Distributed Ledger Technology Applications in Food Supply Chains: A Review of Challenges and Future Research Directions
Abstract
:1. Introduction
- The challenges of scalability, security, and privacy and practices to address them are described in detail.
- Suggestions for future research directions are provided, with wider interpretation of their relevance to the SDGs [17] and contribution towards more transparent, traceable, and sustainable FSCs.
2. Research Methodology
3. Results and Discussion
3.1. Classification of Selected Research Papers
- Review.
- System (framework) design.
- Experimental setup/prototype.
- Case study.
- Simulation.
3.2. Challenges of DLT and IoT Implementation in FSCs
3.2.1. Scalability Challenges
3.2.2. Security Challenges
3.2.3. Privacy Challenges
3.3. Classification of Challenges into Thematic Clusters
3.4. Summary and Outlook of Challenges and Enablers of DLT Adoption
4. Implications for Future Research Directions
4.1. Resolution of the Scalability Issue of Blockchains
4.2. Data Security, Reliability and Trustworthiness at Machine or Sensor Data Entry Level
4.3. Protection and Privacy Issues of Blockchains
4.4. Interoperability of Blockchains
4.5. Integration of other Emerging Technologies
4.6. Blockchain-IoT Solutions for a High Value FSC
4.7. Automated and Direct Payments with Cryptocurrency and Proof-of-Delivery
4.8. Sustainable Agri-Food Supply Chain
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FSC | Food supply chain |
ISO | International Organization for Standardization |
IoT | Internet of Things |
DLT | Distributed ledger technology |
CPS | Cyber-physical systems |
GPS | Global positioning system |
GIS | Geographic information system |
NFC | Near-field communication |
RFID | Radio frequency identification |
SDGs | Sustainable Development Goals |
UN | United Nations |
AI | Artificial intelligence |
SLR | Systematic literature review |
CPU | Central processing unit |
HACCP | Hazard control and critical control point |
IPFS | Interplanetary file system |
DOS | Denial-of-service |
DDOS | Distributed denial-of-service |
RSA | Rivest-Shamir-Adleman |
CO2 | Carbon dioxide |
SSL | Secure sockets layer |
TLS | Transport layer security |
ZKP | Zero knowledge proofs |
GDPR | General data protection regulation |
EPCIS | Electronic product code information services |
FRD | Future Research Direction |
COVID-19 | Coronavirus disease 2019 |
DNA | Deoxyribonucleic Acid |
Appendix A
Application | Publication | Year | Research Method | Reference |
---|---|---|---|---|
seafood | conference | 2019 | Case study | [74] |
journal | 2019 | Review | [45] | |
agriculture | journal | 2020 | Review | [24,43] |
agri-food | journal | 2019 | Review | [19,21] |
2020 | Review, case study | [73] | ||
2020 | Case study | [79] | ||
2020 | Review | [12,38] | ||
2018 | Review | [1] | ||
2020 | Experimental setup, simulation | [52] | ||
2020 | System design, case study | [58] | ||
olive oil | conference | 2019 | Experimental setup, simulation | [69] |
dairy | book chapter | 2019 | Experimental setup | [95] |
journal | 2020 | System (framework) design | [59] | |
book chapter | 2020 | Review | [6] | |
egg | journal | 2019 | Case study | [68] |
agri-food | conference | 2018 | Experimental setup | [49] |
2020 | System design, simulation | [53] | ||
2016 | System (framework) design | [76] | ||
2019 | System (framework) design | [71] | ||
2017 | Case study | [56] | ||
2019 | System (framework) design | [47] | ||
food | conference | 2019 | Case study | [51,66] |
2020 | Experimental setup | [61] | ||
2019 | Case study (containerized) | [70] | ||
2020 | Review | [39] | ||
2019 | Experimental setup, simulation (milk chocolate) | [50] | ||
2019 | System (framework) design | [44] | ||
halal food | conference | 2019 | Experimental setup | [48] |
journal | 2020 | Case study | [78] | |
pork meat, restaurant | journal | 2019 | Experimental setup | [94] |
grain | journal | 2020 | System design, simulation (Australian) | [92] |
2020 | Case study | [67] | ||
precision agriculture | journal | 2020 | System design (framework) | [85] |
2020 | Review | [26,42] | ||
Trade/food trade | journal | 2019 | Review | [41] |
2020 | System (framework) design | [23] | ||
rice | conference | 2020 | System design (framework) | [54] |
agriculture | conference | 2020 | Review | [77] |
