A Fuzzy Network DEA Approach to the Selection of Advanced Manufacturing Technology
Abstract
:1. Introduction
2. The Proposed Model
2.1. DEA with Multiple DMs
2.2. Fuzzy Network DEA in Decision-Making
2.3. Fuzzy Efficiency Ranking
3. Example
4. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gebler, M.; Uiterkamp, A.J.S.; Visser, C. A global sustainability perspective on 3D printing technologies. Energy Policy 2014, 74, 158–167. [Google Scholar] [CrossRef]
- Ford, S.; Despeisse, M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. J. Clean. Prod. 2016, 137, 1573–1587. [Google Scholar] [CrossRef]
- Lepore, D.; Micozzi, A.; Spigarelli, F. Industry 4.0 Accelerating Sustainable Manufacturing in the COVID-19 Era: Assessing the Readiness and Responsiveness of Italian Regions. Sustainability 2021, 13, 2670. [Google Scholar] [CrossRef]
- Wang, Y.M.; Chin, K.S. A new approach for the selection of advanced manufacturing technologies: DEA with double frontiers. Int. J. Prod. Res. 2009, 47, 6663–6679. [Google Scholar] [CrossRef]
- Dyson, R.G.; Allen, R.; Camanho, A.S.; Podinovski, V.V.; Sarrico, C.S.; Shale, E.A. Pitfalls and protocols in DEA. Eur. J. Oper. Res. 2001, 132, 245–259. [Google Scholar] [CrossRef]
- Karsak, E.E. A two-phase robot selection procedure. Prod. Plan. Control 1998, 9, 675–684. [Google Scholar] [CrossRef]
- Braglia, M.; Petroni, A. Evaluating and selecting investments in industrial robots. Int. J. Prod. Res. 1999, 37, 4157–4178. [Google Scholar] [CrossRef]
- Sarkis, J.; Talluri, S. A decision model for evaluation of flexible manufacturing systems in the presence of both cardinal and ordinal factors. Int. J. Prod. Res. 1999, 37, 2927–2938. [Google Scholar] [CrossRef]
- Talluri, S.; Yoon, K.P. A cone-ratio DEA approach for AMT justification. Int. J. Prod. Econ. 2000, 66, 119–129. [Google Scholar] [CrossRef]
- Talluri, S.; Whiteside, M.M.; Seipel, S.J. A nonparametric stochastic procedure for FMS evaluation. Eur. J. Oper. Res. 2000, 124, 529–538. [Google Scholar] [CrossRef]
- Karsak, E.E.; Ahiska, S.S. Practical common weight multi-criteria decision-making approach with an improved discriminating power for technology selection. Int. J. Prod. Res. 2005, 43, 1537–1554. [Google Scholar] [CrossRef]
- Amin, G.R.; Toloo, M.; Sohrabi, B. An improved MCDM DEA model for technology selection. Int. J. Prod. Res. 2006, 2681–2686. [Google Scholar] [CrossRef]
- Liu, S.T. A fuzzy DEA/AR approach to the selection of flexible manufacturing systems. Comput. Ind. Eng. 2008, 54, 66–76. [Google Scholar] [CrossRef]
- Tao, L.; Chen, Y.; Liu, X.; Wang, X. An integrated multiple criteria decision making model applying axiomatic fuzzy set theory. Appl. Math. Model. 2012, 36, 5046–5058. [Google Scholar] [CrossRef]
- Hsu, C.Y. Integrated data envelopment analysis and neural network model for forecasting performance of wafer fabrication operations. J. Intell. Manuf. 2014, 25, 945–960. [Google Scholar] [CrossRef]
- Yari, M.; Bagherpour, R.; Jamali, S. Development of an evaluation system for blasting patterns to provide efficiency production. J. Intell. Manuf. 2017, 28, 975–984. [Google Scholar] [CrossRef]
- Zimmermann, H.Z. Fuzzy Set Theory and Its Applications, 3rd ed.; Kluwer-Nijhoff: Boston, MA, USA, 1996. [Google Scholar]
- Kao, C.; Liu, S.T. Fuzzy efficiency measures in data envelopment analysis. Fuzzy Sets Syst. 2000, 113, 427–437. [Google Scholar] [CrossRef]
- Kao, C.; Liu, S.T. Data envelopment analysis with missing data: An application to university libraries in Taiwan. J. Oper. Res. Soc. 2000, 51, 897–905. [Google Scholar] [CrossRef]
