Adoption and Usage of E-Grocery Shopping: A Context-Specific UTAUT2 Model
Abstract
:1. Introduction
2. Theoretical Background
2.1. The UTAUT2 Model
2.2. Research Model and Hypotheses
2.2.1. UTAUT Constructs
2.2.2. UTAUT2 Constructs
- Hedonic motivation (HM):
- Price value (PV):
- Habit (HB):
2.2.3. Context-Specific Constructs
- Perceived Internet Grocery Risk (PR):
- Perceived time pressure (PTP):
- Perceived in-store shopping enjoyment (PSE):
- Service quality (SQ):
- Innovativeness (INN):
3. Materials and Methods
3.1. Measurements
3.2. Sampling Strategy and Data Collection
3.3. Data Analysis
4. Results
4.1. Descriptive Analysis
4.2. Regression Results for the Full Sample
4.3. Users Versus Non-Users: Preliminary Analyses
4.4. Users Versus Non-Users: Regression Results
5. Discussion
6. Conclusions
7. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Scale Items | References |
---|---|
PE1. I find online grocery services useful in my daily life. | Hansen [48], Venkatesh et al. [23] |
PE2. Using electronic shopping of groceries saves much time. | |
PE3. Shopping groceries via the Internet is favorable as it makes me less dependent of opening hours. | |
PE4. There is a lot of money to save by buying groceries via the Internet b. | |
EE1. I find online grocery services easy to use. | Hansen [48], Hui and Wan [42], Venkatesh et al. [23] |
EE2. It is hard to find the needed products when shopping groceries via the Internet. | |
EE3. With electronic shopping of groceries it is difficult to order products. | |
EE4. It is easy to check the availability of grocery items b. | |
SI1. Members of my family think that it is a good idea to buy groceries via the Internet. | Hansen [48,49], Venkatesh et al. [23] |
SI2. Most of my friends and acquaintances think that shopping groceries via the Internet is a good idea. | |
FC1. I have the resources necessary to use an online grocery service. | Venkatesh et al. [23] |
FC2. I have the knowledge necessary to use an online grocery service. | |
FC3. Online grocery services are compatible with other technologies I use. | |
FC4. I can get help from others when I have difficulties using an online grocery service a,b,c. | |
BI1. How likely is it that over the next year you will shop for groceries via the Internet? | Hansen [35,49], Hansen et al. [50] |
HM1. Ordering groceries via the Internet is fun. | Venkatesh et al. [23] |
HM2. Ordering groceries via the Internet is enjoyable. | |
HM3. Ordering groceries via the Internet is very entertaining. | |
PV1. Online grocery services are reasonably priced. | Venkatesh et al. [23] |
PV2. Online grocery services are good value for the money. | |
PV3. At the current price, online grocery services provide a good value. | |
HB1. The use of an online grocery service has become a habit for me. | Venkatesh et al. [23] |
HB2. Ordering my groceries online has become natural to me. | |
PR1. Return and exchange opportunities are not as good on the Internet as in the supermarket/non-Internet shop. | Hansen [35], Kurnia and Chien [41] |
PR2. A risk when buying groceries via the Internet is receiving incorrect items. | |
PR3. I am concerned with the punctuality of the delivery time of online grocery shopping c. | |
PR4. I am concerned with the quality of the products delivered when ordering from online grocery shopping a,b. | |
PTP1. I usually find myself pressed for time. | Van Kenhove and De Wulf [72]; Verhoef and Langerak [40] |
PTP2. I am often in a hurry. | |
PTP3. Usually there is so much to do that I wish I had more time. | |
PTP4. For different reasons, I do not have enough time for grocery retail shopping. | |
I find shopping for groceries (in a physical store/supermarket) rather: | Spangeberg et al. [127] |
PSE1. Dull Exciting | |
PSE2. Not fun Fun | |
PSE3. Not amusing Amusing | |
PSE4. Not enjoyable Enjoyable | |
SQ1. My online grocery store’s employees are friendly and helpful. | Hsu et al. [128], Boyer and Hult [90] |
SQ2. My online grocery store has fast check-out. | |
SQ3. My online grocery store provides adequate services (i.e., picking the orders, payment). | |
INN1. If I heard about a new information technology, I would look for ways to experiment with it. | Agarwal and Prasad [94] |
INN2. Among my peers, I am usually the first to try out new information technologies. | |
INN3. In general, I am hesitant to try out new information technologies. | |
INN4. I like to experiment with new information technologies. |
References
- Sendcloud. E-commerce Delivery Compass. Available online: https://www.sendcloud.com/whitepapers/ecommerce-delivery-compass/ (accessed on 1 March 2021).
- Statista. Retail e-commerce Sales in the United States from 2017 to 2024. Available online: https://www.statista.com/statistics/272391/us-retail-e-commerce-sales-forecast/ (accessed on 1 March 2021).
- Statista. eCommerce. Available online: https://www.statista.com/outlook/243/102/ecommerce/europe (accessed on 1 March 2021).
- Dominici, A.; Boncinelli, F.; Gerini, F.; Marone, E. Determinants of online food purchasing: The impact of socio-demographic and situational factors. J. Retail. Consum. Serv. 2021, 60, 102473. [Google Scholar] [CrossRef]
- Klepek, M.; Bauerová, R. Why do retail costumers hesitate for shopping grocery online? Technol. Econ. Dev. Econ. 2020, 26, 1444–1462. [Google Scholar] [CrossRef]
- Statista. The Products Growing Online Sales Fastest. Available online: https://www.statista.com/chart/22693/share-of-online-sales-per-product-category/ (accessed on 1 March 2021).
- Eurostat. Internet Purchases by Individuals (until 2019); Eurostat: Brussels, Belgium, 2020; Available online: https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (accessed on 29 March 2021).