2020 | System (framework) design | [72] | ||
2020 | System (framework) design | [90] | ||
2020 | System (framework) design | [88] | ||
2018 | System (framework) design | [60] | ||
food | journal | 2019 | Experimental setup | [63] |
2020 | Experimental setup | [57] | ||
2020 | Review | [25,31,33,34,35] | ||
2020 | Simulation (quantitative study) | [81] | ||
2019 | Review | [40] | ||
2019 | Case study | [46] | ||
2019 | Case study (case 2) | [75] | ||
2020 | System (framework) design | [55] | ||
soybean | conference | 2019 | System (framework) design | [20] |
wine | journal | 2019 | Case study | [91] |
food | book chapter | 2020 | Review | [36,37] |
perishable food | journal | 2020 | System design (method) | [65] |
seed | conference | 2020 | System (framework) design | [64] |
retail | journal | 2020 | Experimental setup | [96] |
grape | journal | 2020 | System (framework) design | [80] |
fish | journal | 2020 | Case study | [18] |
livestock | conference | 2020 | System (framework) design | [62] |
Appendix B
References
- Galvez, J.F.; Mejuto, J.C.; Simal-Gandara, J. Future challenges on the use of blockchain for food traceability analysis. Trends Anal. Chem. 2018, 107, 222–232. [Google Scholar] [CrossRef]
- Aung, M.M.; Chang, Y.S. Traceability in a food supply chain: Safety and quality perspectives. Food Control 2014, 39, 172–184. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X.; Yan, J.; Hu, G.; Shi, Y. Processes, benefits, and challenges for adoption of blockchain technologies in food supply chains: A thematic analysis. Inf. Syst. E Bus. Manag. 2020, 5, 1. [Google Scholar] [CrossRef]
- Behnke, K.; Janssen, M.F.W.H.A. Boundary conditions for traceability in food supply chains using blockchain technology. Int. J. Inf. Manag. 2020, 52, 101969. [Google Scholar] [CrossRef]
- Köhler, S.; Pizzol, M. Technology assessment of blockchain-based technologies in the food supply chain. J. Clean. Prod. 2020, 269, 122193. [Google Scholar] [CrossRef]
- Aysha, C.H.; Athira, S. Overcoming the quality challenges across the supply chain. In Dairy Processing: Advanced Research to Applications; Minj, J., Sudhakaran, V.A., Kumari, A., Eds.; Springer: Singapore, 2020; pp. 181–196. [Google Scholar] [CrossRef]
- Rogerson, M.; Parry, G.C. Blockchain: Case studies in food supply chain visibility. Int. J. Supply Chain Manag. 2020, 25, 601–614. [Google Scholar] [CrossRef]
- Queiroz, M.M.; Telles, R.; Bonilla, S.H. Blockchain and supply chain management integration: A systematic review of the literature. SCM 2019, 25, 241–254. [Google Scholar] [CrossRef]
- Bermeo-Almeida, O.; Cardenas-Rodriguez, M.; Samaniego-Cobo, T.; Ferruzola-Gómez, E.; Cabezas-Cabezas, R.; Bazán-Vera, W. Blockchain in agriculture: A systematic literature review. In Technologies and Innovation; Valencia-García, R., Alcaraz-Mármol, G., del Cioppo-Morstadt, J., Vera-Lucio, N., Bucaram-Leverone, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 44–56. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, S.; Lopez, C.; Lu, H.; Elgueta, S.; Chen, H.; Boshkoska, B.M. Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions. Comput. Ind. 2019, 109, 83–99. [Google Scholar] [CrossRef]
- Creydt, M.; Fischer, M. Blockchain and more—Algorithm driven food traceability. Food Control 2019, 105, 45–51. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. Int. J. Prod. Econ. 2020, 219, 179–194. [Google Scholar] [CrossRef]
- Duan, J.; Zhang, C.; Gong, Y.; Brown, S.; Li, Z. A Content-analysis based literature review in blockchain adoption within food supply chain. Int. J. Environ. Res. Public Health 2020, 17, 1784. [Google Scholar] [CrossRef] [Green Version]
- Ying, K.-C.; Pourhejazy, P.; Cheng, C.-Y.; Syu, R.-S. Supply chain-oriented permutation flowshop scheduling considering flexible assembly and setup times. Int. J. Prod. Res. 2020, 8, 1–24. [Google Scholar] [CrossRef]
- De Leon, D.C.; Stalick, A.Q.; Jillepalli, A.A.; Haney, M.A.; Sheldon, F.T. Blockchain: Properties and misconceptions. Asia Pac. J. Innov. Entrep. 2017, 11, 286–300. [Google Scholar] [CrossRef]
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development | Department of Economic and Social Affairs. 2015. Available online: https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981 (accessed on 8 March 2021).