- Leon, T.; Liern, V.; Ruiz, J.L.; Sirvent, I. A fuzzy mathematical programming approach to the assessment of efficiency with DEA models. Fuzzy Sets Syst. 2003, 139, 407–419. [Google Scholar] [CrossRef]
- Lertworasirkul, S.; Fang, S.C.; Joines, J.A.; Nuttle, H.L.W. Fuzzy data envelopment analysis (DEA): A possibility approach. Fuzzy Sets Syst. 2003, 139, 379–394. [Google Scholar] [CrossRef]
- Wang, Y.M.; Greatbanks, R.; Yang, J.B. Interval efficiency assessment using data envelopment analysis. Fuzzy Sets Syst. 2005, 153, 347–370. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.J. Fuzzy data envelopment analysis and its application to location problems. Inf. Sci. 2009, 179, 820–829. [Google Scholar] [CrossRef]
- Wen, M.L.; Li, H.S. Fuzzy data envelopment analysis (DEA): Model and ranking method. J. Comput. Appl. Math. 2009, 223, 872–878. [Google Scholar] [CrossRef] [Green Version]
- Hatami-Marbini, A.; Emrouznejad, A.; Tavana, M. A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making. Eur. J. Oper. Res. 2011, 214, 457–472. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Tavana, M. Performance Measurement with Fuzzy Data Envelopment Analysis; Springer: Heidelberg, Germany, 2014. [Google Scholar]
- Kao, C.; Liu, S.T. Efficiencies of two-stage systems with fuzzy data. Fuzzy Sets Syst. 2011, 176, 20–35. [Google Scholar] [CrossRef]
- Kao, C.; Lin, P.H. Efficiency of parallel production systems with fuzzy data. Fuzzy Sets Syst. 2012, 198, 83–98. [Google Scholar] [CrossRef]
- Lozano, S. Computing fuzzy process efficiency in parallel systems. Fuzzy Optim. Decis. Mak. 2014, 13, 73–89. [Google Scholar] [CrossRef]
- Hatami-Marbinia, A.; Saati, S. Efficiency evaluation in two-stage data envelopment analysis under a fuzzy environment: A common-weights approach. Appl. Soft Comput. 2018, 72, 156–165. [Google Scholar] [CrossRef]
- Kao, C. Network Data Envelopment Analysis: Foundations and Extensions; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Asmild, M.; Paradi, J.C.; Reese, D.N.; Tam, F. Measuring overall efficiency and effectiveness using DEA. Eur. J. Oper. Res. 2007, 178, 305–321. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Kao, C. Efficiency measurement for parallel production systems. Eur. J. Oper. Res. 2009, 196, 1107–1112. [Google Scholar] [CrossRef]
- Allen, R.; Athanassopoulos, A.; Dyson, R.G.; Thanassoulis, E. Weights restrictions and value judgements in data envelopment analysis: Evolution, development and future directions. Ann. Oper. Res. 1997, 73, 13–34. [Google Scholar] [CrossRef]
- Dyson, R.G.; Thanassoulis, E. Reducing weight flexibility in DEA. J. Oper. Res. Soc. 1988, 39, 563–567. [Google Scholar] [CrossRef]
- Podinovski, V.V. Side effects of absolute weight bounds in DEA models. Eur. J. Oper. Res. 1999, 115, 583–595. [Google Scholar] [CrossRef]
- Wong, Y.H.B.; Beasle, J.E. Restricting weight flexibility in data envelopment analysis. J. Oper. Res. Soc. 1990, 41, 829–835. [Google Scholar] [CrossRef]
- Thanassoulis, E.; Portela, M.C.; Allen, R. Incorporating value judgment in DEA. In Handbook on Data Envelopment Analysis; Cooper, W.W., Seiford, L.M., Zhu, J., Eds.; Kluwer Academic Publishers: New York, NY, USA, 2004; pp. 99–138. [Google Scholar]
- Thompson, R.G.; Singleton, F.D.; Thrall, R.M.; Smith, B.A. Comparative site evaluations for locating high energy lab in Texas. Interfaces 1986, 16, 1380–1395. [Google Scholar] [CrossRef]
