The Urban Environment Impact of Climate Change Study and Proposal of the City Micro-Environment Improvement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics and Geographical Location of the Region
2.2. Proposal Principles
2.3. Hydrogeological Survey
2.3.1. Permeability of Infiltration Space
Hydropedological Survey
- Conditions for infiltration from the surface into the infiltration device by replacing the original soil with well-permeable soil or mixing the original soil with fine sand or other well-permeable material.
- Conditions for the accumulation of water volume from design rainfall for longer-term infiltration.
- Protection of the device against the ingress of unsuitable particles that would compromise the retention space, e.g., using geotextiles.
2.3.2. Surface Runoff Volume
2.4. Infiltration Space Volume
2.5. Design Rainfall
2.6. Infiltration Devices Proposal
2.7. Use of GIS in Territorial Analysis
2.8. Precipitation and Air Temperature Analysis of the Area of Interest
3. Results
3.1. Surface Runoff of the city
3.2. Locality proposal for the Application of Measures
3.3. Proposed Measure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewis, D.M. The Hellenistic Period. In Handbook of Ancient Water Technology; Wikander, Ö., Ed.; Brill: Leiden, The Netherlands; Boston, MA, USA, 2000; pp. 631–648. [Google Scholar]
- Evans, H.B. Water Distribution in Ancient Rome: The Evidence of Frontius; University of Michigan Press: Ann Arbor, MI, USA, 1994; ISBN -0-472-08446-3. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Zarkadoulas, N.; Angelakis, A.N.; Tchobanoglous, G. Urban water management in Ancient Greece: Legacies and lessons. ASCE J. Water Resour. Plan. Manag. 2007. [Google Scholar] [CrossRef] [Green Version]
- Jansen, M. Water supply and sewage disposal at Mohenjo-Daro. World Archaeol. 1989, 177–192, online 2010. [Google Scholar] [CrossRef]
- Sulas, F.; French, K.; Scarborough, V.L. Water and ancient cities: Urban supply systems. WIREs Water 2020, 7. [Google Scholar] [CrossRef]
- Altaweel, M. Southern Mesopotamia: Water and the rise of urbanism. WIREs Water 2019, 6, e1362. [Google Scholar] [CrossRef]
- Singh, P.K.; Dey, P.; Jaina, S.K.; Pradeep, P.; Mujumdar, P.P. Hydrology and water resources management in ancient India. Hydrol. Earth Syst. Sci. 2020, 24, 4691–4707. [Google Scholar] [CrossRef]
- De Feo, G.; Antoniou, G.; Fardin, H.F.; El-Gohary, F.; Zheng, X.Y.; Reklaityte, I.; Butler, D.; Yannopoulos, S.; Angelakis, A.N. The Historical Development of Sewers Worldwide. Sustainability 2014, 6, 3936–3974. [Google Scholar] [CrossRef] [Green Version]
- Rogers, D.K. Water culture in Roman society. Brill Res. Perspect. Anc. Hist. 2018, 1, 1–118. [Google Scholar] [CrossRef]
- Scobie, A. Slums, sanitation, and mortality in the Roman world. Klio 1986, 68, 399–433. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Wilderer, P.A.; Rose, J.B.; Hunter, M. Sanitation and wastewater technologies in ancient Roman cities. In Evolution of Sanitation and Wastewater Technologies through the Centuries; IWA Publishing: London, UK, 2014; Volume 13, ISBN 9781780404844. [Google Scholar] [CrossRef]
- Spellman, F.R. Handbook of Water and Wastewater Treatment Plant Operations; CRC Press: Boca Raton, FL, USA, 2013; ISBN 1-56670-627-0. [Google Scholar] [CrossRef]
- Staddon, C.; Ward, S.; DeVito, L.; Zuniga-Teran, A.; Gerlak, A.; Schoeman, Y.; Hart, A.; Booth, G. Contributions of green infrastructure to enhancing urban resilience. Environ. Syst. Decis. 2018, 38, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.F.T.; Wang, J.B. Ecological landscapes, water sensitive urban design and green infrastructure. Chin. Landscp. Archit. 2014, 4, 20–24. [Google Scholar]
- Liu, H.; Jia, Y.; Niu, C. “Sponge city” concept helps solve China’s urban water problems. Environ. Earth Sci. 2017, 76, 473–479. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Griths, J.A.; Higgitt, D.; Xu, S.; Zhu, F.; Tang, Y.-T.; Thorne, C.R. 2018 “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
- Charlesworth, S.M. A review of the adaptation and mitigation of global climate change using sustainable drainage in cities. J. Water Clim. Chang. 2010, 1, 165–180. [Google Scholar] [CrossRef]
- Mark, O.; Svensson, G.; König, A.; Linde, J.J. Analyses and Adaptation of Climate Change Impacts on Urban Drainage Systems. In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, Scotland, 31 August–5 September 2008; Available online: https://www.researchgate.net/publication/257343295_Analyses_and_Adaptation_of_Climate_Change_Impacts_on_Urban_Drainage_Systems (accessed on 27 July 2020).