- França, A.S.L.; Neto, J.A.; Gonçalves, R.F.; Almeida, C.M.V.B. Proposing the use of blockchain to improve the solid waste management in small municipalities. J. Clean. Prod. 2020, 244, 118529. [Google Scholar] [CrossRef]
- Tsolakis, N.; Niedenzu, D.; Simonetto, M.; Dora, M.; Kumar, M. Supply network design to address United Nations Sustainable Development Goals: A case study of blockchain implementation in Thai fish industry. J. Bus. Res. 2020, 550, 43. [Google Scholar] [CrossRef]
- Kamilaris, A.; Fonts, A.; Prenafeta-Boldύ, F.X. The rise of blockchain technology in agriculture and food supply chains. Trends Food Sci. Technol. 2019, 91, 640–652. [Google Scholar] [CrossRef] [Green Version]
- Salah, K.; Nizamuddin, N.; Jayaraman, R.; Omar, M. Blockchain-based soybean traceability in agricultural supply chain. IEEE Access 2019, 7, 73295–73305. [Google Scholar] [CrossRef]
- Antonucci, F.; Figorilli, S.; Costa, C.; Pallottino, F.; Raso, L.; Menesatti, P. A review on blockchain applications in the agri-food sector. J. Sci. Food Agric. 2019, 99, 6129–6138. [Google Scholar] [CrossRef]
- Rejeb, A.; Keogh, J.G.; Zailani, S.; Treiblmaier, H.; Rejeb, K. Blockchain technology in the food industry: A review of potentials, challenges and future research directions. Logistics 2020, 4, 27. [Google Scholar] [CrossRef]
- Qian, J.; Dai, B.; Wang, B.; Zha, Y.; Song, Q. Traceability in food processing: Problems, methods, and performance evaluations—A review. Crit. Rev. Food Sci. Nutr. 2020, 1–14. [Google Scholar] [CrossRef]
- Lin, W.; Huang, X.; Fang, H.; Wang, V.; Hua, Y.; Wang, J.; Yin, H.; Yi, D.; Yau, L. Blockchain technology in current agricultural systems: From techniques to applications. IEEE Access 2020, 8, 143920–143937. [Google Scholar] [CrossRef]
- Katsikouli, P.; Wilde, A.S.; Dragoni, N.; Høgh-Jensen, H. On the benefits and challenges of blockchains for managing food supply chains. J. Sci. Food Agric. 2021, 101, 2175–2181. [Google Scholar] [CrossRef]
- Torky, M.; Hassanein, A.E. Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges. Comput. Electron. Agric. 2020, 178, 105476. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Pereira, C.R.; Christopher, M.; da Silva, A.L. Achieving supply chain resilience: The role of procurement. Supply Chain Manag. Int. J. 2014, 19, 626–642. [Google Scholar] [CrossRef]
- Kunz, N.; Reiner, G. A meta-analysis of humanitarian logistics research. J. Humanit. Logist. Supply Chain Manag. 2012, 2, 116–147. [Google Scholar] [CrossRef]
- Alexander, A.; Walker, H.; Naim, M. Decision theory in sustainable supply chain management: A literature review. Supply Chain Manag. Int. J. 2014, 19, 504–522. [Google Scholar] [CrossRef] [Green Version]
- Niknejad, N.; Ismail, W.; Bahari, M.; Hendradi, R.; Salleh, A.Z. Mapping the research trends on blockchain technology in food and agriculture industry: A bibliometric analysis. Environ. Technol. Innov. 2021, 21, 101272. [Google Scholar] [CrossRef]
- Wieringa, R.; Maiden, N.; Mead, N.; Rolland, C. Requirements engineering paper classification and evaluation criteria: A proposal and a discussion. Requir. Eng. 2006, 11, 102–107. [Google Scholar] [CrossRef]
- Feng, H.; Wang, X.; Duan, Y.; Zhang, J.; Zhang, X. Applying blockchain technology to improve agri-food traceability: A review of development methods, benefits and challenges. J. Clean. Prod. 2020, 260, 121031. [Google Scholar] [CrossRef]
- Xu, Y.; Li, X.; Zeng, X.; Cao, J.; Jiang, W. Application of blockchain technology in food safety control: Current trends and future prospects. Crit. Rev. Food Sci. Nutr. 2020, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Kayikci, Y.; Subramanian, N.; Dora, M.; Bhatia, M.S. Food supply chain in the era of Industry 4.0, blockchain technology implementation opportunities and impediments from the perspective of people, process, performance, and technology. Prod. Plan. Control 2020, 31, 1–21. [Google Scholar] [CrossRef]
- Keogh, J.G.; Rejeb, A.; Khan, N.; Dean, K.; Hand, K.J. Optimizing global food supply chains: The case for blockchain and GSI standards. In Building the Future of Food Safety Technology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 171–204. [Google Scholar] [CrossRef]