- Thompson, R.G.; Langemeier, L.N.; Lee, C.T.; Thrall, R.M. The role of multiplier bounds in efficiency analysis with application to Kansas farming. J. Econ. 1990, 46, 93–108. [Google Scholar] [CrossRef]
- Saati, S.; Memariani, A. Reducing weight flexibility in fuzzy DEA. Appl. Math. Comput. 2005, 161, 611–622. [Google Scholar] [CrossRef]
- Liu, S.T. Restricting weight flexibility in fuzzy two-stage DEA. Comput. Ind. Eng. 2014, 74, 149–160. [Google Scholar] [CrossRef]
- Bazaraa, M.S.; Jarvis, J.J.; Sherali, H.D. Linear Programming and Network Flows, 4th ed.; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Chen, C.B.; Klein, C.M. A simple approach to ranking a group of aggregated utilities. IEEE Trans. Syst. Man Cybern. Part B 1997, 27, 26–35. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Hahhari, T. A new approach for ranking of trapezoidal fuzzy numbers. Comput. Math. Appl. 2009, 57, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Yu, V.F.; Dat, L.Q. An improved ranking method for fuzzy numbers with integral values. Appl. Soft Comput. 2014, 14, 603–608. [Google Scholar] [CrossRef]
- Rezvani, S. Ranking generalized exponential trapezoidal fuzzy numbers based on variance. Appl. Math. Comput. 2015, 262, 191–198. [Google Scholar] [CrossRef]
- Boulmakou1, A.; Laarabi, M.H.; Sacile, R.; Garbolino, E. An original approach to ranking fuzzy numbers by inclusion index and Biset Encoding. Fuzzy Optim. Decis. Mak. 2017, 16, 23–49. [Google Scholar] [CrossRef]
- Chutia, R.; Chutia, B. A new method of ranking parametric form of fuzzy numbers using value and ambiguity. Appl. Soft Comput. 2017, 52, 1154–1168. [Google Scholar] [CrossRef]
Inputs | Outputs | ||||||
---|---|---|---|---|---|---|---|
FMS | DM | Total Cost | Space | Quali. | WIP | No. of Tardy | Yield |
1 | 1 | (16.17, 17.02, 17.87) | 5 | 42 | (43.01, 45.30, 47.60) | (13.50, 14.20, 14.90) | (28.60, 30.10, 31.60) |
2 | (18.02, 18.97, 19.92) | 5 | 42 | (47.92, 50.49, 53.05) | (15.05, 15.83, 16.61) | (31.87, 33.55, 35.22) | |
3 | (16.13, 16.98, 17.83) | 5 | 42 | (42.91, 45.20, 47.50) | (14.17, 14.87, 28.54) | (28.54, 30.03, 31.53) | |
2 | 1 | (15.64, 16.46, 17.28) | 4.5 | 39 | (38.10, 40.10, 42.10) | (12.40, 13.00, 13.70) | (28.30, 29.80, 31.30) |
2 | (15.37, 16.17, 16.98) | 4.5 | 39 | (37.43, 39.40, 41.36) | (12.18, 12.77, 13.46) | (27.80, 29.28, 30.75) | |
3 | (16.47, 17.33, 18.20) | 4.5 | 39 | (40.12, 42.23, 44.33) | (13.06, 13.69, 14.43) | (29.80, 31.38, 32.96) | |
3 | 1 | (11.17, 11.76, 12.35) | 6 | 26 | (37.60, 39.60, 41.60) | (13.10, 13.80, 14.50) | (23.30, 24.50, 25.70) |
2 | (10.81, 11.38, 11.95) | 6 | 26 | (36.39, 38.32, 40.26) | (12.68, 13.36, 14.03) | (22.55, 23.71, 24.87) | |
3 | (10.44, 10.99, 11.54) | 6 | 26 | (35.14, 37.01, 38.88) | (12.24, 12.90, 13.55) | (21.77, 22.90, 24.02) | |
4 | 1 | (9.99, 10.52, 11.05) | 4 | 22 | (34.20, 36.00, 37.80) | (10.70, 11.30, 11.90) | (23.80, 25.00, 26.30) |
2 | (10.63, 11.20, 11.76) | 4 | 22 | (36.40, 38.31, 40.23) | (11.39, 12.03, 12.67) | (25.33, 26.61, 27.99) | |
3 | (10.98, 11.56, 12.14) | 4 | 22 | (37.58, 39.56, 41.54) | (11.76, 12.42, 13.08) | (26.15, 27.47, 28.90) | |
5 | 1 | (9.03, 9.50, 9.98) | 3.8 | 21 | (32.50, 34.20, 35.90) | (11.40, 12.00, 12.60) | (19.40, 20.40, 21.40) |
2 | (10.63, 11.20, 11.76) | 3.8 | 21 | (36.40, 38.31, 40.23) | (11.39, 12.03, 12.67) | (25.33, 26.61, 27.99) | |
3 | (8.90, 9.36, 9.84) | 3.8 | 21 | (32.03, 33.70, 35.38) | (11.23, 11.83, 12.42) | (19.12, 20.10, 21.09) | |
6 | 1 | (4.55, 4.79, 5.03) | 5.4 | 10 | (19.10, 20.10, 21.10) | (4.80, 5.00, 5.30) | (15.70, 16.50, 17.30) |
2 | (4.89, 5.15, 5.41) | 5.4 | 10 | (20.54, 21.62, 22.69) | (5.16, 5.38, 5.70) | (16.88, 17.74, 18.60) | |
