Multicriteria Decision-Making to Determine the Optimal Energy Management Strategy of Hybrid PV–Diesel Battery-Based Desalination System
Abstract
:1. Introduction
2. Information about the Analyzed Location and Load Demand
3. Methods and Analysis
3.1. HOMER Software
3.2. TOPSIS Method
3.3. CRITIC-Technique
4. Results and Discussion
4.1. Results of HOMER
4.2. Results of MCDM
5. Conclusions
- Increasing the size of the BWRO-plant increases the renewable fraction and decreases the dependency on the diesel generation system.
- Using the BRWO-150 plant increases the annual production of CO2. The maximum amount of CO2 is 36,873 kg, which was produced using BWRO-150 unit with the CC control strategy.
- The lowest annual amount of CO2 is 2076 kg. It is achieved by BWRO-500 plant with a predictive control strategy.
- BWRO-250 plant with the predictive control strategy is the best option for the case study, followed by A6 (BWRO-250 plant with CC strategy) and A11 (BWRO-500 plant with combined strategy).
- The worst alternative is the BWRO-250 plant with the combined control strategy.
- The optimal components’ sizes corresponding to the best alternative are 44.6 kW PV array, 10 kW DG, 24 units of batteries storge, and 17.8 kW converter. Under this situation, the technical, economic, and environmental parameters are annual operating cost ($4590), the renewable fraction (77.5%), initial cost ($78,435), the cost of energy ($0.156/kWh), the excess energy (27,532 kWh), unmet load (6.84 kWh), BED (6.02 km) and the annual amount of CO2 (14,289 kg).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilberforce, T.; Olabi, A.; Sayed, E.T.; Elsaid, K.; Abdelkareem, M.A. Progress in carbon capture technologies. Sci. Total. Environ. 2021, 761, 143203. [Google Scholar] [CrossRef] [PubMed]
- Hosseini-Ardali, S.M.; Hazrati-Kalbibaki, M.; Fattahi, M.; Lezsovits, F. Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent. Energy 2020, 211, 119035. [Google Scholar] [CrossRef]
- Olabi, A.G.; Elsaid, K.; Rabaia, M.K.H.; Askalany, A.A.; Abdelkareem, M.A. Waste heat-driven desalination systems: Perspective. Energy 2020, 209, 118373. [Google Scholar] [CrossRef]
- Dincer, H.; Yuksel, S. Balanced scorecard-based analysis of investment decisions for the renewable energy alternatives: A comparative analysis based on the hybrid fuzzy decision-making approach. Energy 2019, 175, 1259–1270. [Google Scholar] [CrossRef]
- Sayed, E.T.; Wilberforce, T.; Elsaid, K.; Rabaia, M.K.H.; Abdelkareem, M.A.; Chae, K.-J.; Olabi, A.G. A critical review on environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal. Sci. Total Environ. 2021, 766, 144505. [Google Scholar] [CrossRef]
- Chitgar, N.; Moghimi, M. Design and evaluation of a novel multi-generation system based on SOFC-GT for electricity, fresh water and hydrogen production. Energy 2020, 197, 117162. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Assad, M.; Sayed, E.T.; Soudan, B. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination 2018, 435, 97–113. [Google Scholar] [CrossRef]
- Nassrullah, H.; Anis, S.F.; Hashaikeh, R.; Hilal, N. Energy for desalination: A state-of-the-art review. Desalination 2020, 491, 114569. [Google Scholar] [CrossRef]
- Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019, 459, 59–104. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-García, A.; Nuez, I. Long-term intermittent operation of a full-scale BWRO desalination plant. Desalination 2020, 489, 114526. [Google Scholar] [CrossRef]
- Zhao, S.; Liao, Z.; Fane, A.; Li, J.; Tang, C.; Zheng, C.; Lin, J.; Kong, L. Engineering antifouling reverse osmosis membranes: A review. Desalination 2021, 499, 114857. [Google Scholar] [CrossRef]