- Kühn, F.; Lichters, M.; Krey, N. The touchy issue of produce: Need for touch in online grocery retailing. J. Bus. Res. 2020, 117, 244–255. [Google Scholar] [CrossRef]
- Martín, J.C.; Pagliara, F.; Román, C. The Research Topics on E-Grocery: Trends and Existing Gaps. Sustainability 2019, 11, 321. [Google Scholar] [CrossRef] [Green Version]
- Hardi, L.; Wagner, U. Grocery Delivery or Customer Pickup—Influences on Energy Consumption and CO2 Emissions in Munich. Sustainability 2019, 11, 641. [Google Scholar] [CrossRef] [Green Version]
- Siragusa, C.; Tumino, A. E-grocery: Comparing the environmental impacts of the online and offline purchasing processes. Int. J. Logist. Res. Appl. 2021, 2021, 1–27. [Google Scholar] [CrossRef]
- Jürgens, U. ’Real’ versus ‘mental’ food deserts from the consumer perspective—concepts and quantitative methods applied to rural areas of Germany. J. Geogr. Soc. 2018, 149, 25–43. [Google Scholar]
- Alaimo, L.S.; Fiore, M.; Galati, A. How the Covid-19 Pandemic Is Changing Online Food Shopping Human Behaviour in Italy. Sustainability 2020, 12, 9594. [Google Scholar] [CrossRef]
- Grashuis, J.; Skevas, T.; Segovia, M.S. Grocery Shopping Preferences During the COVID-19 Pandemic. Sustainability 2020, 12, 5369. [Google Scholar] [CrossRef]
- Hübner, A.; Wollenburg, J.; Holzapfel, A. Retail logistics in the transition from multi-channel to omni-channel. Int. J. Phys. Distrib. Logist. Manag. 2016, 46, 562–583. [Google Scholar] [CrossRef]
- Vazquez-Noguerol, M.; Comesaña-Benavides, J.; Poler, R.; Prado-Prado, J.C. An optimisation approach for the e-grocery order picking and delivery problem. Cent. Eur. J. Oper. Res. 2020, 1–30. [Google Scholar] [CrossRef]
- Dannenberg, P.; Fuchs, M.; Riedler, T.; Wiedemann, C. Digital Transition by COVID-19 Pandemic? The German Food Online Retail. Tijdschrift Voor Economische en Sociale Geografie 2020, 111, 543–560. [Google Scholar] [CrossRef]
- Ellison, B.; McFadden, B.; Rickard, B.J.; Wilson, N.L.W. Examining Food Purchase Behavior and Food Values During the COVID -19 Pandemic. Appl. Econ. Perspect. Policy 2021, 43, 58–72. [Google Scholar] [CrossRef]
- Li, J.; Hallsworth, A.G.; Coca-Stefaniak, J.A. Changing Grocery Shopping Behaviours Among Chinese Consumers at The Outset of The COVID-19 Outbreak. Tijdschr. Voor Econ. en Soc. Geogr. 2020, 111, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Van Der Heijden, H.; Verhagen, T.; Creemers, M. Understanding online purchase intentions: Contributions from technology and trust perspectives. Eur. J. Inf. Syst. 2003, 12, 41–48. [Google Scholar] [CrossRef]
- Childers, T.L.; Carr, C.L.; Peck, J.; Carson, S. Hedonic and utilitarian motivations for online retail shopping behavior. J. Retail. 2001, 77, 511–535. [Google Scholar] [CrossRef]
- Chan, K.Y.; Gong, M.; Xu, Y.; Thong, J. Examining User Acceptance of SMS: An Empirical Study in China and Hong Kong. In Proceedings of the PACIS 2008, Suzhou, China, 4–7 July 2008; p. 294. Available online: http://aisel.aisnet.org/pacis2008/294 (accessed on 6 April 2021).
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Reinhardt, R.; Hietschold, N.; Gurtner, S. Overcoming consumer resistance to innovations—An analysis of adoption triggers. RD Manag. 2017, 49, 139–154. [Google Scholar] [CrossRef]
- Brown, S.A.; Venkatesh, V.; Bala, H. Household Technology Use: Integrating Household Life Cycle and the Model of Adoption of Technology in Households. Inf. Soc. 2006, 22, 205–218. [Google Scholar] [CrossRef]
- Verdegem, P.; De Marez, L. Rethinking determinants of ICT acceptance: Towards an integrated and comprehensive overview. Technovation 2011, 31, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Mortimer, G.; E Hasan, S.F.; Andrews, L.; Martin, J. Online grocery shopping: The impact of shopping frequency on perceived risk. Int. Rev. Retail. Distrib. Consum. Res. 2016, 26, 202–223. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. Mis Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Baptista, G.; Oliveira, T. Understanding mobile banking: The unified theory of acceptance and use of technology combined with cultural moderators. Comput. Hum. Behav. 2015, 50, 418–430. [Google Scholar] [CrossRef]
- Martins, C.; Oliveira, T.; Popovič, A. Understanding the Internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. Int. J. Inf. Manag. 2014, 34, 1–13. [Google Scholar] [CrossRef]
- Rondan-Cataluña, F.J.; Arenas-Gaitán, J.; Ramírez-Correa, P.E. A comparison of the different versions of popular technology acceptance models. Kybernetes 2015, 44, 788–805. [Google Scholar] [CrossRef]
- Human, G.; Ungerer, M.; Azémia, J.A.J. Mauritian consumer intentions to adopt online grocery shopping: An extended decomposition of UTAUT2 with moderation. Man. Dyn. J. S. Afr. Inst. Manag. Sci. 2020, 29, 15–37. [Google Scholar]
- Moore, G.C.; Benbasat, I. Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Inf. Syst. Res. 1991, 2, 192–222. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.; Todd, P.A. Understanding Information Technology Usage: A Test of Competing Models. Inf. Syst. Res. 1995, 6, 144–176. [Google Scholar] [CrossRef]
- Hansen, T. Understanding Consumer Online Grocery Behavior: Results from a Swedish Study. J. Euromarketing 2005, 14, 31–58. [Google Scholar] [CrossRef]
- Chin, S.L.; Goh, Y.N. Consumer purchase intention toward online grocery shopping: View from Malaysia. Glob. Bus. Man. Res. 2017, 9, 221–238. [Google Scholar]
- Loketkrawee, P.; Bhatiasevi, V. Elucidating the Behavior of Consumers toward Online Grocery Shopping: The Role of Shopping Orientation. J. Internet Commer. 2018, 17, 418–445. [Google Scholar] [CrossRef]
- Nguyen, T.B.L.; Nguyen, N.; Phan, T.T.H.; Bui, L.P.; Moon, H.C. Investigating Consumer Attitude and Intention towards Online Food Purchasing in an Emerging Economy: An Extended TAM Approach. Foods 2019, 8, 576. [Google Scholar] [CrossRef] [Green Version]
- Frank, D.-A.; Peschel, A.O. Sweetening the Deal: The Ingredients that Drive Consumer Adoption of Online Grocery Shopping. J. Food Prod. Mark. 2020, 26, 1–10. [Google Scholar] [CrossRef]
- Verhoef, P.C.; Langerak, F. Possible determinants of consumers’ adoption of electronic grocery shopping in the Netherlands. J. Retail. Consum. Serv. 2001, 8, 275–285. [Google Scholar] [CrossRef]
- Kurnia, S.; Chien, A.J. The Acceptance of Online Grocery Shopping. In Proceedings of the 16th Bled eCommerce Conference eTransformation, Bled, Slovenia, 9–11 June 2003; pp. 219–233. Available online: https://aisel.aisnet.org/bled2003/52 (accessed on 6 April 2021).