- Subramanian, N.; Chaudhuri, A.; Kayikci, Y. Blockchain applications in food supply chain. In Blockchain and Supply Chain Logistics; Subramanian, N., Chaudhuri, A., Kayıkcı, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 21–29. [Google Scholar] [CrossRef]
- Lezoche, M.; Hernandez, J.E.; Díaz, M.d.M.E.A.; Panetto, H.; Kacprzyk, J. Agri-food 4.0, a survey of the supply chains and technologies for the future agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Peña, M.; Llivisaca, J.; Siguenza-Guzman, L. Blockchain and its potential applications in food supply chain management in ecuador. In Advances in Emerging Trends and Technologies; Botto-Tobar, M., León-Acurio, J., Cadena, A.D., Díaz, P.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 101–112. [Google Scholar] [CrossRef]
- Astill, J.; Dara, R.A.; Campbell, M.; Farber, J.M.; Fraser, E.D.G.; Sharif, S.; Yada, R.Y. Transparency in food supply chains: A review of enabling technology solutions. Trends Food Sci. Technol. 2019, 91, 240–247. [Google Scholar] [CrossRef]
- Juma, H.; Shaalan, K.; Kamel, I. A Survey on using blockchain in trade supply chain solutions. IEEE Access 2019, 7, 184115–184132. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From industry 4.0 to agriculture 4.0, current status, enabling technologies, and research challenges. IEEE Trans. Ind. Inf. 2020, 1. [Google Scholar] [CrossRef]
- Akram, S.V.; Malik, P.K.; Singh, R.; Anita, G.; Tanwar, S. Adoption of blockchain technology in various realms: Opportunities and challenges. Secur. Priv. 2020, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Haroon, A.; Basharat, M.; Khattak, A.M.; Ejaz, W. Internet of things platform for transparency and traceability of food supply chain. In Proceedings of the 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 17–19 October 2019; pp. 13–19. [Google Scholar] [CrossRef]
- Gopi, K.; Mazumder, D.; Sammut, J.; Saintilan, N. Determining the provenance and authenticity of seafood: A review of current methodologies. Trends Food Sci. Technol. 2019, 91, 294–304. [Google Scholar] [CrossRef]
- Tsang, Y.P.; Choy, K.L.; Wu, C.H.; Ho, G.T.S.; Lam, H.Y. Blockchain-driven IoT for food traceability with an integrated consensus mechanism. IEEE Access 2019, 7, 129000–129017. [Google Scholar] [CrossRef]
- Baralla, G.; Pinna, A.; Corrias, G. Ensure traceability in European food supply chain by using a blockchain system. In Proceedings of the 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), Montreal, QC, Canada, 27 May 2019; pp. 40–47. [Google Scholar] [CrossRef]
- Chandra, G.R.; Liaqat, I.A.; Sharma, B. Blockchain redefining: The halal food sector. In Proceedings of the 2019 Amity International Conference on Artificial Intelligence (AICAI), Dubai, United Arab Emirates, 2–6 February 2019; pp. 349–354. [Google Scholar] [CrossRef]
- Caro, M.P.; Ali, M.S.; Vecchio, M.; Giaffreda, R. Blockchain-based traceability in agri-food supply chain management: A practical implementation. In Proceedings of the 2018 IoT Vertical and Topical Summit on Agriculture—Tuscany (IOT Tuscany), Tuscany, Italy, 8–9 May 2019; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.; Kanhere, S.S.; Jurdak, R. ProductChain: Scalable blockchain framework to support provenance in supply chains. In Proceedings of the 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 1–3 November 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Casino, F.; Kanakaris, V.; Dasaklis, T.K.; Moschuris, S.; Rachaniotis, N.P. Modeling food supply chain traceability based on blockchain technology. IFAC PapersOnLine 2019, 52, 2728–2733. [Google Scholar] [CrossRef]
- Shahid, A.; Almogren, A.; Javaid, N.; Al-Zahrani, F.A.; Zuair, M.; Alam, M. Blockchain-based agri-food supply chain: A complete solution. IEEE Access 2020, 8, 69230–69243. [Google Scholar] [CrossRef]
- Shahid, A.; Sarfraz, U.; Malik, M.W.; Iftikhar, M.S.; Jamal, A.; Javaid, N. Blockchain-based reputation system in agri-food supply chain. In Advanced Information Networking and Applications; Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 12–21. [Google Scholar] [CrossRef]