- Park, K.; Kim, J.; Yang, D.R.; Hong, S. Towards a low-energy seawater reverse osmosis desalination plant: A review and theoretical analysis for future directions. J. Membr. Sci. 2020, 595, 117607. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Hashaikeh, R.; Diabat, A.; Hilal, N. Mathematical and optimization modelling in desalination: State-of-the-art and future direction. Desalination 2019, 469, 114092. [Google Scholar] [CrossRef]
- Ruiz-García, A.; de la Nuez-Pestana, I. A computational tool for designing BWRO systems with spiral wound modules. Desalination 2018, 426, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Mujtaba, I.; Al-Obaidi, M.; Kara-Zaïtri, C. Applications of Reverse Osmosis for the Removal of Organic Compounds from Wastewater: A state-of-the-art from Process Modelling to Simulation. In Materials Research Foundations 32; MRF: Chennai, India, 2018. [Google Scholar]
- Ruiz-García, A.; Nuez, I.; Carrascosa-Chisvert, M.D.; Santana, J.J. Simulations of BWRO systems under different feedwater characteristics. Analysis of operation windows and optimal operating points. Desalination 2020, 491, 114582. [Google Scholar] [CrossRef]
- Cao, K.; Siddhamshetty, P.; Ahn, Y.; Mukherjee, R.; Kwon, J.S.-I. Economic model-based controller design framework for hydraulic fracturing to optimize shale gas production and water usage. Ind. Eng. Chem. Res. 2019, 58, 12097–12115. [Google Scholar] [CrossRef]
- Elsaid, K.; Sayed, E.T.; Abdelkareem, M.A.; Mahmoud, M.S.; Ramadan, M.; Olabi, A.G. Environmental impact of emerging desalination technologies: A preliminary evaluation. J. Environ. Chem. Eng. 2020, 8, 104099. [Google Scholar] [CrossRef]
- Rabaia, M.K.H.; Abdelkareem, M.A.; Sayed, E.T.; Elsaid, K.; Chae, K.-J.; Wilberforce, T.; Olabi, A.G. Environmental impacts of solar energy systems: A review. Sci. Total Environ. 2021, 754, 141989. [Google Scholar] [CrossRef]
- Fathy, A.; Elaziz, M.A.; Sayed, E.T.; Olabi, A.G.; Rezk, H. Optimal parameter identification of triple-junction photovoltaic panel based on enhanced moth search algorithm. Energy 2019, 188, 116025. [Google Scholar] [CrossRef]
- Rezk, H.; Al-Dhaifallah, M.; Hassan, Y.B.; Ziedan, H.A. Optimization and Energy Management of Hybrid Photovoltaic-Diesel-Battery System to Pump and Desalinate Water at Isolated Regions. IEEE Access 2020, 8, 102512–102529. [Google Scholar] [CrossRef]
- Rezk, H.; Alsaman, A.S.; Al-Dhaifallah, M.; Askalany, A.A.; Abdelkareem, M.A.; Nassef, A.M. Identifying optimal operating conditions of solar-driven silica gel based adsorption desalination cooling system via modern optimization. Sol. Energy 2019, 181, 475–489. [Google Scholar] [CrossRef]
- Rezk, H.; Alghassab, M.; Ziedan, H.A. An optimal sizing of stand-alone hybrid PV-fuel cell-battery to desalinate seawater at saudi NEOM city. Processes 2020, 8, 382. [Google Scholar] [CrossRef] [Green Version]
- Zimmer-Gembeck, M.J.; Helfand, M. Ten years of longitudinal research on US adolescent sexual behavior: Developmental correlates of sexual intercourse, and the importance of age, gender and ethnic background. Dev. Rev. 2008, 28, 153–224. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-J.; Jing, Y.-Y.; Zhang, C.-F.; Zhao, J.-H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Wimmler, C.; Hejazi, G.; Fernandes, E.; Moreira, C.; Connors, S. Multi-criteria decision support methods for renewable energy systems on islands. J. Clean Energy Technol. 2015, 3, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Demirtas, O. Evaluating the best renewable energy technology for sustainable energy planning. Int. J. Energy Econ. Policy 2013, 3, 23. [Google Scholar]
- Alizadeh, R.; Soltanisehat, L.; Lund, P.D.; Zamanisabzi, H. Improving renewable energy policy planning and decision-making through a hybrid MCDM method. Energy Policy 2020, 137, 111174. [Google Scholar] [CrossRef]
- Alizadeh, R.; Majidpour, M.; Maknoon, R.; Kaleibari, S.S. Clean development mechanism in Iran: Does it need a revival? Int. J. Glob. Warm. 2016, 10, 196–215. [Google Scholar] [CrossRef]