- Hui, T.-K.; Wan, D. Who are the online grocers? Serv. Ind. J. 2009, 29, 1479–1489. [Google Scholar] [CrossRef]
- Driediger, F.; Bhatiasevi, V. Online grocery shopping in Thailand: Consumer acceptance and usage behavior. J. Retail. Consum. Serv. 2019, 48, 224–237. [Google Scholar] [CrossRef]
- Hansen, T. Determinants of consumers’ repeat online buying of groceries. Int. Rev. Retail. Distrib. Consum. Res. 2006, 16, 93–114. [Google Scholar] [CrossRef]
- Ramus, K.; Nielsen, N.A. Online grocery retailing: What do consumers think? Internet Res. 2005, 15, 335–352. [Google Scholar] [CrossRef]
- Wang, O.; Somogyi, S. Consumer adoption of online food shopping in China. Br. Food J. 2018, 120, 2868–2884. [Google Scholar] [CrossRef]
- Van Droogenbroeck, E.; Van Hove, L. Triggered or evaluated? A qualitative inquiry into the decision to start using e-grocery services. Int. Rev. Retail. Distrib. Consum. Res. 2019, 30, 103–122. [Google Scholar] [CrossRef]
- Hansen, T. Consumer adoption of online grocery buying: A discriminant analysis. Int. J. Retail. Distrib. Manag. 2005, 33, 101–121. [Google Scholar] [CrossRef]
- Hansen, T. Consumer values, the theory of planned behaviour and online grocery shopping. Int. J. Consum. Stud. 2008, 32, 128–137. [Google Scholar] [CrossRef]
- Hansen, T.; Jensen, J.M.; Solgaard, H.S. Predicting online grocery buying intention: A comparison of the theory of reasoned action and the theory of planned behavior. Int. J. Inf. Manag. 2004, 24, 539–550. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S. Purchasing grocery online in a nonmetro city: Investigating the role of convenience, security, and variety. J. Public Aff. 2020, 2497. [Google Scholar] [CrossRef]
- Piroth, P.; Ritter, M.S.; Rueger-Muck, E. Online grocery shopping adoption: Do personality traits matter? Br. Food J. 2020, 122, 957–975. [Google Scholar] [CrossRef]
- Escobar-Rodríguez, T.; Carvajal-Trujillo, E. Online purchasing tickets for low cost carriers: An application of the unified theory of acceptance and use of technology (UTAUT) model. Tour. Manag. 2014, 43, 70–88. [Google Scholar] [CrossRef]
- Pascual-Miguel, F.J.; Agudo-Peregrina, Á.F.; Chaparro-Peláez, J. Influences of gender and product type on online purchasing. J. Bus. Res. 2015, 68, 1550–1556. [Google Scholar] [CrossRef]
- Singh, M.; Matsui, Y. How Long Tail and Trust Affect Online Shopping Behavior: An Extension to UTAUT2 Framework. Pac. Asia J. Assoc. Inf. Syst. 2017, 9, 1–24. [Google Scholar] [CrossRef]
- Boyer, K.K.; Hult, G.T.M. Customer Behavior in an Online Ordering Application: A Decision Scoring Model*. Decis. Sci. 2005, 36, 569–598. [Google Scholar] [CrossRef]
- Kang, C.; Moon, J.; Kim, T.; Choe, Y. Why Consumers Go to Online Grocery: Comparing Vegetables with Grains. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 3604–3613. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions. Contemp. Educ. Psychol. 2000, 25, 54–67. [Google Scholar] [CrossRef]
- Buldeo Rai, H.B.; Verlinde, S.; Macharis, C. The “next day, free delivery” myth unravelled: Possibilities for sustainable last mile transport in an omnichannel environment. Int. J. Retail. Distrib. Manag. 2019, 47, 39–54. [Google Scholar] [CrossRef]
- Huang, Y.; Oppewal, H. Why consumers hesitate to shop online: An experimental choice analysis of grocery shopping and the role of delivery fees. Int. J. Retail. Distrib. Manag. 2006, 34, 334–353. [Google Scholar] [CrossRef]
- Milioti, C.; Pramatari, K.; Zampou, E. Choice of prevailing delivery methods in e-grocery: A stated preference ranking experiment. Int. J. Retail. Distrib. Manag. 2020, 49, 281–298. [Google Scholar] [CrossRef]
- Zeithaml, V.A. Consumer Perceptions of Price, Quality, and Value: A Means-End Model and Synthesis of Evidence. J. Mark. 1988, 52, 2–22. [Google Scholar] [CrossRef]
- Ali, F.; Nair, P.K.; Hussain, K. An assessment of students’ acceptance and usage of computer supported collaborative classrooms in hospitality and tourism schools. J. Hosp. Leis. Sport Tour. Educ. 2016, 18, 51–60. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Shareef, M.A.; Simintiras, A.C.; Lal, B.; Weerakkody, V. A generalised adoption model for services: A cross-country comparison of mobile health (m-health). Gov. Inf. Q. 2016, 33, 174–187. [Google Scholar] [CrossRef] [Green Version]
- Tandon, U.; Kiran, R.; Sah, A.N. The influence of website functionality, drivers and perceived risk on customer satisfaction in online shopping: An emerging economy case. Inf. Syst. E-Bus. Manag. 2018, 16, 57–91. [Google Scholar] [CrossRef]