- Kumar, M.V.; Iyengar, N.C.S.N.; Goar, V. Employing blockchain in rice supply chain management. In Advances in Information Communication Technology and Computing; Goar, V., Kuri, M., Kumar, R., Senjyu, T., Eds.; Springer: Singapore, 2021; pp. 451–461. [Google Scholar] [CrossRef]
- Singh, S.K.; Jenamani, M.; Dasgupta, D.; Das, S. A conceptual model for Indian public distribution system using consortium blockchain with on-chain and off-chain trusted data. Inf. Technol. Dev. 2020, 11, 1–25. [Google Scholar] [CrossRef]
- Tian, F. A supply chain traceability system for food safety based on HACCP, blockchain & Internet of things. In Proceedings of the 2017 14th International Conference on Service Systems and Service Management (ICSSSM), Dalian, China, 16–18 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Gai, K.; Fang, Z.; Wang, R.; Zhu, L.; Jiang, P.; Choo, K.-K.R. Edge computing and lightning network empowered secure food supply management. IEEE Internet Things J. 2020, 1. [Google Scholar] [CrossRef]
- Baralla, G.; Pinna, A.; Tonelli, R.; Marchesi, M.; Ibba, S. Ensuring transparency and traceability of food local products: A blockchain application to a Smart Tourism Region. Concurr. Comput. Pract. Exp. 2021, 33, e5857. [Google Scholar] [CrossRef]
- Tan, A.; Ngan, P.T. A proposed framework model for dairy supply chain traceability. Sustain. Futures 2020, 2, 100034. [Google Scholar] [CrossRef]
- Kim, M.; Hilton, B.; Burks, Z.; Reyes, J. Integrating blockchain, smart contract-tokens, and IoT to design a food traceability solution. In Proceedings of the 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 1–3 November 2018; pp. 335–340. [Google Scholar] [CrossRef]
- Shahzad, A.; Zhang, K. An integrated IoT-blockchain implementation for end-to-end supply chain. In Proceedings of the Future Technologies Conference (FTC); Arai, K., Kapoor, S., Bhatia, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 2, pp. 987–997. [Google Scholar] [CrossRef]
- Yang, L.; Liu, X.-Y.; Kim, J.S. Cloud-based livestock monitoring system using RFID and blockchain technology. In Proceedings of the 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), New York, NY, USA, 1–3 August 2020; pp. 240–245. [Google Scholar] [CrossRef]
- Mondal, S.; Wijewardena, K.P.; Karuppuswami, S.; Kriti, N.; Kumar, D.; Chahal, P. Blockchain inspired RFID-based information architecture for food supply chain. IEEE Internet Things J. 2019, 6, 5803–5813. [Google Scholar] [CrossRef]
- Abdulhussein, A.B.; Hadi, A.K.; Ilyas, M. Design a tracing system for a seed supply chain based on blockchain. In Proceedings of the 2020 3rd International Conference on Engineering Technology and its Applications (IICETA), Najaf, Iraq, 6–7 September 2020; pp. 209–214. [Google Scholar] [CrossRef]
- Thakur, S.; Breslin, J.G. Scalable and secure product serialization for multi-party perishable good supply chains using blockchain. Internet Things 2020, 11, 100253. [Google Scholar] [CrossRef]
- Lagutin, D.; Bellesini, F.; Bragatto, T.; Cavadenti, A.; Croce, V.; Kortesniemi, Y.; Leligou, H.C.; Oikonomidis, Y.; Polyzos, G.C.; Raveduto, G.; et al. Secure open federation of IoT platforms through interledger technologies—The SOFIE Approach. In Proceedings of the 2019 European Conference on Networks and Communications (EuCNC), Valencia, Spain, 18–21 June 2019; pp. 518–522. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Sun, P.; Xu, J.; Wang, X.; Yu, J.; Zhao, Z.; Dong, Y. Blockchain-based safety management system for the grain supply chain. IEEE Access 2020, 8, 36398–36410. [Google Scholar] [CrossRef]
- Bumblauskas, D.; Mann, A.; Dugan, B.; Rittmer, J. A blockchain use case in food distribution: Do you know where your food has been? Int. J. Inf. Manag. 2020, 52, 102008. [Google Scholar] [CrossRef]
- Arena, A.; Bianchini, A.; Perazzo, P.; Vallati, C.; Dini, G. BRUSCHETTA: An IoT blockchain-based framework for certifying extra virgin olive oil supply chain. In Proceedings of the 2019 IEEE International Conference on Smart Computing (SMARTCOMP), Washington, DC, USA, 12–15 June 2019; pp. 173–179. [Google Scholar] [CrossRef]