3 | (4.89, 5.15, 5.41) | 5.4 | 10 | (20.54, 21.62, 22.69) | (5.16, 5.38, 5.70) | (16.88, 17.74, 18.60) | |
7 | 1 | (4.55, 4.79, 5.03) | 6.2 | 14 | (25.20, 26.50, 27.80) | (6.70, 7.00, 7.40) | (18.70, 19.70, 20.70) |
2 | (6.76, 7.11, 7.47) | 6.2 | 14 | (28.86, 30.35, 31.84) | (7.67, 8.02, 8.47) | (21.42, 22.56, 23.71) | |
3 | (5.83, 6.13, 6.44) | 6.2 | 14 | (24.89, 26.18, 27.46) | (6.62, 6.91, 7.31) | (18.47, 19.46, 20.45) | |
8 | 1 | (10.56, 11.12, 11.68) | 6 | 25 | (34.10, 35.90, 37.70) | (8.60, 9.00, 9.50) | (23.50, 24.70, 25.90) |
2 | (10.41, 10.96, 11.51) | 6 | 25 | (33.60, 35.38, 37.15) | (8.47, 8.87, 9.36) | (23.16, 24.34, 25.52) | |
3 | (10.19, 10.73, 11.27) | 6 | 25 | (32.89, 34.63, 36.36) | (8.29, 8.68, 9.16) | (22.67, 23.82, 24.98) | |
9 | 1 | (3.49, 3.67, 3.85) | 8 | 4 | (16.50, 17.40, 18.30) | (0.10, 0.10, 0.10) | (17.20, 18.10, 19.00) |
2 | (3.41, 3.58, 3.76) | 8 | 4 | (16.11, 16.99, 17.87) | (0.10, 0.10, 0.10) | (16.80, 17.67, 18.55) | |
3 | (3.99, 4.19, 4.40) | 8 | 4 | (18.85, 19.88, 20.91) | (0.10, 0.10, 0.10) | (19.65, 20.68, 21.71) | |
10 | 1 | (8.48, 8.93, 9.38) | 7 | 16 | (32.60, 34.30, 36.00) | (6.20, 6.50, 6.80) | (19.60, 20.60, 21.60) |
2 | (9.09, 9.58, 10.06) | 7 | 16 | (34.96, 36.79, 38.61) | (6.65, 6.97, 7.29) | (21.02, 22.09, 23.17) | |
3 | (8.81, 9.28, 9.74) | 7 | 16 | (33.86, 35.63, 37.40) | (6.44, 6.75, 7.06) | (20.36, 21.40, 22.44) | |
11 | 1 | (16.85, 17.74, 18.63) | 7.1 | 43 | (43.30, 45.60, 47.90) | (13.30, 14.00, 14.70) | (29.50, 31.10, 32.70) |
2 | (16.62, 17.50, 18.38) | 7.1 | 43 | (42.72, 44.99, 47.26) | (13.12, 13.81, 14.50) | (29.10, 30.68, 32.26) | |
3 | (17.62, 18.55, 19.48) | 7.1 | 43 | (45.28, 47.68, 50.09) | (13.91, 14.64, 15.37) | (30.85, 32.52, 34.19) | |
12 | 1 | (14.11, 14.85, 15.39) | 6.2 | 27 | (36.80, 38.70, 40.60) | (13.10, 13.80, 14.50) | (24.10, 25.40, 26.70) |
2 | (14.75, 15.53, 16.30) | 6.2 | 27 | (38.48, 40.47, 42.46) | (13.70, 14.43, 15.16) | (25.20, 26.56, 27.92) | |
3 | (14.91, 15.69, 16.48) | 6.2 | 27 | (38.89, 40.90, 42.91) | (13.84, 14.58, 15.32) | (25.47, 26.84, 28.22) |
FMS | |||||||||
1 | 0.0 | 0.857 | 0.876 (0.322) | 0.822 (0.356) | 0.872 (0.322) | 1.000 | 1.000 (0.329) | 1.000 (0.342) | 1.000 (0.329) |
0.1 | 0.863 | 0.881 (0.322) | 0.827 (0.356) | 0.883 (0.322) | 1.000 | 1.000 (0.329) | 1.000 (0.342) | 1.000 (0.329) | |
0.2 | 0.879 | 0.898 (0.322) | 0.843 (0.356) | 0.900 (0.322) | 1.000 | 1.000 (0.323) | 1.000 (0.345) | 1.000 (0.332) | |
0.3 | 0.885 | 0.904 (0.322) | 0.849 (0.356) | 0.905 (0.322) | 1.000 | 1.000 (0.323) | 1.000 (0.346) | 1.000 (0.331) | |
0.4 | 0.896 | 0.915 (0.322) | 0.860 (0.356) | 0.917 (0.322) | 1.000 | 1.000 (0.327) | 1.000 (0.344) | 1.000 (0.329) | |
0.5 | 0.913 | 0.933 (0.322) | 0.876 (0.356) | 0.934 (0.322) | 0.997 | 1.000 (0.328) | 0.990 (0.345) | 1.000 (0.327) | |
0.6 | 0.925 | 0.945 (0.322) | 0.888 (0.356) | 0.946 (0.322) | 0.992 | 1.000 (0.326) | 0.977 (0.348) | 1.000 (0.326) | |
0.7 | 0.931 | 0.951 (0.322) | 0.893 (0.356) | 0.952 (0.322) | 0.988 | 1.000 (0.325) | 0.965 (0.350) | 1.000 (0.325) | |
0.8 | 0.943 | 0.963 (0.322) | 0.905 (0.356) | 0.964 (0.322) | 0.983 | 1.000 (0.324) | 0.952 (0.353) | 1.000 (0.323) | |
0.9 | 0.955 | 0.975 (0.322) | 0.916 (0.356) | 0.976 (0.322) | 0.979 | 1.000 (0.322) | 0.940 (0.356) | 1.000 (0.322) | |
1.0 | 0.967 | 0.988 (0.322) | 0.928 (0.356) | 0.989 (0.322) | 0.967 | 0.988 (0.322) | 0.928 (0.356) | 0.989 (0.322) | |
2 | 0.0 | 0.837 | 0.843 (0.330) | 0.852 (0.324) | 0.818 (0.346) | 1.000 | 1.000 (0.332) | 1.000 (0.330) | 1.000 (0.322) |