- Alizadeh, R.; Maknoon, R.; Majidpour, M.; Salimi, J. Energy policy in Iran and international commitments for GHG emission reduction. J. Environ. Sci. Technol. 2015, 17, 183–198. [Google Scholar]
- Ali, T.; Nahian, A.J.; Ma, H. A hybrid multi-criteria decision-making approach to solve renewable energy technology selection problem for Rohingya refugees in Bangladesh. J. Clean. Prod. 2020, 273, 122967. [Google Scholar] [CrossRef]
- Wang, M.; Liu, S.; Wang, S.; Lai, K.K. A weighted product method for bidding strategies in multi-attribute auctions. J. Syst. Sci. Complex. 2010, 23, 194–208. [Google Scholar] [CrossRef]
- Mann, S.; Evangelos, T. An examination of the effectiveness of multi-dimensional decision-making methods. Int. J. Decis. Support Syst. 1989, 5, 303–312. [Google Scholar]
- Misra, S.K.; Ray, A. Comparative Study on Different Multi-Criteria Decision Making Tools in Software project selection scenario. Int. J. Adv. Res. Comput. Sci. 2012, 3, 172–178. [Google Scholar]
- Marler, R.T.; Arora, J.S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 2004, 26, 369–395. [Google Scholar] [CrossRef]
- Govindan, K.; Jepsen, M.B. ELECTRE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2016, 250, 1–29. [Google Scholar] [CrossRef]
- Figueira, J.R.; Greco, S.; Roy, B.; Słowiński, R. ELECTRE methods: Main features and recent developments. In Handbook of Multicriteria Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 51–89. [Google Scholar]
- Leyva-Lopez, J.C.; Fernandez-Gonzalez, E. A new method for group decision support based on ELECTRE III methodology. Eur. J. Oper. Res. 2003, 148, 14–27. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Analytic hierarchy process and expert choice: Benefits and limitations. OR Insight 2009, 22, 201–220. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.-C.; Mao, L.-X.; Zhang, Z.-Y.; Li, P. Induced aggregation operators in the VIKOR method and its application in material selection. Appl. Math. Model. 2013, 37, 6325–6338. [Google Scholar] [CrossRef]
- Liao, H.; Xu, Z.; Zeng, X.-J. Hesitant fuzzy linguistic VIKOR method and its application in qualitative multiple criteria decision making. IEEE Trans. Fuzzy Syst. 2014, 23, 1343–1355. [Google Scholar] [CrossRef]
- Gul, M.; Celik, E.; Aydin, N.; Gumus, A.T.; Guneri, A.F. A state of the art literature review of VIKOR and its fuzzy extensions on applications. Appl. Soft Comput. 2016, 46, 60–89. [Google Scholar] [CrossRef]
- Babatunde, M.; Ighravwe, D. A CRITIC-TOPSIS framework for hybrid renewable energy systems evaluation under techno-economic requirements. J. Proj. Manag. 2019, 4, 109–126. [Google Scholar] [CrossRef]
- Shih, H.-S.; Shyur, H.-J.; Lee, E.S. An extension of TOPSIS for group decision making. Math. Comput. Model. 2007, 45, 801–813. [Google Scholar] [CrossRef]
- Sun, C. A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods. Expert Syst. Appl. 2010, 37, 7745–7754. [Google Scholar] [CrossRef]
- Awasthi, A.; Chauhan, S.S.; Omrani, H. Application of fuzzy TOPSIS in evaluating sustainable transportation systems. Expert Syst. Appl. 2011, 38, 12270–12280. [Google Scholar] [CrossRef]
- Brans, J.; Mareschal, B.; Vince, P. A preference ran ing organization method: The PROMETHEE method for MCDM. Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Abedi, M.; Torabi, S.A.; Norouzi, G.-H.; Hamzeh, M.; Elyasi, G.-R. PROMETHEE II: A knowledge-driven method for copper exploration. Comput. Geosci. 2012, 46, 255–263. [Google Scholar] [CrossRef]
- Amaral, T.M.; Costa, A. Operations Research for Health Care Improving decision-making and management of hospital resources: An application of the PROMETHEE II method in an Emergency Department. Oper. Res. Health Care 2014, 3, 1–6. [Google Scholar]
- Wang, J.; Zionts, S. Negotiating wisely: Considerations based on MCDM/MAUT. Eur. J. Oper. Res. 2008, 188, 191–205. [Google Scholar] [CrossRef]