- Bechtsis, D.; Tsolakis, N.; Bizakis, A.; Vlachos, D. A blockchain framework for containerized food supply chains. In 29th European Symposium on Computer Aided Process Engineering; Elsevier: Eindhoven, The Netherlands, 2019; pp. 1369–1374. [Google Scholar] [CrossRef]
- Madumidha, S.; Ranjani, P.S.; Vandhana, U.; Venmuhilan, B. A theoretical implementation: Agriculture-food supply chain management using blockchain technology. In Proceedings of the 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW), Tiruchirappalli, India, 22–24 May 2019; pp. 174–178. [Google Scholar] [CrossRef]
- Awan, S.H.; Nawaz, A.; Ahmed, S.; Khattak, H.A.; Zaman, K.; Najam, Z. Blockchain based Smart model for agricultural food supply chain. In Proceedings of the 2020 International Conference on UK-China Emerging Technologies (UCET), Glasgow, UK, 20–21 August 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Xu, J.; Guo, S.; Xie, D.; Yan, Y. Blockchain: A new safeguard for agri-foods. Artif. Intell. Agric. 2020, 4, 153–161. [Google Scholar] [CrossRef]
- Aich, S.; Chakraborty, S.; Sain, M.; Lee, H.-I.; Kim, H.-C. A review on benefits of IoT integrated blockchain based supply chain management implementations across different sectors with case study. In Proceedings of the 2019 21st International Conference on Advanced Communication Technology (ICACT), PyeongChang Kwangwoon Do, Korea, 17–20 February 2019; pp. 138–141. [Google Scholar] [CrossRef]
- Roeck, D.; Sternberg, H.; Hofmann, E. Distributed ledger technology in supply chains: A transaction cost perspective. Int. J. Prod. Res. 2020, 58, 2124–2141. [Google Scholar] [CrossRef] [Green Version]
- Tian, F. An agri-food supply chain traceability system for China based on RFID & blockchain technology. In Proceedings of the 2016 13th International Conference on Service Systems and Service Management (ICSSSM), Kunming, China, 24–26 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Mirabelli, G.; Solina, V. Blockchain and agricultural supply chains traceability: Research trends and future challenges. Procedia Manuf. 2020, 42, 414–421. [Google Scholar] [CrossRef]
- Tan, A.; Gligor, D.; Ngah, A. Applying Blockchain for Halal food traceability. Int. J. Logist. Res. Appl. 2020, 1, 1–18. [Google Scholar] [CrossRef]
- Stranieri, S.; Riccardi, F.; Meuwissen, M.P.M.; Soregaroli, C. Exploring the impact of blockchain on the performance of agri-food supply chains. Food Control 2021, 119, 107495. [Google Scholar] [CrossRef]
- Saurabh, S.; Dey, K. Blockchain technology adoption, architecture, and sustainable agri-food supply chains. J. Clean. Prod. 2021, 284, 124731. [Google Scholar] [CrossRef]
- Tayal, A.; Solanki, A.; Kondal, R.; Nayyar, A.; Tanwar, S.; Kumar, N. Blockchain-based efficient communication for food supply chain industry: Transparency and traceability analysis for sustainable business. Int. J. Commun. Syst. 2021, 34, 71. [Google Scholar] [CrossRef]
- Angelis, J.; da Silva, E.R. Blockchain adoption: A value driver perspective. Bus. Horiz. 2019, 62, 307–314. [Google Scholar] [CrossRef]
- Kaiser, C.; Stocker, A.; Festl, A.; Lechner, G.; Fellmann, M. A research agenda for vehicle information systems. In Proceedings of the 26th European Conference on Information Systems, Portsmouth, UK, 23–28 June 2018. [Google Scholar]
- Paliwal, V.; Chandra, S.; Sharma, S. Blockchain technology for sustainable supply chain management: A systematic literature review and a classification framework. Sustainability 2020, 12, 7638. [Google Scholar] [CrossRef]
- Iqbal, R.; Butt, T.A. Safe farming as a service of blockchain-based supply chain management for improved transparency. Cluster Comput. 2020, 23, 2139–2150. [Google Scholar] [CrossRef]
- Koens, T.; Poll, E. Assessing interoperability solutions for distributed ledgers. Pervasive Mob. Comput. 2019, 59, 101079. [Google Scholar] [CrossRef]
- Misra, N.N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.S.; Upadhyay, R.; Martynenko, A. IoT, big data and artificial intelligence in agriculture and food industry. IEEE Internet Things J. 2020, 1. [Google Scholar] [CrossRef]