0.1 | 0.848 | 0.854 (0.330) | 0.863 (0.324) | 0.828 (0.346) | 1.000 | 1.000 (0.332) | 1.000 (0.330) | 1.000 (0.322) | |
0.2 | 0.859 | 0.865 (0.330) | 0.874 (0.324) | 0.839 (0.346) | 1.000 | 1.000 (0.332) | 1.000 (0.330) | 1.000 (0.322) | |
0.3 | 0.870 | 0.876 (0.330) | 0.885 (0.324) | 0.849 (0.346) | 1.000 | 1.000 (0.329) | 1.000 (0.327) | 1.000 (0.344) | |
0.4 | 0.881 | 0.887 (0.330) | 0.896 (0.324) | 0.860 (0.346) | 1.000 | 1.000 (0.332) | 1.000 (0.329) | 1.000 (0.339) | |
0.5 | 0.892 | 0.898 (0.330) | 0.907 (0.324) | 0.871 (0.346) | 0.997 | 1.000 (0.331) | 1.000 (0.329) | 0.990 (0.340) | |
0.6 | 0903 | 0.909 (0.330) | 0.919 (0.324) | 0.882 (0.346) | 0.992 | 1.000 (0.329) | 1.000 (0.328) | 0.977 (0.343) | |
0.7 | 0.915 | 0.921 (0.330) | 0.931 (0.324) | 0.894 (0.346) | 0.986 | 0.994 (0.329) | 1.000 (0.326) | 0.965 (0.345) | |
0.8 | 0.926 | 0.933 (0.330) | 0.942 (0.324) | 0.905 (0.346) | 0.975 | 0.981 (0.330) | 0.991 (0.324) | 0.953 (0.346) | |
0.9 | 0.938 | 0.945 (0.330) | 0.954 (0.324) | 0.917 (0.346) | 0.962 | 0.969 (0.330) | 0.979 (0.324) | 0.940 (0.346) | |
1.0 | 0.950 | 0.957 (0.330) | 0.966 (0.324) | 0.928 (0.346) | 0.950 | 0.957 (0.330) | 0.967 (0.324) | 0.928 (0.346) | |
3 | 0.0 | 0.848 | 0.833 (0.344) | 0.847 (0.333) | 0.863 (0.323) | 1.000 | 1.000 (0.339) | 1.000 (0.333) | 1.000 (0.328) |
0.1 | 0.859 | 0.844 (0.344) | 0.859 (0.333) | 0.874 (0.323) | 1.000 | 1.000 (0.338) | 1.000 (0.333) | 1.000 (0.329) | |
0.2 | 0.870 | 0.856 (0.344) | 0.870 (0.333) | 0.886 (0.323) | 1.000 | 1.000 (0.338) | 1.000 (0.333) | 1.000 (0.329) | |
0.3 | 0.882 | 0.867 (0.344) | 0.882 (0.333) | 0.898 (0.323) | 1.000 | 1.000 (0.341) | 1.000 (0.330) | 1.000 (0.329) | |
0.4 | 0.894 | 0.879 (0.344) | 0.893 (0.333) | 0.910 (0.323) | 1.000 | 1.000 (0.341) | 1.000 (0.330) | 1.000 (0.329) | |
0.5 | 0.905 | 0.890 (0.344) | 0.905 (0.333) | 0.922 (0.323) | 1.000 | 1.000 (0.337) | 1.000 (0.334) | 1.000 (0.329) | |
0.6 | 0.917 | 0.902 (0.344) | 0.917 (0.333) | 0.934 (0.323) | 1.000 | 1.000 (0.341) | 1.000 (0.332) | 1.000 (0.327) | |
0.7 | 0.930 | 0.914 (0.344) | 0.929 (0.333) | 0.946 (0.323) | 0.997 | 0.993 (0.340) | 1.000 (0.332) | 1.000 (0.328) | |
0.8 | 0.942 | 0.926 (0.344) | 0.942 (0.333) | 0.959 (0.323) | 0.990 | 0.977 (0.342) | 0.993 (0.332) | 1.000 (0.326) | |
0.9 | 0.954 | 0.939 (0.344) | 0.954 (0.333) | 0.971 (0.323) | 0.980 | 0.964 (0.344) | 0.980 (0.333) | 0.997 (0.323) | |
1.0 | 0.967 | 0.951 (0.344) | 0.967 (0.333) | 0.984 (0.323) | 0.967 | 0.951 (0.344) | 0.967 (0.333) | 0.984(0.323) | |
4 | 0.0 | 0.845 | 0.860 (0.318) | 0.842 (0.336) | 0.834 (0.346) | 1.000 | 1.000 (0.322) | 1.000 (0.335) | 1.000 (0.343) |
0.1 | 0.857 | 0.872 (0.318) | 0.854 (0.336) | 0.846 (0.346) | 1.000 | 1.000 (0.322) | 1.000 (0.335) | 1.000 (0.343) | |
0.2 | 0.869 | 0.885 (0.318) | 0.867 (0.336) | 0.858 (0.346) | 1.000 | 1.000 (0.324) | 1.000 (0.335) | 1.000 (0.341) | |
0.3 | 0.882 | 0.897 (0.318) | 0.879 (0.336) | 0.871 (0.346) | 1.000 | 1.000 (0.322) | 1.000 (0.335) | 1.000 (0.343) | |
0.4 | 0.895 | 0.910 (0.318) | 0.892 (0.336) | 0.883 (0.346) | 1.000 | 1.000 (0.323) | 1.000 (0.335) | 1.000 (0.342) | |
0.5 | 0.908 | 0.923 (0.318) | 0.905 (0.336) | 0.896 (0.346) | 1.000 | 1.000 (0.323) | 1.000 (0.335) | 1.000 (0.342) | |
0.6 | 0.921 | 0.937 (0.318) | 0.918 (0.336) | 0.909 (0.346) | 1.000 | 1.000 (0.323) | 1.000 (0.335) | 1.000 (0.342) | |
0.7 | 0.934 | 0.950 (0.318) | 0.931 (0.336) | 0.922 (0.346) | 1.000 | 1.000 (0.321) | 1.000 (0.335) | 1.000 (0.344) | |
