switzerland; Cambridge, UK, 2009. [Google Scholar]
- Wambura, F.J.; Dietrich, O.; Lischeid, G. Improving a distributed hydrological model using evapotranspiration-related boundary conditions as additional constraints in a data-scarce river basin. Hydrol. Process. 2018, 32, 759–775. [Google Scholar] [CrossRef]
Date | Satellite | Sensor | Path/Row | Date | Satellite | Sensor | Path/Row |
---|---|---|---|---|---|---|---|
30 July 1990 | Landsat 5 | TM | 168/64 | 16 August 2018 | Landsat 8 | OLI | 168/64 |
1 August 1990 | Landsat 5 | TM | 167/64 | 17 August 2018 | Landsat 8 | OLI | 167/64 |
4 August 1990 | Landsat 5 | TM | 166/64 | 19 August 2018 | Landsat 8 | OLI | 166/64 |
5 August 1990 | Landsat 5 | TM | 168/65 | 20 August 2018 | Landsat 8 | OLI | 168/65 |
7 August 1990 | Landsat 5 | TM | 167/65 | 1 September 2018 | Landsat 8 | OLI | 167/65 |
8 August 1990 | Landsat 5 | TM | 166/65 | 2 September 2018 | Landsat 8 | OLI | 166/65 |
SN | Land-Cover Type | Land-Use Description | Sample Area Recognition |
---|---|---|---|
1 | Agriculture | Crop fields and fallow lands | Light green colour |
2 | Bare soil | Exposed soil and barren lands | Brown colour |
3 | Bushland | Land comprised of plants and open bush | Moderate green colour |
4 | Forest | Tree crown cover, woodland, and thickest | Dark green colour |
5 | Grassland | Land composed of grass | Light green/brown colour |
6 | Built-up | Housing, industries, transportation, and mixed urban | Silver/purple colour |
7 | Water | Rivers, open water, lakes, ponds, and water reservoirs | Blue colour |
8 | Wetland | Stagnant water bodies, swamp, and marsh | Light blue colour |
(a) | ||||||||||
LULC | Ground Truth Pixels | |||||||||
Agriculture | Bare Soil | Bushland | Forest | Grassland | Built up | Water | Wetland | Total | U_Accuracy | |
Agriculture | 224 | 1 | 1 | 11 | 41 | 5 | 0 | 1 | 284 | 0.79 |
Bare Soil | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.50 |
Bushland | 2 | 0 | 10 | 10 | 0 | 0 | 0 | 0 | 22 | 0.45 |
Forest | 8 | 0 | 4 | 388 | 10 | 0 | 1 | 4 | 415 | 0.93 |
Grassland | 40 | 0 | 3 | 21 | 131 | 11 | 1 | 3 | 210 | 0.62 |
Built up | 2 | 0 | 2 | 0 | 2 | 23 | 0 | 0 | 29 | 0.79 |
Water | 0 | 0 | 0 | 1 | 0 | 0 | 20 | 2 | 23 | 0.87 |
Wetland | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 11 | 15 | 0.44 |
Total | 277 | 2 | 20 | 432 | 184 | 39 | 25 | 21 | 1000 | 0 |
P_Accuracy | 0.81 | 0.50 | 0.50 | 0.90 | 0.71 | 0.59 | 0.80 | 0.52 | - | 0.80 |
(b) | ||||||||||
LULC | Ground Truth Pixels | |||||||||
Agriculture | Bare Soil | Bushland | Forest | Grassland | Built up | Water | Wetland | Total | U_Accuracy | |
Agriculture | 1051 | 1 | 47 | 15 | 0 | 0 | 0 | 0 | 1114 | 0.94 |