- Fernandez, A.; Waghmare, A.; Tripathi, S. Agricultural supply chain using blockchain. In Proceedings of International Conference on Intelligent Manufacturing and Automation; Vasudevan, H., Kottur, V.K.N., Raina, A.A., Eds.; Springer: Singapore, 2020; pp. 127–134. [Google Scholar] [CrossRef]
- Tripoli, M.; Schmidhuber, J. Emerging Opportunities for the Application of Blockchain in the Agri-Food Industry; FAO: Rome, Italy; ICTSD: Geneva, Switzerland, 2018. [Google Scholar]
- Al-Amin, S.; Sharkar, S.R.; Kaiser, M.S.; Biswas, M. Towards a blockchain-based supply chain management for e-agro business system. In Proceedings of the International Conference on Trends in Computational and Cognitive Engineering; Kaiser, M.S., Bandyopadhyay, A., Mahmud, M., Ray, K., Eds.; Springer: Singapore, 2021; pp. 329–339. [Google Scholar] [CrossRef]
- Spadoni, R.; Nanetti, M.; Bondanese, A.; Rivaroli, S. Innovative solutions for the wine sector: The role of startups. Wine Econ. Policy 2019, 8, 165–170. [Google Scholar] [CrossRef]
- Gunasekera, D.; Valenzuela, E. Adoption of blockchain technology in the Australian grains trade: An assessment of potential economic effects. Econ Pap. 2020, 39, 152–161. [Google Scholar] [CrossRef]
- Philippidis, G.; Shutes, L.; M’Barek, R.; Ronzon, T.; Tabeau, A.; van Meijl, H. Snakes and ladders: World development pathways’ synergies and trade-offs through the lens of the Sustainable Development Goals. J. Clean. Prod. 2020, 267, 122147. [Google Scholar] [CrossRef] [PubMed]
- George, R.V.; Harsh, H.O.; Ray, P.; Babu, A.K. Food quality traceability prototype for restaurants using blockchain and food quality data index. J. Clean. Prod. 2019, 240, 118021. [Google Scholar] [CrossRef]
- Borah, M.D.; Naik, V.B.; Patgiri, R.; Bhargav, A.; Phukan, B.; Basani, S.G.M. Supply chain management in agriculture using blockchain and IoT. In Advanced Applications of Blockchain Technology; Kim, S., Deka, G.C., Eds.; Springer: Singapore, 2020; pp. 227–242. [Google Scholar] [CrossRef]
- Latif, R.M.A.; Farhan, M.; Rizwan, O.; Hussain, M.; Jabbar, S.; Khalid, S. Retail level Blockchain transformation for product supply chain using truffle development platform. Cluster Comput. 2021, 24, 1–16. [Google Scholar] [CrossRef]
Research Protocol | Details |
---|---|
Search in databases | Search queries performed in the following databases: IEEE Xplore Digital Library (IEEE) 1, ScienceDirect 2, Springer Link 3, Taylor and Francis Online 4, and Wiley Online Library 5. No duplicates were detected |
Publication type | Peer-reviewed papers |
Language | All publications in English language |
Date range | All time span until (including) December 2020 |
Search fields | Abstract (IEEE); title, terms, abstract, keywords (ScienceDirect); and full text search (Springer, Taylor and Francis, Wiley) |
Search terms | “blockchain” OR “distributed ledger” AND “food supply chain” |
Inclusion criteria | Only papers describing relevant blockchain or distributed ledger technologies (DLTs) and IoT (also: sensors, traceability) application in food supply chain (FSC) were included |
Exclusion criteria | Papers in other domains (e.g., wind energy, healthcare) and papers not presenting research or implementation details were omitted. Repetitive or irrelevant content was omitted |
Data extraction and monitoring | Papers were screened for validity: describing blockchain or DLT implementation or research. Book chapters, magazines, conference and journal publications were considered |
Data analysis and synthesis | Shortlisted papers were read through and analyzed, covering current practices of blockchain or DLT and IoT implementation and research in FSCs domain |
Ranking | Challenge | Count (Frequency) |
---|---|---|
1 | Scalability | 25 |
2 | Security | 22 |
3 | Privacy | 20 |
4 | Cost | 19 |
5 | Interoperability | 18 |
6 | Energy consumption | 13 |
7 | Latency | 12 |
8 | Storage | 12 |
9 | Standardization | 10 |
10 | Regulations | 8 |
11 | Stakeholder involvement | 8 |
12 | Confidentiality | 7 |
13 | Digitalization | 7 |
14 | Technology immaturity | 6 |
15 | Data integrity | 5 |