0.8 | 0.947 | 0.963 (0.318) | 0.945 (0.336) | 0.936 (0.346) | 0.998 | 1.000 (0.322) | 1.000 (0.335) | 0.993 (0.343) | |
0.9 | 0.961 | 0.977 (0.318) | 0.959 (0.336) | 0.950 (0.346) | 0.988 | 1.000 (0.319) | 0.987 (0.336) | 0.978 (0.345) | |
1.0 | 0.975 | 0.991 (0.318) | 0.973 (0.336) | 0.964 (0.346) | 0.975 | 0.991 (0.318) | 0.973 (0.336) | 0.964 (0.346) | |
5 | 0.0 | 0.889 | 0.903 (0.323) | 0.860 (0.358) | 0.908 (0.319) | 1.000 | 1.000 (0.327) | 1.000 (0.349) | 1.000 (0.324) |
0.1 | 0.902 | 0.915 (0.323) | 0.872 (0.358) | 0.921 (0.319) | 1.000 | 1.000 (0.332) | 1.000 (0.353) | 1.000 (0.315) | |
0.2 | 0.910 | 0.895 (0.330) | 0.848 (0.366) | 1.000 (0.304) | 1.000 | 1.000 (0.332) | 1.000 (0.350) | 1.000 (0.318) | |
0.3 | 0.919 | 0.898 (0.329) | 0.869 (0.366) | 1.000 (0.305) | 1.000 | 1.000 (0.323) | 1.000 (0.353) | 1.000 (0.325) | |
0.4 | 0.928 | 0.911 (0.329) | 0.883 (0.364) | 1.000 (0.307) | 1.000 | 1.000 (0.326) | 1.000 (0.351) | 1.000 (0.323) | |
0.5 | 0.938 | 0.925 (0.327) | 0.896 (0.364) | 1.000 (0.309) | 1.000 | 1.000 (0.327) | 1.000 (0.349) | 1.000 (0.324) | |
0.6 | 0.947 | 0.939 (0.327) | 0.909 (0.362) | 1.000 (0.311) | 1.000 | 1.000 (0.326) | 1.000 (0.351) | 1.000 (0.323) | |
0.7 | 0.957 | 0.953 (0.326) | 0.923 (0.361) | 1.000 (0.313) | 1.000 | 1.000 (0.326) | 1.000 (0.353) | 1.000 (0.321) | |
0.8 | 0.967 | 0.967 (0.325) | 0.937 (0.360) | 1.000 (0.315) | 0.998 | 1.000 (0.325) | 0.995 (0.354) | 1.000 (0.321) | |
0.9 | 0.977 | 0.981 (0.324) | 0.951 (0.359) | 1.000 (0.317) | 0.993 | 1.000 (0.324) | 0.981 (0.356) | 1.000 (0.320) | |
1.0 | 0.987 | 0.996 (0.323) | 0.966 (0.358) | 1.000 (0.319) | 0.987 | 0.996 (0.323) | 0.966 (0.358) | 1.000 (0.319) | |
FMS | |||||||||
6 | 0.0 | 0.839 | 0.844 (0.317) | 0.838 (0.335) | 0.834 (0.348) | 1.000 | 1.000 (0.318) | 1.000 (0.335) | 1.000 (0.347) |
0.1 | 0.850 | 0.856 (0.317) | 0.850 (0.335) | 0.846 (0.348) | 1.000 | 1.000 (0.318) | 1.000 (0.335) | 1.000 (0.347) | |
0.2 | 0.862 | 0.868 (0.317) | 0.862 (0.335) | 0.858 (0.348) | 1.000 | 1.000 (0.318) | 1.000 (0.335) | 1.000 (0.347) | |
0.3 | 0.874 | 0.880 (0.317) | 0.874 (0.335) | 0.870 (0.348) | 1.000 | 1.000 (0.318) | 1.000 (0.335) | 1.000 (0.347) | |
0.4 | 0.886 | 0.892 (0.317) | 0.886 (0.335) | 0.882 (0.348) | 1.000 | 1.000 (0.318) | 1.000 (0.335) | 1.000 (0.347) | |
0.5 | 0.899 | 0.904 (0.317) | 0.898 (0.335) | 0.894 (0.348) | 1.000 | 1.000 (0.318) | 1.000 (0.335) | 1.000 (0.347) | |
0.6 | 0.911 | 0.922 (0.316) | 0.910 (0.335) | 0.903 (0.349) | 1.000 | 1.000 (0.318) | 1.000 (0.335) | 1.000 (0.347) | |
0.7 | 0.925 | 0.935 (0.316) | 0.924 (0.335) | 0.916 (0.349) | 1.000 | 1.000 (0.318) | 1.000 (0.335) | 1.000 (0.347) | |
0.8 | 0.939 | 0.947 (0.316) | 0.938 (0.335) | 0.932 (0.349) | 0.995 | 1.000 (0.317) | 0.996 (0.334) | 0.990 (0.349) | |
0.9 | 0.953 | 0.961 (0.316) | 0.952 (0.335) | 0.946 (0.349) | 0.982 | 0.991 (0.316) | 0.981 (0.335) | 0.975 (0.349) | |
1.0 | 0.967 | 0.976 (0.316) | 0.967 (0.335) | 0.960 (0.349) | 0.967 | 0.976 (0.316) | 0.967 (0.335) | 0.960 (0.349) | |
7 | 0.0 | 0.887 | 0.899 (0.321) | 0.864 (0.361) | 0.902 (0.318) | 1.000 | 1.000 (0.321) | 1.000 (0.360) | 1.000 (0.319) |
0.1 | 0.900 | 0.911 (0.321) | 0.876 (0.361) | 0.915 (0.318) | 1.000 | 1.000 (0.325) | 1.000 (0.352) | 1.000 (0.323) | |
0.2 | 0.912 | 0.924 (0.321) | 0.889 (0.361) | 0.927 (0.318) | 1.000 | 1.000 (0.325) | 1.000 (0.353) | 1.000 (0.323) | |
0.3 | 0.926 | 0.936 (0.321) | 0.905 (0.361) | 0.939 (0.318) | 1.000 | 1.000 (0.321) | 1.000 (0.360) | 1.000 (0.319) | |
0.4 | 0.939 | 0.949 (0.321) | 0.918 (0.361) | 0.952 (0.318) | 1.000 | 1.000 (0.321) | 1.000 (0.360) | 1.000 (0.319) | |