- Loken, E.; Botterud, A.; Holen, A.T. Decision analysis and uncertainties in planning local energy systems. In Proceedings of the 2006 International Conference on Probabilistic Methods Applied to Power Systems, Stockholm, Sweden, 11–15 June 2006; pp. 1–8. [Google Scholar]
- Wang, Z.; Zhang, S.; Kuang, J. A dynamic MAUT decision model for R&D project selection. In Proceedings of the 2010 International Conference on Computing, Control and Industrial Engineering, Wuhan, China, 5–6 June 2010; pp. 423–427. [Google Scholar]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Kildienė, S. State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 2014, 20, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Kabir, G.; Sadiq, R.; Tesfamariam, S. A review of multi-criteria decision-making methods for infrastructure management. Struct. Infrastruct. Eng. 2014, 10, 1176–1210. [Google Scholar] [CrossRef]
- Hwang, C.; Yoon, K. Multi-objective decision making–methods and application. In A State-of-the-Art Study; Springer: New York, NY, USA, 1981. [Google Scholar]
- Belenson, S.M.; Kapur, K.C. An algorithm for solving multicriterion linear programming problems with examples. J. Oper. Res. Soc. 1973, 24, 65–77. [Google Scholar] [CrossRef]
- Zelany, M. A concept of compromise solutions and the method of the displaced ideal. Comput. Oper. Res. 1974, 1, 479–496. [Google Scholar] [CrossRef]
- Kim, G.; Park, C.S.; Yoon, K.P. Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement. Int. J. Prod. Econ. 1997, 50, 23–33. [Google Scholar] [CrossRef]
- Cheng, S.; Chan, C.W.; Huang, G.H. Using multiple criteria decision analysis for supporting decisions of solid waste management. J. Environ. Sci. Healthpart A 2002, 37, 975–990. [Google Scholar] [CrossRef] [PubMed]
- Zanakis, S.H.; Solomon, A.; Wishart, N.; Dublish, S. Multi-attribute decision making: A simulation comparison of select methods. Eur. J. Oper. Res. 1998, 107, 507–529. [Google Scholar] [CrossRef]
- Shih, H.-S.; Wang, C.-H.; Lee, E. A multiattribute GDSS for aiding problem-solving. Math. Comput. Model. 2004, 39, 1397–1412. [Google Scholar] [CrossRef]
- Jin, X.; Jawor, A.; Kim, S.; Hoek, E.M. Effects of feed water temperature on separation performance and organic fouling of brackish water RO membranes. Desalination 2009, 239, 346–359. [Google Scholar] [CrossRef]
- Karabelas, A.; Mitrouli, S.; Kostoglou, M. Scaling in reverse osmosis desalination plants: A perspective focusing on development of comprehensive simulation tools. Desalination 2020, 474, 114193. [Google Scholar] [CrossRef]
- Ruiz-García, A.; Feo-García, J. Estimation of maximum water recovery in RO desalination for different feedwater inorganic compositions. Desalination Water Treat. 2017, 70, 34–45. [Google Scholar] [CrossRef]
- Abdalla, O.; Rezk, H.; Ahmed, E.M. Wind driven optimization algorithm based global MPPT for PV system under non-uniform solar irradiance. Sol. Energy 2019, 180, 429–444. [Google Scholar] [CrossRef]
- Alamri, H.R.; Rezk, H.; Abd-Elbary, H.; Ziedan, H.A.; Elnozahy, A. Experimental Investigation to Improve the Energy Efficiency of Solar PV Panels Using Hydrophobic SiO2 Nanomaterial. Coatings 2020, 10, 503. [Google Scholar] [CrossRef]
- Rezk, H.; Aly, M.; Al-Dhaifallah, M.; Shoyama, M. Design and hardware implementation of new adaptive fuzzy logic-based MPPT control method for photovoltaic applications. IEEE Access 2019, 7, 106427–106438. [Google Scholar] [CrossRef]
- Rezk, H.; Mazen, A.-O.; Gomaa, M.R.; Tolba, M.A.; Fathy, A.; Abdelkareem, M.A.; Olabi, A.; Abou Hashema, M. A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system. Renew. Sustain. Energy Rev. 2019, 115, 109372. [Google Scholar] [CrossRef]
- Govindan, K.; Khodaverdi, R.; Jafarian, A. A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach. J. Clean. Prod. 2013, 47, 345–354. [Google Scholar] [CrossRef]
Item | Unit | BWRO-150 | BWRO-250 | BWRO-500 |
---|---|---|---|---|
Permeate flow rate | m3/day | 150 | 250 | 500 |