- Wong, C.-H.; Tan, G.W.-H.; Loke, S.-P.; Ooi, K.-B. Mobile TV: A new form of entertainment? Ind. Manag. Data Syst. 2014, 114, 1050–1067. [Google Scholar] [CrossRef]
- Picot-Coupey, K.; Huré, E.; Cliquet, G.; Petr, C. Grocery shopping and the Internet: Exploring French consumers’ perceptions of the ‘hypermarket’ and ‘cybermarket’ formats. Int. Rev. Retail. Distrib. Consum. Res. 2009, 19, 437–455. [Google Scholar] [CrossRef]
- Bhat, I.H.; Singh, S. Analyzing the impact of shopping frequency on perceived risk in online grocery shopping in India. Int. J. Appl. Bus. Econ. Res. 2017, 15, 49–63. [Google Scholar]
- Gunthorpe, W.; Lyons, K. A Predictive Model of Chronic Time Pressure in the Australian Population: Implications for Leisure Research. Leis. Sci. 2004, 26, 201–213. [Google Scholar] [CrossRef]
- Eurostat. Satisfaction with Time Use; Eurostat: Brussels, Belgium, 2017; Available online: http://ec.europa.eu/eurostat/cache/infographs/qol/index_en.html (accessed on 1 March 2021).
- Duncan Herrington, J.D.; Capella, L.M. Shopper reactions to perceived time pressure. Int. J. Retail. Distrib. Manag. 1995, 23, 13–20. [Google Scholar] [CrossRef]
- Van Kenhove, P.; De Wulf, K. Income and time pressure: A person-situation grocery retail typology. Int. Rev. Retail. Distrib. Consum. Res. 2000, 10, 149–166. [Google Scholar] [CrossRef]
- Pechtl, H. Adoption of online shopping by German grocery shoppers. Int. Rev. Retail. Distrib. Consum. Res. 2003, 13, 145–160. [Google Scholar] [CrossRef]
- Chu, J.; Arce-Urriza, M.; Cebollada-Calvo, J.-J.; Chintagunta, P.K. An Empirical Analysis of Shopping Behavior Across Online and Offline Channels for Grocery Products: The Moderating Effects of Household and Product Characteristics. J. Interact. Mark. 2010, 24, 251–268. [Google Scholar] [CrossRef]
- Geiger, S. Exploring night-time grocery shopping behaviour. J. Retail. Consum. Serv. 2007, 14, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Daniels, S.; Glorieux, I.; Minnen, J.; Van Tienoven, T.P.; Weenas, D. Convenience on the menu? A typological conceptualization of family food expenditures and food-related time patterns. Soc. Sci. Res. 2015, 51, 205–218. [Google Scholar] [CrossRef]
- Harris, P.; Robinson, H.; Riley, F.D.; Hand, C. Consumers’ Multi-channel Shopping Experiences in the UK Grocery Sector: Purchase Behaviour, Motivations and Perceptions: An Extended Abstract. In Marketing at the Confluence between Entertainment and Analytics. Developments in Marketing Science: Proceedings of the Academy of Marketing Science; Rossi, P., Ed.; Springer: Cham, Switzerland, 2017; pp. 103–107. [Google Scholar]
- Van Droogenbroeck, E.; Van Hove, L. Adoption of Online Grocery Shopping: Personal or Household Characteristics? J. Internet Commer. 2017, 16, 255–286. [Google Scholar] [CrossRef]
- Weber, A.N.; Badenhorst-Weiss, J.A. Time-based competition as a competitive strategy for online grocery retailers. J. Contemp. Manag. 2016, 13, 433–460. [Google Scholar]
- Aylott, R.; Mitchell, V. An exploratory study of grocery shopping stressors. Br. Food J. 1999, 101, 683–700. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Kim, Y.-K. Shopping enjoyment and store shopping modes: The moderating influence of chronic time pressure. J. Retail. Consum. Serv. 2008, 15, 410–419. [Google Scholar] [CrossRef]
- Blitstein, J.L.; Frentz, F.; Jilcott Pitts, S.B.J. A Mixed-method Examination of Reported Benefits of Online Grocery Shopping in the United States and Germany: Is Health a Factor? J. Food Prod. Mark. 2020, 26, 212–224. [Google Scholar] [CrossRef]
- Brown, S.A.; Venkatesh, V. Model of Adoption of Technology in Households: A Baseline Model Test and Extension Incorporating Household Life Cycle. Mis Q. 2005, 29, 399–426. [Google Scholar] [CrossRef]
- Beatty, S.E.; Ferrell, M.E. Impulse buying: Modeling its precursors. J. Retail. 1998, 74, 169–191. [Google Scholar] [CrossRef]
- Hand, C.; Riley, F.D.; Harris, P.; Singh, J.; Rettie, R. Online grocery shopping: The influence of situational factors. Eur. J. Mark. 2009, 43, 1205–1219. [Google Scholar] [CrossRef]
- Melis, K.; Campo, K.; Breugelmans, E.; Lamey, L. The Impact of the Multi-channel Retail Mix on Online Store Choice: Does Online Experience Matter? J. Retail. 2015, 91, 272–288. [Google Scholar] [CrossRef]
- Santos, J. E-service quality: A model of virtual service quality dimensions. Manag. Serv. Qual. Int. J. 2003, 13, 233–246. [Google Scholar] [CrossRef]