- Grum, M.; Jørgensen, A.T.; Johansen, R.M.; Linde, J.J. The effect of climate change on urban drainage: An evaluation based on regional climate model simulation. Water Sci. Technol. 2006, 54, 9–15. [Google Scholar] [CrossRef]
- Kleidorfer, M.; Möderl, M.; Sitzenfrei, R.; Urich, C.; Rauch, W. A case independent approach on the impact of climate change effects on combined sewer system performance. Water Sci. Technol. 2009, 60, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Berggren, K.; Olofsson, M.; Viklander, M.; Svensson, G.; Gustafsson, A.-M. Hydraulic Impacts on Urban Drainage Systems due to Changes in Rainfall Caused by Climatic Change. J. Hydrol. Eng. 2012, 17, 92–98. [Google Scholar] [CrossRef]
- Shahrestani, M.; Yao, R.; Luo, Z.; Turkbeyler, E.; Davies, H. A field study of urban microclimates in London. Renew. Energy 2015, 73, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Yao, R.; Luo, Q.; Li, B. A simplified mathematical model for urban microclimate simulation. Build. Environ. 2011, 46, 253–265. [Google Scholar] [CrossRef]
- Overland, J.; Hall, R.; Hanna, E.; Karpechko, A.; Vihma, T.; Wang, M.; Zhang, X. The Polar Vortex and Extreme Weather: The Beast from the East in Winter 2018. Atmosphere 2020, 11, 664. [Google Scholar] [CrossRef]
- Kew, S.F.; Philip, S.Y.; Jan van Oldenborgh, G.; van der Schrier, G.; Otto, F.E.; Vautard, R. The exceptional summer heat wave in southern Europe 2017. Bull. Am. Meteorol. Soc. 2019, 100, S1–S4. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M. Impact of the winter polar vortex on greater North America. 1096. Int. J. Climatol. 2019, 39, 5815–5821. [Google Scholar] [CrossRef] [Green Version]
- Overland, J.; Ballinger, T.J.; Cohen, J.; Francis, J.; Hanna, E.; Jaiser, R.; Kim, B.M.; Kim, S.-J.; Ukita, J.; Vihma, T.; et al. How do intermittency and simultaneous processes obfuscate the Arctic influence on midlatitude winter extreme weather events? Environ. Res. Lett. 2021, in press. [Google Scholar] [CrossRef]
- Akbari, H.; Cartalis, C.; Kolokotsa, D.; Muscio, A.; Pisello, A.L.; Rossi, F.; Santamouris, M.; Synnef, A.; Wong, N.H.; Zinzi, M. Local climate change and urban heat island mitigation techniques—The state of the art. J. Civ. Eng. Manag. 2015, 22, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Aflaki, A.; Mirnezhad, M.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Omrany, H.; Wang, Z.-H.; Akbari, H. Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities 2017, 62, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Pokrývková, J.; Jurík, Ľ. Water Retention in Urban Areas in the Danube Region: Study on Facts, Activities, Measures and Their Financial Assessment; Slovak University of Agriculture: Nitra, Slovkia, 2020; ISBN 9788055222998. [Google Scholar] [CrossRef]
- FHH (Freieund Hansestadt Hamburg, Behördefür Umweltund Energie). Leitfadenzur Versickerungspotenzialkarte. ErstelltimRahmendes Projekts RISA—Regen Infra Struktur Anpassung, AK Kartenwerkder AG Siedlungswasserwirtschaft/QTTechnische Grundlagen. Hamburg. Available online: http://www.hamburg.de/contentblob/4305390/057e02747c2f0446eae94721c5e6ab28/data/leitfaden-versickerungspotentialkarte.pdf (accessed on 10 June 2020).