0.5 | 0.948 | 0.931(0.326) | 0.919 (0.362) | 1.000 (0.312) | 1.000 | 1.000 (0.321) | 1.000 (0.360) | 1.000 (0.319) | |
0.6 | 0.957 | 0.944 (0.326) | 0.932 (0.361) | 1.000 (0.313) | 1.000 | 1.000 (0.321) | 1.000 (0.360) | 1.000 (0.319) | |
0.7 | 0.967 | 0.958 (0.325) | 0.946 (0.360) | 1.000 (0.315) | 1.000 | 1.000 (0.321) | 1.000 (0.360) | 1.000 (0.319) | |
0.8 | 0.976 | 0.971 (0.324) | 0.959 (0.360) | 1.000 (0.316) | 1.000 | 1.000 (0.321) | 1.000 (0.360) | 1.000 (0.319) | |
0.9 | 0.986 | 0.985 (0.323) | 0.973 (0.359) | 1.000 (0.318) | 1.000 | 1.000 (0.321) | 1.000 (0.360) | 1.000 (0.319) | |
1.0 | 0.995 | 0.999 (0.323) | 0.987 (0.358) | 1.000 (0.319) | 0.995 | 0.999 (0.323) | 0.987 (0.358) | 1.000 (0.319) | |
8 | 0.0 | 0.825 | 0.818 (0.338) | 0.825 (0.334) | 0.834 (0.328) | 1.000 | 1.000 (0.336) | 1.000 (0.334) | 1.000 (0.330) |
0.1 | 0.836 | 0.829 (0.338) | 0.835 (0.334) | 0.845 (0.328) | 1.000 | 1.000 (0.336) | 1.000 (0.334) | 1.000 (0.330) | |
0.2 | 0.848 | 0.840 (0.338) | 0.847 (0.334) | 0.856 (0.328) | 1.000 | 1.000 (0.336) | 1.000 (0.334) | 1.000 (0.330) | |
0.3 | 0.859 | 0.851 (0.338) | 0.858 (0.334) | 0.867 (0.328) | 1.000 | 1.000 (0.336) | 1.000 (0.334) | 1.000 (0.330) | |
0.4 | 0.870 | 0.863 (0.338) | 0.869 (0.334) | 0.879 (0.328) | 1.000 | 1.000 (0.336) | 1.000 (0.334) | 1.000 (0.330) | |
0.5 | 0.882 | 0.874 (0.338) | 0.881 (0.334) | 0.890 (0.328) | 1.000 | 1.000 (0.336) | 1.000 (0.334) | 1.000 (0.330) | |
0.6 | 0.893 | 0.886 (0.338) | 0.892 (0.334) | 0.902 (0.328) | 0.992 | 0.986 (0.338) | 0.992 (0.334) | 1.000 (0.328) | |
0.7 | 0.906 | 0.898 (0.338) | 0.905 (0.334) | 0.915 (0.328) | 0.980 | 0.971 (0.338) | 0.979 (0.334) | 0.989 (0.328) | |
0.8 | 0.917 | 0.909 (0.338) | 0.916 (0.334) | 0.926 (0.328) | 0.967 | 0.959 (0.338) | 0.966 (0.334) | 0.976 (0.328) | |
0.9 | 0.929 | 0.921 (0.338) | 0.928 (0.334) | 0.938 (0.328) | 0.954 | 0.946 (0.338) | 0.953 (0.334) | 0.963 (0.328) | |
1.0 | 0.941 | 0.933 (0.338) | 0.940 (0.334) | 0.951(0.328) | 0.941 | 0.933 (0.338) | 0.940 (0.334) | 0.951 (0.328) | |
9 | 0.0 | 0.719 | 0.715 (0.324) | 0.713 (0.319) | 0.727 (0.357) | 0.972 | 0.967 (0.325) | 0.963 (0.319) | 0.986 (0.356) |
0.1 | 0.730 | 0.726 (0.324) | 0.724 (0.319) | 0.738 (0.357) | 0.958 | 0.952 (0.325) | 0.949 (0.319) | 0.971 (0.356) | |
0.2 | 0.741 | 0.738 (0.324) | 0.735 (0.319) | 0.749 (0.357) | 0.944 | 0.938 (0.325) | 0.935 (0.319) | 0.957 (0.356) | |
0.3 | 0.752 | 0.749 (0.324) | 0.747 (0.319) | 0.761 (0.357) | 0.930 | 0.924 (0.325) | 0.921 (0.319) | 0.942 (0.356) | |
0.4 | 0.764 | 0.760 (0.324) | 0.758 (0.319) | 0.773 (0.357) | 0.916 | 0.911 (0.325) | 0.907 (0.319) | 0.928 (0.356) | |
0.5 | 0.776 | 0.772 (0.324) | 0.770 (0.319) | 0.785 (0.357) | 0.902 | 0.897 (0.325) | 0.894 (0.319) | 0.914 (0.356) | |
0.6 | 0.789 | 0.785 (0.324) | 0.783 (0.319) | 0.799 (0.357) | 0.889 | 0.884 (0.325) | 0.881 (0.319) | 0.900 (0.356) | |
0.7 | 0.800 | 0.796 (0.324) | 0.793 (0.319) | 0.809 (0.357) | 0.876 | 0.871 (0.325) | 0.868 (0.319) | 0.887 (0.356) | |
0.8 | 0.812 | 0.808 (0.324) | 0.805 (0.319) | 0.822 (0.357) | 0.862 | 0.858 (0.324) | 0.855 (0.319) | 0.874 (0.357) | |
0.9 | 0.824 | 0.820 (0.324) | 0.817 (0.319) | 0.834 (0.357) | 0.850 | 0.845 (0.324) | 0.842 (0.319) | 0.860 (0.357) | |
1.0 | 0.837 | 0.832 (0.324) | 0.830 (0.319) | 0.847 (0.357) | 0.837 | 0.832 (0.324) | 0.830 (0.319) | 0.847 (0.357) | |
10 | 0.0 | 0.714 | 0.718 (0.324) | 0.710 (0.342) | 0.714 (0.334) | 0.950 | 0.954 (0.324) | 0.945 (0.342) | 0.950 (0.334) |