Technical and Infrastructure | Infrastructure ownership; transaction delay; connectivity; scalability; computational power; security; system integration; storage; interoperability; digitalization (poor infrastructure); privacy; need of automatic control; heterogeneity of solutions; hardware-software complexity; low throughput; insufficient communication protocols; latency; technology immaturity |
Organizational | Heterogeneity of actors; confidentiality; participant incompetency; stakeholder involvement; authority issues; policy making; digitalization divide; resistance to openness; new business models; stakeholder governance; source of power; unifying requirements; integrity and honesty; certification; standardization |
Human | Training and education; lack of expertise; unclear benefits of blockchains; lack of skills; user society acceptance; cultural adoption; consumer preferences; human error |
Financial | Payment mechanisms; economic models; cost and financial investment; financial risks; resource integration; risk factor evaluation |
Physical | Connecting pre- and postprocessing information; sensor-tampering; sensor-reliability; bar code tampering; slow-trace; manual work; sensor battery life |
Environmental | Sustainability; energy consumption; economic sustainability; energy harvesting |
Data-related | Data governance and ownership; key management; data integrity; transparent data management; auditable information sharing; transparency; data accessibility; sensitive data; information connectivity; traceability coding scheme; data redundancy; data incompleteness |
Intangibles | Uncertainty; volatility; blockchain-reputation; DLT potential; trust |
Challenges | Solutions | References |
---|---|---|
Scalability | IPFS for storing data off-chain | food and agri-food [51,52,55], agriculture [24,72], rice [54], food trade [23] |
sharding | food [50], trade [41] | |
BigchainDB | food [56] | |
Proof-of-Supply-Chain-Share | e-commerce [46] | |
Lightning network | food [57] | |
Lightweight data structures, Delegate Proof-of-Stake, Distributed Time-based Consensus, DoubleChain, grouping nodes into clusters | agriculture [24] | |
Two-level blockchain | agri-food [58] | |
Security | Data access restriction | food [50], agri-food [58] |
Proof-of-Supply-Chain-Share, blockchain vaporization | food [46] | |
Proof-of-Authority | trade [41] | |
Proof-of-Object | food [63] | |
Product serialization, path-based fund transfer protocol | perishable food [65] | |
Ellipse Curve Cryptography, Diffie-Hellman, RSA, secure protocols (Telehash, Whisper) | food trade [23], agriculture [24] | |
Lightweight data structures, proxy encryption | agriculture [24] | |
Interledger, consortium blockchain | food [66] | |
Privacy | Peer Blockchain Protocol | trade [41] |
Interledger blockchain | food [66] | |
Access rights restriction, two-way coding scheme | grain [67] | |
On-chain and off-chain data storage | food trade [23], food [55] | |
Improved partial blind signature, proxy encryption | agriculture [24] | |
Zero-knowledge proof encryption | agri-food [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurgazina, J.; Pakdeetrakulwong, U.; Moser, T.; Reiner, G. Distributed Ledger Technology Applications in Food Supply Chains: A Review of Challenges and Future Research Directions. Sustainability 2021, 13, 4206. https://doi.org/10.3390/su13084206
Nurgazina J, Pakdeetrakulwong U, Moser T, Reiner G. Distributed Ledger Technology Applications in Food Supply Chains: A Review of Challenges and Future Research Directions. Sustainability. 2021; 13(8):4206. https://doi.org/10.3390/su13084206
Chicago/Turabian StyleNurgazina, Jamilya, Udsanee Pakdeetrakulwong, Thomas Moser, and Gerald Reiner. 2021. "Distributed Ledger Technology Applications in Food Supply Chains: A Review of Challenges and Future Research Directions" Sustainability 13, no. 8: 4206. https://doi.org/10.3390/su13084206
APA StyleNurgazina, J., Pakdeetrakulwong, U., Moser, T., & Reiner, G. (2021). Distributed Ledger Technology Applications in Food Supply Chains: A Review of Challenges and Future Research Directions. Sustainability, 13(8), 4206. https://doi.org/10.3390/su13084206