- Wang, R.; Eckelman, M.J.; Zimmerman, J.B. Consequential environmental and economic life cycle assessment of green and gray stormwater infrastructures for combined sewer systems. Environ. Sci. Technol. 2013, 47, 11189–11198. [Google Scholar] [CrossRef] [PubMed]
- Mahabadi, M. Regenwasserversickerung, Regenwassernutzung. Plan. Bauweisen 2012, 255 S. [Google Scholar]
- Strukturplan Regenwasser 2030. Zukunftsfähiger Umgang mit Regenwasser in Hamburg. Available online: https://www.hamburg.de/contentblob/5052102/ce82e43a889d30427957ce0311f78b9d/data/d-risa-strukturplan-regenwasser-2030.pdf (accessed on 10 June 2020).
- Kabelková, I. Dešťovou vodu ve městě chceme, ale neumíme ji tam udržet. In Proceedings of the Konference Počítáme s Vodou, Hospodaření s Vodou Jako Nástroj k Rozvoji Měst, Prague, Check Republic, 23 October 2018; Available online: https://www.pocitamesvodou.cz/konference-pocitame-s-vodou-2018/ (accessed on 10 June 2020).
- Liu, L.; Fryd, O.; Zhang, S. Blue-Green Infrastructure for Sustainable Urban Stormwater Management—Lessons from Six Municipality-Led Pilot Projects in Beijing and Copenhagen. Water 2019, 11, 2024. [Google Scholar] [CrossRef] [Green Version]
- Fenner, R. Spatial Evaluation of Multiple Benefits to Encourage Multi-Functional Design of Sustainable Drainage in Blue-Green Cities. Water 2017, 9, 953. [Google Scholar] [CrossRef] [Green Version]
- Grežo, H.; Močko, M.; Izsóff, M.; Vrbičanová, G.; Petrovič, F.; Straňák, J.; Muchová, Z.; Slámová, M.; Olah, B.; Machar, I. Flood Risk Assessment for the Long-Term Strategic Planning Considering the Placement of Industrial Parks in Slovakia. Sustainability 2020, 12, 4144. [Google Scholar] [CrossRef]
- Hreško, J.; Pucherová, Z.; Baláž, I.; Ambros, M.; Bezák, P.; Bírová, L.; Boltižiar, M.; Bridišová, Z.; Bugár, G.; Ceľuch, M.; et al. Krajina Nitry a Jej Okolia—Úvodná Etapa Výskumu; Fakulta Prírodných Vied, Univerzita Konštantína Filozofa: Nitra, Slovakia, 2006; p. 183. ISBN 80-8094-066-5. [Google Scholar]
- Mišovičová, R. Classification and evaluation of town Nitra’s contact area. Probl. Landsc. Ecol. Four Dimens. Landsc. 2012, 15, 1899–3850. [Google Scholar]
- EEA Europa. 2021. Available online: https://www.eea.europa.eu/sk/signaly-eea/signaly-2018/clanky/klimaticka-zmena-a-voda-2013 (accessed on 10 June 2020).
- Jarabica, V.; Kuruc, M. Územný Plán Mesta Nitra, Aktualizácia 2018, San-Huma ‘90 s.r.o., Nitra. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjy5_Gjs9vuAhVEyxoKHUxXAHgQFjABegQIAhAC&url=https%3A%2F%2Fwww.nitra.sk%2FFiles%2FShowFile%2F70102&usg=AOvVaw0ffbhPSQmar6nfDDivBaOO (accessed on 27 July 2020).
- Rózová, Z. Miestny Územný Systém Ekologickej Stability Mesta Nitry, San-Huma ‘90 s.r.o. a; Regioplán: Nitra, Slovakia, 1997. [Google Scholar]
- Ahmed, S.; Meenar, M.; Alam, A. Designing a Blue-Green Infrastructure (BGI) Network: Toward Water-Sensitive Urban Growth Planning in Dhaka, Bangladesh. Land 2019, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Versini, P.A.; Kotelnikova, N.; Poulhes, A.; Tchiguirinskaia, I.; Schertzer, D.; Leurent, F. A distributed modelling approach to assess the use of Blue and Green Infrastructures to fulfil stormwater management requirements. Land. Urban Plan. 2018, 173, 60–63. [Google Scholar] [CrossRef] [Green Version]
- Jurík, L.; Pokrývková, J. Urban Water retention—Theoretical Aspects and Practical Measures Zadržiavanie vody v mestách—Teória a praktické riešenia. Zivotn. Prostr. 2018, 52, 42–48. [Google Scholar]
- Chahar, B.R.; Graillot, D.; Gaur, S. Storm-water management through infiltration trenches. J. Irrig. Drain. Eng. 2012, 138, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Ngamalieu-Nengoue, U.A.; Martínez-Solano, F.J.; Iglesias-Rey, P.L.; Mora-Meliá, D. Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation. Water 2019, 11, 935. [Google Scholar] [CrossRef] [Green Version]
- Zeleňáková, M.; Diaconu, D.C.; Haarstad, K. Urban Water Retention Measures. Procedia Eng. 2017, 190, 419–426. [Google Scholar] [CrossRef]
- DWA-A 138-Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser, Regelwerk Abwasser-Abfall der Abwassertechnischen Vereini¬gung, Gesellschaft, 2008. Available online: https://webshop.dwa.de/de/kommentar-dwa-a-138-8-2008.html (accessed on 15 July 2020).