Permeate recovery rate | % | 60–85 | ||
Permeate TDS | mg/L | <500 | ||
Raw water (RW) TDS | mg/L | <5000 | ||
RW TSS | mg/L | <30 | ||
RW temperature | °C | 15–35 | ||
Nominal power consumption | kW | 10.5 | 15 | 29.5 |
Water demand in winter | m3/day | 100 | ||
Water demand in summer | m3/day | 150 | ||
Hourly flow rate | m3 | 6.25 | 10.417 | 20.83 |
Operation period in winter | hours | 16 | 10 | 5 |
Operation period in summer | hours | 24 | 15 | 8 |
Average energy demand | kWh/day | 210 | 187.5 | 191.75 |
Properties | Specification |
---|---|
Photovoltaic panel | |
Name | Canadian solar-CS6K-290MS |
Rated peak power | 290 Wp |
Temperature coefficient | −0.39%/°C |
Operating temperature | 45 degree |
Efficiency | 17.72% |
Initial cost | $1200/kW |
Replacement cost | $1000/kW |
O&M cost | $5/year |
Lifespan | 25 years |
Derating rate | 88% |
Battery Storage | |
Name | Generic 1 kWh Li-Ion |
Nominal capacity | 276 Ah, 1.02 kWh |
Nominal voltage | 3.7 V |
Capital cost | 700 $/one unit |
Replacement cost | 700 $/one unit |
Initial SOC | 100% |
Minimum SOC | 20% |
Limit of degradation | 30% |
O&M cost | 5 $/year |
Converter | |
Type | Bi-directional |
Capacity | 1 kW |
Initial cost | 300 $/kW |
Replacement cost | 300 $/kW |
O&M cost | $5/year |
Lifespan | 15 years |
Efficiency | 90% |
Diesel Generator | |
Name | Generic 10 kW fixed capacity genset |
Capacity | 10 kW |
Initial cost | 50000 $ |
Replacement cost | 50000 $ |
O&M cost | 0.3 $/hour |
Lifespan of diesel generator | 15000 h |
Curve intercept of fuel | 0.48 L/hr |
Curve slope of fuel | 0.286 L/hr/kW |
Price of fuel | 0.5 $/L |
Emissions: CO2 | 19.76 g/L fuel |
Alternatives | Operating Cost ($/Year) | RF (%) | IC ($) | COE ($/kWh) | Excess Energy (kWh) | Unmet Load (kWh) | BED (km) | CO2 (kg/Year) |
---|---|---|---|---|---|---|---|---|
LF-150 | 9516 | 51.1 | 61,586 | 0.186 | 14,654 | 1.74 | 9.15 | 33,188 |
CC-150 | 10,139 | 45.6 | 51,598 | 0.184 | 15,523 | 0.1 | 9.08 | 36,873 |
Comined-150 | 9680 | 46.1 | 50,223 | 0.177 | 14,817 | 9.41 | 8.42 | 36,090 |
Predictive-150 | 10,214 | 49.5 | 57,120 | 0.191 | 20,758 | 0.1 | 9.52 | 35,158 |
LF-250 | 3521 | 84 | 103,572 | 0.168 | 47,016 | 4.95 | 6.92 | 9686 |
CC-250 | 4678 | 74.5 | 78,154 | 0.157 | 28,142 | 6.52 | 6.16 | 15,477 |
Comined-250 | 3619 | 82.4 | 96,190 | 0.162 | 38,390 | 20.3 | 6.44 | 10,523 |
Predictive-250 | 4590 | 77.5 | 78,435 | 0.156 | 27,532 | 6.84 | 6.02 | 14,289 |
LF-500 | 3024 | 94.7 | 143,221 | 0.201 | 53,987 | 3.81 | 9.45 | 3248 |
CC-500 | 3669 | 91.3 | 136,212 | 0.203 | 40,206 | 6.89 | 9.63 | 5298 |
Comined-500 | 3357 | 93 | 139,009 | 0.203 | 45,939 | 3.09 | 9.46 | 4258 |
Predictive-500 | 3010 | 96.8 | 132,466 | 0.189 | 26,242 | 9.43 | 8.58 | 2076 |
Size | Capital ($) | Replacement ($) | O&M ($) | Fuel ($) | Salvage ($) | Total ($) | |
---|---|---|---|---|---|---|---|
LF–EMS | |||||||
PV | 29.8 kW | 35,805.25 | 0.00 | 0.00 | 0.00 | 0.00 | 35,805.25 |
DG | 10 kW | 5000 | 15,464.35 | 16,067.61 | 82,112.86 | −113.97 | 118,531.04 |
BS | 29 unit | 17,300 | 7339.94 | 2326.95 | 0.00 | −1381.45 | 25,585.44 |
Converter | 11.6 kW | 3480.45 | 1476.66 | 0.00 | 0.00 | −277.92 | 4679.19 |
Total | 61,585.7 | 24,280.95 | 18,394.56 | 82,112.86 | −1773.16 | 184,600.92 | |
CC–EMS | |||||||
PV | 27.8 kW | 33,399.42 | 0.00 | 0.00 | 0.00 | 0.00 | 33,399.42 |
DG | 10 kW | 5000 | 17,626.99 | 17,584.01 | 91,229.83 | −531.02 | 130,909.81 |
BS | 15 unit | 9710.53 | 4119.92 | 612.36 | 0.00 | −775.41 | 13,667.39 |
Converter | 11.6 kW | 3488.16 | 1479.94 | 0.00 | 0.00 | −278.54 | 4689.56 |
Total | 51,598.11 | 23,226.85 | 18,196.36 | 91,229.83 | −1584.97 | 182,666.18 | |
CS–EMS | |||||||
PV | 27.5 kW | 33,265.92 | 0.00 | 0.00 | 0.00 | 0.00 | 33,265.92 |
DG | 10 kW | 5000 | 15,448.59 | 16,040.46 | 89,291.91 | −127.76 | 125,653.20 |
Battery | 13 unit | 8626.32 | 3660.28 | 367.41 | 0.00 | −688.44 | 11,965.57 |