- Robinson, H.; Dall’Olmo Riley, F.D.; Rettie, R.; Rolls-Willson, G. The role of situational variables in online grocery shopping in the UK. Mark. Rev. 2007, 7, 89–106. [Google Scholar] [CrossRef]
- Colla, E.; Lapoule, P. E-commerce: Exploring the critical success factors. Int. J. Retail. Distrib. Manag. 2012, 40, 842–864. [Google Scholar] [CrossRef]
- Boyer, K.K.; Hult, G.T.M. Extending the supply chain: Integrating operations and marketing in the online grocery industry. J. Oper. Manag. 2005, 23, 642–661. [Google Scholar] [CrossRef]
- Zhu, Q.; Semeijn, J. Antecedents of Customer Behavioral Intentions for Online Grocery Shopping in Western Europe. In European Retail Research; Foscht, T., Morschett, D., Rudolph, T., Schnedlitz, P., Schramm-Klein, H., Swoboda, B., Eds.; Springer Gabler: Wiesbaden, Germany, 2015; pp. 1–19. [Google Scholar] [CrossRef]
- Citrin, A.V.; Sprott, D.E.; Silverman, S.N.; Stem, J.D.E. Adoption of Internet shopping: The role of consumer innovativeness. Ind. Manag. Data Syst. 2000, 100, 294–300. [Google Scholar] [CrossRef]
- Joseph, B.; Vyas, S.J. Concurrent validity of a measure of innovative cognitive style. J. Acad. Mark. Sci. Rev. 1984, 12, 159–175. [Google Scholar] [CrossRef]
- Agarwal, R.; Prasad, J. A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology. Inf. Syst. Res. 1998, 9, 204–215. [Google Scholar] [CrossRef]
- Goldsmith, R.E.; Hofacker, C.F. Measuring consumer innovativeness. J. Acad. Mark. Sci. 1991, 19, 209–221. [Google Scholar] [CrossRef]
- Chang, M.K.; Cheung, W.; Lai, V.S. Literature derived reference models for the adoption of online shopping. Inf. Manag. 2005, 42, 543–559. [Google Scholar] [CrossRef]
- Herrero Crespo, A.; Rodríguez del Bosque, I. Explaining B2C e-commerce acceptance: An integrative model based on the framework by Gatignon and Robertson. Interact. Comput. 2008, 20, 212–224. [Google Scholar] [CrossRef]
- Herrero, A.; Martín, H.S. Effects of the risk sources and user involvement on e-commerce adoption: Application to tourist services. J. Risk Res. 2012, 15, 841–855. [Google Scholar] [CrossRef]
- Goldsmith, R.E. Using the Domain Specific Innovativeness Scale to identify innovative Internet consumers. Internet Res. 2001, 11, 149–158. [Google Scholar] [CrossRef]
- Park, C.; Jun, J.-K. A cross-cultural comparison of Internet buying behavior. Int. Mark. Rev. 2003, 20, 534–553. [Google Scholar] [CrossRef]
- Juaneda-Ayensa, E.; Mosquera, A.; Sierra Murillo, Y.S. Omnichannel Customer Behavior: Key Drivers of Technology Acceptance and Use and Their Effects on Purchase Intention. Front. Psychol. 2016, 7, 1117. [Google Scholar] [CrossRef] [Green Version]
- Colruyt Group. Jaarverslag 2017/18. Available online: https://www.colruytgroup.com/wps/portal/cg/nl/home/investeerders/jaarverslag/jaarverslag-2017-18 (accessed on 1 March 2021).
- Cardinaels, J. Marktaandeel Delhaize Zakt Naar Dieptepunt. Available online: https://www.tijd.be/nieuws/archief/marktaandeel-delhaize-zakt-naar-dieptepunt/9995488.html (accessed on 1 March 2021).
- Loopmans, M.; Van Hecke, E.; De Craene, V.; Martens, M.; Schreurs, J.; Oosterlynck, S. Selectie van Kleinstedelijke Gebieden in Vlaanderen. 2011. Available online: http://www2.vlaanderen.be/ruimtelijk/docs/Studie_kleinstedelijkegebieden.pdf (accessed on 6 February 2014).
- Rodríguez Del Bosque, I.R.; Herrero Crespo, Á.H. How do internet surfers become online buyers? An integrative model of e-commerce acceptance. Behav. Inf. Technol. 2011, 30, 161–180. [Google Scholar] [CrossRef]
- San Martín, H.S.; Herrero, Á. Influence of the user’s psychological factors on the online purchase intention in rural tourism: Integrating innovativeness to the UTAUT framework. Tour. Manag. 2012, 33, 341–350. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis, 6th ed.; Pearson Prentice Hall: New Jersey, NJ, USA, 2006; ISBN 978-0-13-032929-5. [Google Scholar]
- Eekhout, I.; de Vet, H.C.; Twisk, J.W.; Brand, J.P.; de Boer, M.R.; Heymans, M.W. Missing data in a multi-item instrument were best handled by multiple imputation at the item score level. J. Clin. Epidemiol. 2014, 67, 335–342. [Google Scholar] [CrossRef]
- Gujarati, D.N. Basic Econometrics, 4th ed.; McGraw-Hill Higher Education: New York, NY, USA, 2003; ISBN 0-07-233542-4. [Google Scholar]
- Vandeschrick, C.; Sanderson, J.-P. De Verdeling van de Huishoudelijke Taken: Misschien Evoluties, Maar Zeker ook Weerstand. GGP Belgium Policy Brief, No. 6. 2013. Available online: http://www.ggps.be/doc/PB_6_NL.pdf (accessed on 24 April 2018).