- Výleta, R.; Kohnová, S.; Valent, P. Riešené Úlohy z Hydrológie I.—Povodie, Zrážky, Prietok a Hydrologická Bilancia; Slovenská Technická Univerzita v Bratislave vo Vydavateľstve SPEKTRUM STU: Bratislava, Slovakia, 2018; ISBN 978-80-227-4887-2. [Google Scholar]
- Zelenakova, M.; Alkhalaf, I.; Harbulakova, V.O. Applying of dimensional analysis in rainwater management systems design. In Advances and Trends in Engineering Sciences and Technologies—Proceedings of the International Conference on Engineering Sciences and Technologies; Tatranská Štrba, High Tatras mountains, Slovakia, 27–29 May 2015; 2016; pp. 443–448. Available online: https://books.google.sk/books?hl=sk&lr=&id=2HW9CgAAQBAJ&oi=fnd&pg=PA443&ots=UVCj9fN-Gj&sig=V3zzW6wBlczmS0DaKEWFRyoXsH0&redir_esc=y#v=onepage&q&f=false (accessed on 27 July 2020).
- Vitek, J.; Stránsky, D.; Kabelková, I.; Bereš, V.; Vitek, R. Hospodaření s Dešťovou Vodou v ČR; 01/71 ZO ČSOP Koniklec: Prague, Chech Republic, 2015; ISBN 978-80-260-7815-9. [Google Scholar]
- Abedin, S.J.H.; Stephen, H. GIS Framework for Spatiotemporal Mapping of Urban Flooding. Geosciences 2019, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Zdroj Produktov LLS. ÚGKK SR. Available online: https://www.geoportal.sk/sk/udaje/lls-dmr/ (accessed on 15 July 2020).
- Taleb, D.; Abu-Hijleh, B. Urban heat islands: Potential effect of organic and structured urban configurations on temperature variations in Dubai, UAE. Renew. Energy 2013, 50, 747–762. [Google Scholar] [CrossRef]
- Hurlimann, A.; Wilson, E. Sustainable urban water management under a changing climate: The role of spatial planning. Water 2018, 10, 546. [Google Scholar] [CrossRef] [Green Version]
- Starzec, M.; Dziopak, J.; Słyś, D. An Analysis of Stormwater Management Variants in Urban Catchments. Resources 2020, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Kruize, H.; van der Vliet, N.; Staatsen, B.; Bell, R.; Chiabai, A.; Muiños, G.; Higgins, S.; Quiroga, S.; Martinez-Juarez, P.; Aberg Yngwe, M.; et al. Urban Green Space: Creating a Triple Win for Environmental Sustainability, Health, and Health Equity through Behavior Change. Int. J. Environ. Res. Public Health 2019, 16, 4403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szomorová, L.; Halaj, P.; Čimo, J. Analýza Zrážkových Zmien v Lokalite; Slovenská Poľnohospodárska Univerzita v Nitre; Veda Mladých: Nitra, Slovakia, 2013; pp. 285–294. [Google Scholar]
- Guo, C.; Li, J.; Li, H.; Zhang, B.; Ma, M.; Li, F. Seven-Year Running Effect Evaluation and Fate Analysis of Rain Gardens in Xi’an, Northwest China. Water 2018, 10, 944. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, E.C.; Netusil, N.R.; Chan, F.K.S.; Dolman, N.J.; Gosling, S.N. International Perceptions of Urban Blue-Green Infrastructure: A Comparison across Four Cities. Water 2021, 13, 544. [Google Scholar] [CrossRef]
Region Code-Characteristics | TS > 10°C | td > 5 °C (dni) | VI–VIII (mm) | Tjan. (°C) | Tveget. (°C) |
---|---|---|---|---|---|
00—very warm, very dry, lowland | >3000 | 242 | 200 | −1–2 | 16–17 |