Converter | 11.1 | 3330.97 | 1413.24 | 0.00 | 0.00 | −265.99 | 4478.23 |
Total | 50,223.20 | 20,522.11 | 16,407.88 | 89,291.91 | −1082.19 | 175,362.91 | |
P–EMS | |||||||
PV | 32.4 kW | 38,834.85 | 0.00 | 0.00 | 0.00 | 0.00 | 38,834.8 |
DG | 10 kW | 5000 | 19,862.84 | 19,255.54 | 86,986.66 | −868.40 | 130,236.64 |
BS | 15 unit | 9710.53 | 7199.05 | 612.36 | 0.00 | −2242.43 | 15,279.51 |
Converter | 11.9 | 3574.19 | 1516.43 | 0.00 | 0.00 | −285.41 | 4805.21 |
Total | 57,119.56 | 28,578.33 | 19,867.89 | 86,986.66 | −3396.23 | 189,156.22 |
Capital ($) | Replacement ($) | O&M ($) | Fuel ($) | Salvage ($) | Total ($) | ||
---|---|---|---|---|---|---|---|
LF–EMS | |||||||
PV | 57.2 kW | 68,647.88 | 0.00 | 0.00 | 0.00 | 0.00 | 68,647.88 |
DG | 10 kW | 5000 | 3679.46 | 4700.45 | 23,964.28 | −1173.83 | 36,170.36 |
BS | 43 unit | 24,889.47 | 10,559.95 | 4041.55 | 0.00 | −1987.49 | 37,503.49 |
Converter | 16.8 kW | 5035.12 | 2136.27 | 0.00 | 0.00 | −402.07 | 6769.33 |
Total | 103,572.48 | 16,375.69 | 8741.99 | 23,964.28 | 3563.39 | 149,091.05 | |
CC–EMS | |||||||
PV | 43.7 kW | 52,397.53 | 0.00 | 0.00 | 0.00 | 0.00 | 52,397.53 |
DG | 10 kW | 5000 | 6602.51 | 7516.06 | 38,291.55 | −922.3 | 56,487.82 |
BS | 25 unit | 15,131.58 | 6419.93 | 1837.07 | 0.00 | −1208.3 | 22,180.82 |
Converter | 18.8 kW | 5625.28 | 2386.66 | 0.00 | 0.00 | −449.19 | 7562.75 |
Total | 78,154.39 | 15,409.10 | 9353.13 | 38,291.55 | −2579.79 | 138,628.38 | |
CS–EMS | |||||||
PV | 52. kW | 62,407.08 | 0.00 | 0.00 | 0.00 | 0.00 | 62,407.08 |
DG | 10 kW | 5000 | 3662.28 | 4677.18 | 26,036.28 | −1185.81 | 38,189.92 |
Battery | 40 unit | 23,263.16 | 9870.92 | 3674.14 | 0.00 | −1856.56 | 34,951.65 |
Converter | 18.4 kW | 5520 | 2341.99 | 0.00 | 0.00 | −440.79 | 7421.21 |
Total | 96,190.24 | 15,875.19 | 8351.31 | 26,036.28 | −3483.16 | 142,969.85 | |
P–EMS | |||||||
PV | 44.6 kW | 53,505.76 | 0.00 | 0.00 | 0.00 | 0.00 | 53,505.76 |
DG | 10 kW | 5000 | 7243.9 | 8551.55 | 35,353.29 | −389.28 | 55,759.46 |
BS | 24 unit | 14,589.47 | 6189.93 | 1714.6 | 0.00 | −1165.01 | 21,328.99 |
Converter | 17.8 kW | 5339.31 | 2265.33 | 0.00 | 0.00 | −426.36 | 7178.28 |
Total | 78,434.54 | 15,699.16 | 10,266.15 | 35,353.29 | −1980.65 | 137,772.5 |
Capital ($) | Replacement ($) | O&M ($) | Fuel ($) | Salvage ($) | Total ($) | ||
LF–EMS | |||||||
PV | 65.7 kW | 78,839.98 | 0.00 | 0.00 | 0.00 | 0.00 | 78,839.98 |
DG | 10 kW | 5000 | 0.00 | 1485.37 | 8037.28 | −433.2 | 14,089.45 |
BS | 88 unit | 49,284.21 | 20910 | 9552.75 | 0.00 | −3935.47 | 75,811.49 |
Converter | 33.7 kW | 10,096.64 | 4283.74 | 0.00 | 0.00 | −806.24 | 13,574.13 |
Total | 143,220.83 | 25,193.74 | 11,038.13 | 8037.28 | −5174.92 | 182,315.03 | |
CC–EMS | |||||||
PV | 57.1 kW | 68,578.24 | 0.00 | 0.00 | 0.00 | 0.00 | 68,578.24 |
DG | 10 kW | 5000 | 1240.27 | 2385.13 | 13,108.98 | −1167.84 | 20,566.54 |
BS | 94 unit | 52,536.84 | 22,290.01 | 10,287.58 | 0.00 | −4195.2 | 80,919.23 |
Converter | 33.7 kW | 10,096.83 | 4283.82 | 0.00 | 0.00 | −806.26 | 13,574.39 |
Total | 136,211.9 | 27,814.1 | 12,672.71 | 13,108.98 | −6169.31 | 183,638.39 | |
CS–EMS | |||||||
PV | 60.8 kW | 72,952.45 | 0.00 | 0.00 | 0.00 | 0.00 | 72,952.45 |
DG | 10 kW | 5000 | 0.00 | 1892.59 | 10,535.41 | −223.59 | 17,204.41 |
Battery | 93 unit | 51,994.74 | 22,062.17 | 10,165.11 | 0.00 | −4149.55 | 80,072.47 |
Converter | 30.2 kW | 9062.03 | 3844.78 | 0.00 | 0.00 | −723.63 | 12,183.18 |
Total | 139,009.22 | 25,906.95 | 12,057.70 | 10,535.41 | −5096.76 | 182,412.51 | |
P–EMS | |||||||
PV | 52.1 kW | 62,552.72 | 0.00 | 0.00 | 0.00 | 0.00 | 62,552.72 |
DG | 10 kW | 5000 | 0.00 | 1210.02 | 5137.43 | −574.94 | 10,772.51 |
BS | 98 unit | 54,705.26 | 23,210.01 | 10,777.47 | 0.00 | −4368.36 | 84,324.38 |
Converter | 34 kW | 10,207.9 | 4330.94 | 0.00 | 0.00 | −815.13 | 13,723.71 |
Total | 132,465.88 | 27,540.96 | 11,987.48 | 5137.43 | −5758.42 | 171,373.32 |
Item | Component | BWRO-150 | |||