- Rogers, E.M. Diffusion of Innovations, 4th ed.; The Free Press: New York, NY, USA, 2010; ISBN 978-145-160-247-0. [Google Scholar]
- E Gerow, J.; Ayyagari, R.; Thatcher, J.B.; Roth, P.L. Can we have fun @ work? The role of intrinsic motivation for utilitarian systems. Eur. J. Inf. Syst. 2013, 22, 360–380. [Google Scholar] [CrossRef]
- Wu, J.; Lu, X. Effects of Extrinsic and Intrinsic Motivators on Using Utilitarian, Hedonic, and Dual-Purposed Information Systems: A Meta-Analysis. J. Assoc. Inf. Syst. 2013, 14, 153–191. [Google Scholar] [CrossRef]
- Freeman, M. Experiences of Users from Online Grocery Stores. In Self-Service in the Internet Age. Computer Supported Cooperative Work; Sudweeks, F., Romm Livermore, C., Oliver, D., Eds.; Springer: London, UK; pp. 139–160. [CrossRef] [Green Version]
- Raijas, A. The consumer benefits and problems in the electronic grocery store. J. Retail. Consum. Serv. 2002, 9, 107–113. [Google Scholar] [CrossRef]
- Jara, M.; Vyt, D.; Mevel, O.; Morvan, T.; Morvan, N. Measuring customers benefits of click and collect. J. Serv. Mark. 2018, 32, 430–442. [Google Scholar] [CrossRef]
- Pantano, E.; Pizzi, G.; Scarpi, D.; Dennis, C. Competing during a pandemic? Retailers’ ups and downs during the COVID-19 outbreak. J. Bus. Res. 2020, 116, 209–213. [Google Scholar] [CrossRef]
- Kahn, J. Online Grocers Struggle to Meet the Surge in Demand. Available online: https://fortune.com/2020/03/17/online-grocery-order-coronavirus/ (accessed on 30 March 2021).
- Soenens, D. Online Boodschappendiensten Bezwijken Onder Grote Vraag (Online Grocery Services are Succumbing to High Demand). Gondola. 2020. Available online: https://www.gondola.be/nl/news/online-boodschappendiensten-bezwijken-onder-grote-vraag (accessed on 30 March 2021).
- Sheth, J. Impact of Covid-19 on consumer behavior: Will the old habits return or die? J. Bus. Res. 2020, 117, 280–283. [Google Scholar] [CrossRef]
- Conway, M.W.; Salon, D.; Da Silva, D.C.; Mirtich, L. How Will the COVID-19 Pandemic Affect the Future of Urban Life? Early Evidence from Highly-Educated Respondents in the United States. Urban Sci. 2020, 4, 50. [Google Scholar] [CrossRef]
- McKinsey & Company. How European Shoppers Will Buy Groceries in the Next Normal. Available online: https://www.mckinsey.com/industries/retail/our-insights/how-european-shoppers-will-buy-groceries-in-the-next-normal (accessed on 30 March 2021).
- PwC. Global Consumer Insights Survey 2020: The Consumer Transformed. Available online: https://www.pwc.com/gx/en/consumer-markets/consumer-insights-survey/2020/pwc-consumer-insights-survey-2020.pdf (accessed on 30 March 2021).
- Benbasat, I.; Barki, H. Quo vadis TAM? J. Assoc. Inf. Syst. 2007, 8, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Pernot, D. Internet shopping for Everyday Consumer Goods: An examination of the purchasing and travel practices of click and pickup outlet customers. Res. Transp. Econ. 2020, 100817. [Google Scholar] [CrossRef]
- Amirtha, R.; Sivakumar, V.J. Does family life cycle stage influence e-shopping acceptance by Indian women? An examination using the technology acceptance model. Behav. Inf. Technol. 2018, 37, 267–294. [Google Scholar] [CrossRef]
- Spangenberg, E.; Voss, K.E.; Crowley, A.E. Measuring the hedonic and utilitarian dimensions of attitude: A generally applicable scale. Adv. Consum. Res. 1997, 24, 235–241. [Google Scholar]
- Hsu, M.K.; Huang, Y.; Swanson, S. Grocery store image, travel distance, satisfaction and behavioral intentions. Evidence: From a Midwest college town. Int. J. Retail. Distrib. Manag. 2010, 38, 115–132. [Google Scholar] [CrossRef]
Constructs | Definitions |
---|---|
UTAUT | |
Performance expectancy | “The degree to which using a technology will provide benefits to consumers in performing certain activities” |
Effort expectancy | “The degree of ease associated with consumers’ use of technology” |
Social influence | “The extent to which consumers perceive that important others (e.g., family and friends) believe they should use a particular technology” |
Facilitating conditions | “Consumers’ perceptions of the resources and support available to perform a behavior” |
Added in UTAUT2 | |