Permeability Class | Rocks According to Degree of Permeability | Filtration Coefficient kf (m.s−1) |
---|---|---|
I | Very strongly permeable | 1.10−1 |
II | Strongly permeable | 1.10−2 |
III | Quite strongly permeable | 1.10−3 |
IV | Slightly permeable | 1.10−4 |
V | Quite poorly permeable | 1.10−5 |
VI | Poorly permeable | 1.10−6 |
VII | Very poorly permeable | 1.10−7 |
VIII | Subtly permeable | 1.10−8 |
Saturated Hydraulic Conductivity (mm.min−1) | 25 cm | 50 cm | 75 cm | 100 cm |
---|---|---|---|---|
Probe 1 | 0.0227 | 2.8166 | 2.8325 | 0.3817 |
Probe 2 | 0.0678 | 0.6554 | 1.8722 | 0.7795 |
Mean | 0.0452 | 1.7360 | 2.3524 | 0.5806 |
Saturated Hydraulic Conductivity (mm.min−1) | 25 cm | 50 cm | 75 cm | 100 cm |
---|---|---|---|---|
Probe 1 | 0.4066 | 0.0616 | 0.7559 | 1.6299 |
Probe 2 | 0.0215 | 0.0916 | 0.7455 | 0.1508 |
Mean | 0.2141 | 0.0766 | 0.7507 | 0.8904 |
Territory | Rain Receiving Area (m2) S | Rainfall Yield (l.s−1.ha−1) q5 | Rainfall Yield (l.s−1.ha−1) q10 | Rainfall Yield (l.s−1.ha−1) q30 | Runoff Factor Ψ | Rainwater Flow from Surface Runoff (l.s−1) Q5 | Rainwater Flow from Surface Runoff (l.s−1) Q10 | Rainwater Flow from Surface Runoff (l.s−1) Q30 |
---|---|---|---|---|---|---|---|---|
A | 1340.13 | 237 | 166 | 78 | 0.9 | 28.58 | 20.02 | 9.41 |
A1 | 2250.22 | 237 | 166 | 78 | 0.9 | 48 | 33.62 | 15.8 |
A2 | 11,453.10 | 237 | 166 | 78 | 0.9 | 244.29 | 171.11 | 80.4 |
A3 | 3097.30 | 237 | 166 | 78 | 0.9 | 66.07 | 46.27 | 21.74 |
A4 | 5034.48 | 237 | 166 | 78 | 0.9 | 107.39 | 75.22 | 35.34 |
C1-1 | 9661.93 | 237 | 166 | 78 | 0.9 | 206.09 | 144.35 | 67.83 |
C1-2 | 24,294.33 | 237 | 166 | 78 | 0.9 | 518.2 | 362.96 | 170.55 |
C | 21,804.08 | 237 | 166 | 78 | 0.9 | 465.08 | 325.75 | 153.06 |
C1 | 1071.10 | 237 | 166 | 78 | 0.9 | 22.85 | 16 | 7.52 |
D | 2466.24 | 237 | 166 | 78 | 0.9 | 52.6 | 36.85 | 17.31 |
D2 | 8494.82 | 237 | 166 | 78 | 0.9 | 181.19 | 126.91 | 59.63 |
D3 | 373.04 | 237 | 166 | 78 | 0.9 | 7.96 | 5.57 | 2.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokrývková, J.; Jurík, Ľ.; Lackóová, L.; Halászová, K.; Hanzlík, R.; Banihabib, M.E. The Urban Environment Impact of Climate Change Study and Proposal of the City Micro-Environment Improvement. Sustainability 2021, 13, 4096. https://doi.org/10.3390/su13084096
Pokrývková J, Jurík Ľ, Lackóová L, Halászová K, Hanzlík R, Banihabib ME. The Urban Environment Impact of Climate Change Study and Proposal of the City Micro-Environment Improvement. Sustainability. 2021; 13(8):4096. https://doi.org/10.3390/su13084096
Chicago/Turabian StylePokrývková, Jozefína, Ľuboš Jurík, Lenka Lackóová, Klaudia Halászová, Richard Hanzlík, and Mohammad Ebrahim Banihabib. 2021. "The Urban Environment Impact of Climate Change Study and Proposal of the City Micro-Environment Improvement" Sustainability 13, no. 8: 4096. https://doi.org/10.3390/su13084096
APA StylePokrývková, J., Jurík, Ľ., Lackóová, L., Halászová, K., Hanzlík, R., & Banihabib, M. E. (2021). The Urban Environment Impact of Climate Change Study and Proposal of the City Micro-Environment Improvement. Sustainability, 13(8), 4096. https://doi.org/10.3390/su13084096