Bare Soil | 43 | 59 | 0 | 0 | 0 | 0 | 0 | 0 | 102 | 0.58 |
Bushland | 75 | 0 | 950 | 225 | 0 | 0 | 0 | 0 | 1250 | 0.76 |
Forest | 59 | 0 | 89 | 1981 | 0 | 0 | 0 | 0 | 2129 | 0.93 |
Grassland | 81 | 0 | 36 | 22 | 210 | 0 | 0 | 0 | 349 | 0.60 |
Built up | 3 | 0 | 5 | 0 | 0 | 38 | 0 | 0 | 46 | 0.83 |
Water | 0 | 0 | 4 | 3 | 0 | 0 | 1 | 1 | 9 | 0.11 |
Wetland | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 4 | 9 | 0.44 |
Total | 1315 | 60 | 1138 | 2246 | 210 | 38 | 1 | 5 | 5008 | 0 |
P_Accuracy | 0.79 | 0.98 | 0.83 | 0.88 | 1 | 1 | 1 | 0.8 | - | 0.86 |
Land-Cover Type | 1990 | 2018 | Change over 1990–2018 | |||
---|---|---|---|---|---|---|
(ha) | % | (ha) | % | (ha) | % | |
+Agriculture | 705,416 | 10.6 | 1,482,554 | 22.2 | 777,138 | 11.6 |
+Bare Soil | 25,179 | 0.4 | 135,736 | 2.0 | 110,557 | 1.6 |
+Bushland | 1,116,020 | 16.7 | 1,665,843 | 24.9 | 549,823 | 8.2 |
−Forest | 3,881,673 | 58.1 | 2,853,587 | 42.7 | −1,028,086 | −15.4 |
−Grassland | 908,883 | 13.6 | 464,219 | 6.9 | −444,665 | −6.7 |
+Built up | 7226 | 0.1 | 60,560 | 0.9 | 53,334 | 0.8 |
−Water | 19,436 | 0.3 | 13,220 | 0.2 | −6216 | −0.1 |
−Wetland | 17,115 | 0.3 | 5231 | 0.1 | −11,884 | −0.2 |
(a) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Land-Cover Types Year: 1990 (Area in (ha) and Percentage (%)) | ||||||||||||
Zone A (ha) % | Zone B (ha) | % | Zone C (ha) | % | Zone D (ha) | % | Zone E (ha) | % | Zone F (ha) | % | ||
Agriculture | 363,918 | 22.12 | 18,756 | 1.30 | 105,374 | 6.60 | 82,741 | 10.38 | 57,250 | 8.08 | 77,207 | 15.79 |
Bare Soil | 20,518 | 1.25 | 708 | 0.05 | 1773 | 0.11 | 894 | 0.11 | 355 | 0.05 | 912 | 0.19 |
Bushland | 231,833 | 14.09 | 208,396 | 14.43 | 163,387 | 10.24 | 112,607 | 14.13 | 283,714 | 40.05 | 115,869 | 23.70 |
Forest | 718,717 | 43.69 | 1,162,929 | 80.55 | 1,052,989 | 65.98 | 464,227 | 58.26 | 297,072 | 41.93 | 184,608 | 37.75 |
Grassland | 301,965 | 18.36 | 49,399 | 3.42 | 265,531 | 16.64 | 133,638 | 16.77 | 65,445 | 9.24 | 92,711 | 18.96 |
Built up | 373 | 0.02 | 2 | 0.00 | 577 | 0.04 | 0 | 0.00 | 55 | 0.01 | 6205 | 1.27 |
Water | 6317 | 0.38 | 3382 | 0.23 | 1753 | 0.11 | 2010 | 0.25 | 476 | 0.07 | 5266 | 1.08 |
Wetland | 1461 | 0.09 | 250 | 0.02 | 4454 | 0.28 | 664 | 0.08 | 4090 | 0.58 | 6191 | 1.27 |
Total | 1,645,102 | 1,443,822 | 1,595,838 | 796,781 | 708,457 | 488,969 | ||||||
(b) | ||||||||||||
Land-Cover Types Year: 2018 (Area in (ha) and Percentage (%)) | ||||||||||||
Zone A (ha) % | Zone B (ha) | % | Zone C (ha) | % | Zone D (ha) | % | Zone E (ha) | % | Zone F (ha) | % | ||
Agriculture | 1,063,340 | 64.65 | 188,279 | 13.04 | 207,836 | 13.02 | 1886 | 0.24 | 12879 | 1.82 | 7867 | 1.61 |
Bare Soil | 133,237 | 8.10 | 341 | 0.02 | 1289 | 0.08 | 5 | 0.00 | 159 | 0.02 | 635 | 0.13 |