Hedonic motivation | “The fun or pleasure derived from using a technology” |
Price value | “Consumers’ cognitive tradeoff between the perceived benefits of the applications and the monetary cost for using them” |
Habit | “The extent to which people tend to perform behaviors automatically because of learning” |
Model 1 DV: Behavioral Intention | Unstandardized Coefficients | Standardized Coefficients | t | p-Value | |
---|---|---|---|---|---|
B | Robust Std. Err. | Beta | |||
Constant | −3.526 *** | 0.411 | −8.58 | ≤0.001 | |
Performance expectancy (H1) | 0.527 *** | 0.087 | 0.284 *** | 6.09 | ≤0.001 |
Effort expectancy (H2) | 0.198 * | 0.086 | 0.096 * | 2.30 | 0.022 |
Social influence (H3) | 0.255 ** | 0.086 | 0.118 ** | 2.96 | 0.003 |
Facilitating conditions (H4a) | 0.106 | 0.079 | 0.047 | 1.33 | 0.185 |
Hedonic motivation (H6) | 0.311 *** | 0.076 | 0.172 *** | 4.11 | ≤0.001 |
Habit (H8a) | 0.248 *** | 0.068 | 0.176 *** | 3.66 | ≤0.001 |
F (6, 553) = 147.58; p ≤ 0.001 | |||||
R² = 0.492 | |||||
Root MSE = 1.650 | |||||
Model 2 DV: Behavioral Intention | |||||
Constant | −1.742 * | 0.688 | −2.53 | 0.012 | |
Performance expectancy (H1) | 0.444 *** | 0.085 | 0.239 *** | 5.22 | ≤0.001 |
Effort expectancy (H2) | 0.067 | 0.087 | 0.032 | 0.76 | 0.445 |
Social influence (H3) | 0.206 * | 0.083 | 0.096 * | 2.49 | 0.013 |
Facilitating conditions (H4a) | 0.031 | 0.079 | 0.014 | 0.39 | 0.694 |
Hedonic motivation (H6) | 0.337 *** | 0.073 | 0.186 *** | 4.60 | ≤0.001 |
Habit (H8a) | 0.189 ** | 0.066 | 0.134 ** | 2.88 | 0.004 |
Perceived risk (H9) | −0.275 *** | 0.074 | −0.132 *** | −3.73 | ≤0.001 |
Perceived time pressure (H10) | 0.199 *** | 0.054 | 0.121 *** | 3.69 | ≤0.001 |
Perceived shopping enjoyment (H11a) | −0.112 * | 0.051 | −0.063 * | −2.19 | 0.029 |
Innovativeness (H13) | 0.125 * | 0.062 | 0.068* | 2.03 | 0.043 |
F (10, 549) = 103.98; ≤0.001 | |||||
R² = 0.527 | |||||
Root MSE = 1.598 | |||||
R² change = 0.035 | |||||
F (4, 549) = 10.060; p ≤ 0.001 |
Construct | Potential Adopters | Users | Difference in Mean | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | (Potential Adopters–Users) | |
UTAUT2 | |||||
PE | 3.83 | 1.03 | 5.58 | 1.00 | −1.75 *** |
EE | 4.28 | 1.04 | 5.28 | 1.05 | −1.00 *** |
SI | 3.93 | 0.93 | 5.20 | 1.00 | −1.27 *** |
FC | 5.44 | 1.04 | 6.13 | 0.75 | −0.69 *** |
BI | 2.42 | 1.75 | 6.55 | 0.92 | −4.13 *** |
HM | 3.14 | 1.16 | 4.46 | 1.14 | −1.32 *** |
PV | / | / | 5.34 | 0.92 | / |
HB | 3.53 | 1.45 | 5.27 | 1.61 | −1.74 *** |
Context | |||||
PR | 3.99 | 1.03 | 2.95 | 0.98 | 1.04 *** |
PTP | 4.17 | 1.36 | 5.16 | 1.26 | −0.99 *** |
PSE | 3.99 | 1.24 | 3.11 | 1.32 | 0.88 *** |
SQ | / | / | 6.06 | 0.87 | / |
INN | 3.91 | 1.23 | 4.60 | 1.22 | −0.69 *** |
Model 3 DV: Behavioral Intention | Unstandardized Coefficients | Standardized Coefficients | t | p-Value | |
---|---|---|---|---|---|
B | Robust Std. Err. | Beta | |||
Constant | −1.274 ** | 0.429 | −2.97 | 0.003 | |
Performance expectancy (H1) | 0.148 * | 0.074 | 0.101 * | 2.01 | 0.045 |
Effort expectancy (H2) | 0.127 ° | 0.075 | 0.086° | 1.68 | 0.093 |
Social influence (H3) | 0.057 | 0.087 | 0.030 | 0.66 | 0.510 |
Facilitating conditions (H4a) | 0.055 | 0.076 | 0.033 | 0.71 | 0.475 |
Hedonic motivation (H6) | 0.336 *** | 0.078 | 0.224 *** | 4.32 | ≤0.001 |
Habit (H8a) | 0.280 *** | 0.068 | 0.232 *** | 4.14 | ≤0.001 |
F (6, 444) = 26.91; p ≤ 0.001 | |||||
R² = 0.265 | |||||
Root MSE = 1.508 | |||||
Model 4 DV: Behavioral Intention | |||||
Constant | −1.357 * | 0.682 | −1.99 | 0.047 | |
Performance expectancy (H1) | 0.111 | 0.074 | 0.076 | 1.51 | 0.133 |
Effort expectancy (H2) | 0.087 | 0.074 | 0.059 | 1.17 | 0.243 |
Social influence (H3) | 0.054 | 0.086 | 0.029 | 0.63 | 0.529 |
Facilitating conditions (H4a) | 0.008 | 0.078 | 0.005 | 0.10 | 0.918 |
Hedonic motivation (H6) | 0.324 *** | 0.078 | 0.216 *** | 4.17 | ≤0.001 |
Habit (H8a) | 0.246 *** | 0.067 | 0.204 *** | 3.68 | ≤0.001 |
Perceived risk (H9) | −0.079 | 0.074 | −0.047 | −1.07 | 0.287 |
Perceived time pressure (H10) | 0.151 ** | 0.054 | 0.117 ** | 2.77 | 0.006 |
Perceived shopping enjoyment (H11a) | −0.001 | 0.052 | −0.000 | −0.01 | 0.990 |
Innovativeness (H13) | 0.131 * | 0.064 | 0.092 * | 2.04 | 0.042 |