LF–EMS | CC–EMS | CS–EMS | P–EMS | ||
Yearly produced energy (kWh) | PV | 56,331 (60.1%) | 52,546 (55.7%) | 52,336 (55.9%) | 61,098 (61.2 %) |
DG | 37,465 (39.9%) | 41,740 (44.3%) | 41,360 (44.1%) | 38,722 (38.8%) | |
Total | 93,793 (%) | 94,287 (100%) | 93,696 (100%) | 99,819 (100%) | |
Yearly consumed energy (kWh) | BWRO-150 | 76,692 (100%) | 76,694 (100%) | 76,684 (100%) | 76,694 (100%) |
Yearly excess energy | kWh | 14,654 (15%) | 15,523 (16.5%) | 14,817 (15.8%) | 20,758 (20.8%) |
Yearly unmet load | kWh | 1.74 (0.0023%) | 0.00 | 9.41 (0.012%) | 0.00 |
Yearly capacity shortage | kWh | 13.0 (0.017%) | 0.00 | 69.4 (0.091%) | 0.00 |
Renewable fraction | % | 51.1 | 45.6 | 46.1 | 49.5 |
Item | Component | BWRO-250 | |||
LF–EMS | CC–EMS | CS–EMS | P–EMS | ||
Yearly produced energy (kWh) | PV | 108,002 (90.8%) | 82,435 (82.5%) | 98,183 (89.1%) | 84,179 (84.5%) |
DG | 10,929 (9.19%) | 17,461 (17.5%) | 12,060 (10.9%) | 15,423 (15.5%) | |
Total | 118,931 (100%) | 99,896 (100%) | 110,243 (100%) | 99,602 (100%) | |
Yearly consumed energy (kWh) | BWRO-250 | 68,469 (100%) | 68,467 (100%) | 68,454 (100%) | 68,467 (100%) |
Yearly excess energy | kWh | 47,016 (39.5 %) | 28,142 (28.2%) | 38,390 (34.8%) | 27,532 (27.6%) |
Yearly unmet load | kWh | 4.95 (0.0072%) | 6.52 (0.0095%) | 20.3 (0.0297%) | 6.84 (0.01%) |
Yearly capacity shortage | kWh | 63.6 (0.093%) | 64.0 (0.0935%) | 66.8 (0.0976%) | 56.3 (0.0822) |
Renewable fraction | % | 84.0 | 74.5 | 82.4 | 77.5 |
Item | Component | BWRO-500 | |||
LF–EMS | CC–EMS | CS–EMS | P–EMS | ||
Yearly produced energy (kWh) | PV | 127,037 (97.1%) | 107,892 (94.7%) | 114,774 (95.9%) | 97,412 (97.8%) |
DG | 3705 (2.90%) | 6059 (5.32%) | 4880 (4.08%) | 2255 (2.24%) | |
Total | 127,741 (100%) | 113,951 (100%) | 119,654 (100%) | 100,668 (100%) | |
Yearly consumed energy (kWh) | BWRO-500 | 70,029 (100%) | 70,026 (100%) | 70,029 (100%) | 70,023 (100%) |
Yearly excess energy | kWh | 53,978 (42.3%) | 40,206 (35.3%) | 45,939 (38.4%) | 26,242 (26.1%) |
Yearly unmet load | kWh | 3.81 (0.0054%) | 6.89 (0.0098) | 3.09 (0.0044) | 9.43 (0.0135%) |
Yearly capacity shortage | kWh | 69.3 (0.0989%) | 69.7 (0.0996) | 68.6 (0.098%) | 69.5 (0.0993%) |
Renewable fraction | % | 94.7 | 91.3 | 93.0 | 96.8 |
Pollutant (kg/Year) | BWRO-150 | |||
LF–EMS | CC–EMS | CS–EMS | P–EMS | |
Carbon dioxide (CO2) | 33,188 | 36,873 | 36,090 | 35,158 |
Carbon monoxide (CO) | 251 | 297 | 273 | 266 |
Unburned hydrocarbons | 9.15 | 10.2 | 9.95 | 9.69 |
Particulate matter (PM) | 15.2 | 16.9 | 16.5 | 16.1 |
Sulfur dioxide (SO2) | 81.4 | 90.5 | 88.5 | 86.3 |
Nitrogen oxides (NOx) | 285 | 317 | 310 | 302 |
BWRO-250 | ||||
LF–EMS | CC–EMS | CS–EMS | P–EMS | |
CO2 | 9686 | 15,477 | 10,523 | 14,289 |
CO | 73.3 | 117 | 79.6 | 108 |
Unburned hydrocarbons | 2.67 | 4.27 | 2.90 | 3.94 |
PM | 4.44 | 7.10 | 4.83 | 6.55 |
SO2 | 23.8 | 38.0 | 25.8 | 35.1 |
NOx | 83.3 | 133 | 90.5 | 123 |
BWRO-500 | ||||
LF–EMS | CC–EMS | CS–EMS | P–EMS | |
CO2 | 3248 | 5298 | 4258 | 2076 |
CO | 24.6 | 40.1 | 32.2 | 15.7 |
Unburned hydrocarbons | 0.895 | 1.46 | 1.17 | 0.572 |
PM | 1.49 | 2.43 | 1.95 | 0.952 |
SO2 | 7.79 | 13.0 | 10.4 | 5.09 |
NOx | 27.9 | 45.6 | 36.6 | 17.9 |
Criteria Alternative | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
---|---|---|---|---|---|---|---|---|
A1 | 0.4244 | 0.19315 | 0.17748 | 0.29474 | 0.12533 | 0.06238 | 0.31639 | 0.43924 |
A2 | 0.45218 | 0.17236 | 0.14869 | 0.29157 | 0.13276 | 0.00359 | 0.31397 | 0.48801 |
A3 | 0.43171 | 0.17425 | 0.14473 | 0.28047 | 0.12673 | 0.33738 | 0.29114 | 0.47765 |
A4 | 0.45553 | 0.1871 | 0.16461 | 0.30266 | 0.17754 | 0.00359 | 0.32918 | 0.46531 |
A5 | 0.15703 | 0.31751 | 0.29847 | 0.26621 | 0.40212 | 0.17747 | 0.23928 | 0.12819 |
A6 | 0.20863 | 0.2816 | 0.22522 | 0.24878 | 0.24069 | 0.23376 | 0.213 | 0.20484 |
A7 | 0.1614 | 0.31146 | 0.2772 | 0.25671 | 0.32834 | 0.72782 | 0.22268 | 0.13927 |