Bushland | 124,910 | 7.59 | 377,955 | 26.18 | 432,962 | 27.13 | 240,204 | 30.15 | 308,728 | 43.58 | 180,685 | 36.99 |
Forest | 121,172 | 7.37 | 745,899 | 51.66 | 811,634 | 50.86 | 550,432 | 69.09 | 374,731 | 52.89 | 248,842 | 50.94 |
Grassland | 192,369 | 11.70 | 127,392 | 8.82 | 132,785 | 8.32 | 2431 | 0.31 | 5986 | 0.84 | 2538 | 0.52 |
Built up | 9189 | 0.56 | 1377 | 0.10 | 7565 | 0.47 | 337 | 0.04 | 3074 | 0.43 | 38,999 | 7.98 |
Water | 541 | 0.03 | 1679 | 0.12 | 1289 | 0.08 | 1088 | 0.14 | 2643 | 0.37 | 5915 | 1.21 |
Wetland | 116 | 0.01 | 915 | 0.06 | 579 | 0.04 | 318 | 0.04 | 252 | 0.04 | 3047 | 0.62 |
Total | 1,644,874 | 1,443,837 | 1,595,939 | 796,701 | 708,452 | 488,528 |
Season | Average Discharge (m3) | Difference | |
---|---|---|---|
1990–2009 | 2010–2018 | ||
Long rainy | 5892 | 3863 | 2029 |
Short rainy | 4436 | 2683 | 1753 |
Dry | 1850 | 1502 | 348 |
Sectors of Use | WRB Region | Current Water Use (m3/year) | Projected Demand by 2035 (m3/year) |
---|---|---|---|
Agriculture | Dar es Salaam, Dodoma, Morogoro, Pwani | 830,000,000 | 12,50,000,000 |
Domestic | Dar es Salaam, Dodoma, Morogoro, Pwani | 400,000,000 | 570,000,000 |
Industry | Dar es Salaam, Morogoro | 100,000,000 | 380,000,000 |
WRB Region | Freshwater Supply (m3/day) | Freshwater Supply (m3/year) | Freshwater Demand (m3/year) |
---|---|---|---|
Dar es Salaam | 502,000 | 180,720,000 | 256,119,646 |
Tanga | 27,000 | 9,720,000 | 15,120,000 |
Pwani | 7,200 | 2,592,000 | 4,968,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngondo, J.; Mango, J.; Liu, R.; Nobert, J.; Dubi, A.; Cheng, H. Land-Use and Land-Cover (LULC) Change Detection and the Implications for Coastal Water Resource Management in the Wami–Ruvu Basin, Tanzania. Sustainability 2021, 13, 4092. https://doi.org/10.3390/su13084092
Ngondo J, Mango J, Liu R, Nobert J, Dubi A, Cheng H. Land-Use and Land-Cover (LULC) Change Detection and the Implications for Coastal Water Resource Management in the Wami–Ruvu Basin, Tanzania. Sustainability. 2021; 13(8):4092. https://doi.org/10.3390/su13084092
Chicago/Turabian StyleNgondo, Jamila, Joseph Mango, Ruiqing Liu, Joel Nobert, Alfonse Dubi, and Heqin Cheng. 2021. "Land-Use and Land-Cover (LULC) Change Detection and the Implications for Coastal Water Resource Management in the Wami–Ruvu Basin, Tanzania" Sustainability 13, no. 8: 4092. https://doi.org/10.3390/su13084092
APA StyleNgondo, J., Mango, J., Liu, R., Nobert, J., Dubi, A., & Cheng, H. (2021). Land-Use and Land-Cover (LULC) Change Detection and the Implications for Coastal Water Resource Management in the Wami–Ruvu Basin, Tanzania. Sustainability, 13(8), 4092. https://doi.org/10.3390/su13084092