F (10, 440) = 17.49; ≤0.001 | |||||
R² = 0.287 | |||||
Root MSE = 1.492 | |||||
R² change = 0.022 | |||||
F (4, 440) = 3.423; p = 0.009 |
Model 5 DV: Behavioral Intention | Unstandardized Coefficients | Standardized Coefficients | t | p-Value | |
---|---|---|---|---|---|
B | Robust Std. Err. | Beta | |||
Constant | 2.612 ** | 0.952 | 2.74 | 0.007 | |
Performance expectancy (H1) | 0.333 ** | 0.120 | 0.362 ** | 2.77 | 0.007 |
Effort expectancy (H2) | 0.099 ° | 0.058 | 0.113 ° | 1.72 | 0.089 |
Social influence (H3) | 0.063 | 0.074 | 0.069 | 0.85 | 0.396 |
Facilitating conditions (H4a) | 0.173 | 0.115 | 0.142 | 1.50 | 0.136 |
Hedonic motivation (H6) | −0.115 | 0.073 | −0.143 | −1.57 | 0.121 |
Price value (H7) | −0.076 | 0.103 | −0.076 | −0.74 | 0.463 |
Habit (H8a) | 0.206 ** | 0.065 | 0.362 ** | 3.16 | 0.002 |
F (7, 101) = 8.52; p ≤ 0.001 | |||||
R² = 0.493 | |||||
Root MSE = 0.676 | |||||
Model 6 DV: Behavioral intention | |||||
Constant | 2.612 * | 1.294 | 2.02 | 0.046 | |
Performance expectancy (H1) | 0.237 ° | 0.126 | 0.257 ° | 1.88 | 0.063 |
Effort expectancy (H2) | 0.056 | 0.073 | 0.065 | 0.77 | 0.442 |
Social influence (H3) | 0.041 | 0.072 | 0.045 | 0.57 | 0.573 |
Facilitating conditions (H4a) | 0.133 | 0.114 | 0.109 | 1.17 | 0.247 |
Hedonic motivation (H6) | −0.047 | 0.080 | −0.058 | −0.59 | 0.559 |
Price value (H7) | −0.089 | 0.119 | −0.089 | −0.74 | 0.460 |
Habit (H8a) | 0.185 ** | 0.068 | 0.324 ** | 2.70 | 0.008 |
Perceived risk (H9) | −0.040 | 0.082 | −0.050 | −0.48 | 0.630 |
Perceived time pressure (H10) | 0.092 ° | 0.055 | 0.126 ° | 1.67 | 0.099 |
Perceived shopping enjoyment (H11a) | −0.039 | 0.051 | −0.056 | −0.77 | 0.442 |
Service quality (H12a) | 0.149 | 0.137 | 0.141 | 1.08 | 0.281 |
Innovativeness (H13) | −0.026 | 0.058 | −0.034 | −0.44 | 0.658 |
F (12, 96) = 5.56; ≤0.001 | |||||
R² = 0.522 | |||||
Root MSE = 0.673 | |||||
R² change = 0.029 | |||||
F (5, 96) = 1.170; p = 0.329 |
Model 7 DV: Use (Order Frequency) | Model 8 DV: Use (Order Frequency) | |||
---|---|---|---|---|
Coeff. | Robust Std. Err. | Coeff. | Robust Std. Err. | |
Facilitating conditions (H4b) | −0.170 | 0.166 | −0.159 | 0.169 |
Behavioral intention (H5) | 1.210 ** | 0.438 | 1.163 * | 0.558 |
Habit (H8b) | 0.282 ° | 0.157 | 0.287 ° | 0.173 |
Perceived shopping enjoyment (H11b) | −0.076 | 0.096 | ||
Service quality (H12b) | −0.027 | 0.177 | ||
Pseudo R²: | 0.256 | Pseudo R²: | 0.258 | |
Log pseudolikelihood: | −112.093 | Log pseudolikelihood | −111.723 | |
Wald Chi²: | 74.13 *** | Wald Chi²: | 74.81 *** |
DV: BI | Full Sample | Potential Adopters | Users | |||
---|---|---|---|---|---|---|
UTAUT2 | Extended | UTAUT2 | Extended | UTAUT2 | Extended | |
H1: PE | + *** (≤0.001) | + *** (≤0.001) | + * (0.045) | ns | + ** (0.007) | + ° (0.063) |
H2: EE | + * (0.022) | ns | + ° (0.093) | ns | + ° (0.089) | ns |
H3: SI | + ** (0.003) | + * (0.013) | ns | ns | ns | ns |
H4a: FC | ns | ns | ns | ns | ns | ns |
H6: HM | + *** (≤0.001) | + *** (≤0.001) | + *** (≤0.001) | + *** (≤0.001) | ns | ns |
H7: PV | / | / | / | / | ns | ns |
H8: HB | + *** (≤0.001) | + ** (0.004) | + *** (≤0.001) | + *** (≤0.001) | + ** (0.002) | + ** (0.008) |
H9: PR | − *** (≤0.001) | ns | ns | |||
H10: PTP | + *** (≤0.001) | + ** (0.006) | + ° (0.099) | |||
H11a: PSE | − * (0.029) | ns | ns | |||
H12: SQ | / | / | ns | |||
H13: INN | + * (0.043) | + * (0.042) | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Droogenbroeck, E.; Van Hove, L. Adoption and Usage of E-Grocery Shopping: A Context-Specific UTAUT2 Model. Sustainability 2021, 13, 4144. https://doi.org/10.3390/su13084144
Van Droogenbroeck E, Van Hove L. Adoption and Usage of E-Grocery Shopping: A Context-Specific UTAUT2 Model. Sustainability. 2021; 13(8):4144. https://doi.org/10.3390/su13084144
Chicago/Turabian StyleVan Droogenbroeck, Ellen, and Leo Van Hove. 2021. "Adoption and Usage of E-Grocery Shopping: A Context-Specific UTAUT2 Model" Sustainability 13, no. 8: 4144. https://doi.org/10.3390/su13084144
APA StyleVan Droogenbroeck, E., & Van Hove, L. (2021). Adoption and Usage of E-Grocery Shopping: A Context-Specific UTAUT2 Model. Sustainability, 13(8), 4144. https://doi.org/10.3390/su13084144