A8 | 0.20471 | 0.29294 | 0.22603 | 0.2472 | 0.23547 | 0.24523 | 0.20816 | 0.18911 |
A9 | 0.13487 | 0.35795 | 0.41273 | 0.3185 | 0.46174 | 0.1366 | 0.32676 | 0.04299 |
A10 | 0.16363 | 0.3451 | 0.39253 | 0.32167 | 0.34387 | 0.24703 | 0.33298 | 0.07012 |
A11 | 0.14972 | 0.35153 | 0.40059 | 0.32167 | 0.39291 | 0.11079 | 0.3271 | 0.05635 |
A12 | 0.13424 | 0.36589 | 0.38173 | 0.29949 | 0.22444 | 0.33809 | 0.29668 | 0.02748 |
Criteria | Segma | C-Value | Weights |
---|---|---|---|
C1 | 0.43054 | 2.9481 | 0.14145 |
C2 | 0.39509 | 2.84349 | 0.13643 |
C3 | 0.38939 | 3.13208 | 0.15028 |
C4 | 0.36913 | 2.24161 | 0.10755 |
C5 | 0.34823 | 2.88644 | 0.13849 |
C6 | 0.27183 | 2.38749 | 0.11455 |
C7 | 0.27183 | 1.58448 | 0.07602 |
C8 | 0.39566 | 2.81841 | 0.13523 |
Criteria Alternative | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
---|---|---|---|---|---|---|---|---|
A1 | 0.06003 | 0.02635 | 0.02667 | 0.0317 | 0.01736 | 0.00715 | 0.02405 | 0.0594 |
A2 | 0.06396 | 0.02352 | 0.02235 | 0.03136 | 0.01839 | 0.00041 | 0.02387 | 0.06599 |
A3 | 0.06107 | 0.02377 | 0.02175 | 0.03017 | 0.01755 | 0.03865 | 0.02213 | 0.06459 |
A4 | 0.06443 | 0.02553 | 0.02474 | 0.03255 | 0.02459 | 0.00041 | 0.02503 | 0.06292 |
A5 | 0.02221 | 0.04332 | 0.04485 | 0.02863 | 0.05569 | 0.02033 | 0.01819 | 0.01734 |
A6 | 0.02951 | 0.03842 | 0.03385 | 0.02676 | 0.03333 | 0.02678 | 0.01619 | 0.0277 |
A7 | 0.02283 | 0.04249 | 0.04166 | 0.02761 | 0.04547 | 0.08337 | 0.01693 | 0.01883 |
A8 | 0.02896 | 0.03997 | 0.03397 | 0.02659 | 0.03261 | 0.02809 | 0.01582 | 0.02557 |
A9 | 0.01908 | 0.04884 | 0.06202 | 0.03426 | 0.06395 | 0.01565 | 0.02484 | 0.00581 |
A10 | 0.02315 | 0.04708 | 0.05899 | 0.0346 | 0.04762 | 0.0283 | 0.02531 | 0.00948 |
A11 | 0.02118 | 0.04796 | 0.0602 | 0.0346 | 0.05441 | 0.01269 | 0.02487 | 0.00762 |
A12 | 0.01899 | 0.04992 | 0.05737 | 0.03221 | 0.03108 | 0.03873 | 0.02255 | 0.00372 |
Criteria | V+ | V- |
---|---|---|
C1 | 0.01899 | 0.06443 |
C2 | 0.04992 | 0.02352 |
C3 | 0.02175 | 0.06202 |
C4 | 0.02659 | 0.0346 |
C5 | 0.01736 | 0.06395 |
C6 | 0.00041 | 0.08337 |
C7 | 0.01582 | 0.02531 |
C8 | 0.00372 | 0.06599 |
Alternative | Si+ | Si- | Pi | Rank |
---|---|---|---|---|
A1 | 0.07419 | 0.0965 | 0.56535 | 8 |
A2 | 0.08177 | 0.10269 | 0.5567 | 9 |
A3 | 0.0876 | 0.07628 | 0.46544 | 11 |
A4 | 0.07967 | 0.0992 | 0.55458 | 10 |
A5 | 0.05147 | 0.09469 | 0.64785 | 4 |
A6 | 0.04376 | 0.08937 | 0.67129 | 2 |
A7 | 0.09149 | 0.07204 | 0.44055 | 12 |
A8 | 0.04271 | 0.09023 | 0.67872 | 1 |
A9 | 0.06458 | 0.10444 | 0.61791 | 7 |
A10 | 0.05739 | 0.09361 | 0.61994 | 6 |
A11 | 0.05632 | 0.10472 | 0.65026 | 3 |
A12 | 0.05479 | 0.09874 | 0.64312 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezk, H.; Alamri, B.; Aly, M.; Fathy, A.; Olabi, A.G.; Abdelkareem, M.A.; Ziedan, H.A. Multicriteria Decision-Making to Determine the Optimal Energy Management Strategy of Hybrid PV–Diesel Battery-Based Desalination System. Sustainability 2021, 13, 4202. https://doi.org/10.3390/su13084202
Rezk H, Alamri B, Aly M, Fathy A, Olabi AG, Abdelkareem MA, Ziedan HA. Multicriteria Decision-Making to Determine the Optimal Energy Management Strategy of Hybrid PV–Diesel Battery-Based Desalination System. Sustainability. 2021; 13(8):4202. https://doi.org/10.3390/su13084202
Chicago/Turabian StyleRezk, Hegazy, Basem Alamri, Mokhtar Aly, Ahmed Fathy, Abdul G. Olabi, Mohammad Ali Abdelkareem, and Hamdy A. Ziedan. 2021. "Multicriteria Decision-Making to Determine the Optimal Energy Management Strategy of Hybrid PV–Diesel Battery-Based Desalination System" Sustainability 13, no. 8: 4202. https://doi.org/10.3390/su13084202
APA StyleRezk, H., Alamri, B., Aly, M., Fathy, A., Olabi, A. G., Abdelkareem, M. A., & Ziedan, H. A. (2021). Multicriteria Decision-Making to Determine the Optimal Energy Management Strategy of Hybrid PV–Diesel Battery-Based Desalination System. Sustainability, 13(8), 4202. https://doi.org/10.3390/su13084202