0.1 | 0.724 | 0.728 (0.324) | 0.720 (0.342) | 0.724 (0.334) | 0.936 | 0.941 (0.324) | 0.932 (0.342) | 0.936 (0.334) | |
0.2 | 0.735 | 0.739 (0.324) | 0.734 (0.342) | 0.714 (0.334) | 0.923 | 0.928 (0.324) | 0.919 (0.342) | 0.923 (0.334) | |
0.3 | 0.745 | 0.749 (0.324) | 0.741 (0.342) | 0.745 (0.334) | 0.910 | 0.915 (0.324) | 0.906 (0.342) | 0.910 (0.334) | |
0.4 | 0.756 | 0.760 (0.324) | 0.752 (0.342) | 0.756 (0.334) | 0.897 | 0.902 (0.324) | 0.893 (0.342) | 0.897 (0.334) | |
0.5 | 0.767 | 0.771 (0.324) | 0.763 (0.342) | 0.767 (0.334) | 0.885 | 0.889 (0.324) | 0.881 (0.342) | 0.884 (0.334) | |
0.6 | 0.778 | 0.782 (0.324) | 0.774 (0.342) | 0.778 (0.334) | 0.872 | 0.877 (0.324) | 0.868 (0.342) | 0.872 (0.334) | |
0.7 | 0.789 | 0.794 (0.324) | 0.785 (0.342) | 0.789 (0.334) | 0.860 | 0.864 (0.324) | 0.856 (0.342) | 0.860 (0.334) | |
0.8 | 0.801 | 0.805 (0.324) | 0.797 (0.342) | 0.800 (0.334) | 0.848 | 0.852 (0.324) | 0.844 (0.342) | 0.847 (0.334) | |
0.9 | 0.812 | 0.817 (0.324) | 0.808 (0.342) | 0.812 (0.334) | 0.836 | 0.840 (0.324) | 0.832 (0.342) | 0.836 (0.334) | |
1.0 | 0.824 | 0.828 (0.324) | 0.820 (0.342) | 0.824 (0.334) | 0.824 | 0.828 (0.324) | 0.820 (0.342) | 0.824 (0.334) | |
FMS | |||||||||
11 | 0.0 | 0.821 | 0.826 (0.330) | 0.833 (0.326) | 0.806 (0.344) | 1.000 | 1.000 (0.332) | 1.000 (0.331) | 1.000 (0.337) |
0.1 | 0.832 | 0.837 (0.330) | 0.843 (0.326) | 0.816 (0.344) | 1.000 | 1.000 (0.332) | 1.000 (0.331) | 1.000 (0.337) | |
0.2 | 0.842 | 0.847 (0.330) | 0.854 (0.326) | 0.826 (0.344) | 1.000 | 1.000 (0.332) | 1.000 (0.331) | 1.000 (0.337) | |
0.3 | 0.853 | 0.858 (0.330) | 0.865 (0.326) | 0.837 (0.344) | 0.999 | 1.000 (0.332) | 1.000 (0.331) | 0.998 (0.337) | |
0.4 | 0.864 | 0.869 (0.330) | 0.875 (0.326) | 0.847 (0.344) | 0.995 | 1.000 (0.331) | 1.000 (0.329) | 0.986 (0.340) | |
0.5 | 0.874 | 0.880 (0.330) | 0.886 (0.326) | 0.858 (0.344) | 0.991 | 0.999 (0.329) | 1.000 (0.328) | 0.973 (0.343) | |
0.6 | 0.885 | 0.891 (0.330) | 0.898 (0.326) | 0.869 (0.344) | 0.980 | 0.986 (0.330) | 0.994 (0.326) | 0.961 (0.344) | |
0.7 | 0.897 | 0.902 (0.330) | 0.909 (0.326) | 0.880 (0.344) | 0.967 | 0.973(0.330) | 0.981 (0.326) | 0.948 (0.344) | |
0.8 | 0.908 | 0.913 (0.330) | 0.920 (0.326) | 0.891 (0.344) | 0.955 | 0.961 (0.330) | 0.968 (0.326) | 0.937 (0.344) | |
0.9 | 0.919 | 0.925 (0.330) | 0.932 (0.326) | 0.902 (0.344) | 0.943 | 0.948 (0.330) | 0.956 (0.326) | 0.925 (0.344) | |
1.0 | 0.931 | 0.937 (0.330) | 0.944 (0.326) | 0.914 (0.344) | 0.931 | 0.937 (0.330) | 0.944 (0.326) | 0.914 (0.344) | |
12 | 0.0 | 0.679 | 0.690 (0.324) | 0.675 (0.337) | 0.672 (0.340) | 0.896 | 0.905 (0.324) | 0.893 (0.336) | 0.890 (0.340) |
0.1 | 0.688 | 0.699 (0.324) | 0.684 (0.337) | 0.680 (0.340) | 0.883 | 0.892 (0.324) | 0.880 (0.336) | 0.877 (0.340) | |
0.2 | 0.697 | 0.708 (0.324) | 0.693 (0.337) | 0.689 (0.340) | 0.870 | 0.879 (0.324) | 0.867 (0.336) | 0.864 (0.340) | |
0.3 | 0.706 | 0.717 (0.324) | 0.702 (0.337) | 0.698 (0.340) | 0.858 | 0.867 (0.324) | 0.855 (0.336) | 0.852 (0.340) | |
0.4 | 0.715 | 0.726 (0.324) | 0.711 (0.337) | 0.707 (0.340) | 0.845 | 0.854 (0.324) | 0.843 (0.336) | 0.840 (0.340) | |
0.5 | 0.724 | 0.733 (0.324) | 0.721 (0.337) | 0.718 (0.340) | 0.833 | 0.843 (0.324) | 0.830 (0.336) | 0.827 (0.340) | |
0.6 | 0.738 | 0.750 (0.324) | 0.734 (0.337) | 0.731 (0.340) | 0.822 | 0.831 (0.324) | 0.818 (0.336) | 0.816 (0.340) | |
0.7 | 0.745 | 0.754 (0.324) | 0.742 (0.337) | 0.739 (0.340) | 0.810 | 0.820 (0.324) | 0.807 (0.336) | 0.804 (0.340) | |
0.8 | 0.755 | 0.765 (0.324) | 0.752 (0.337) | 0.749 (0.340) | 0.799 | 0.809 (0.324) | 0.795 (0.336) | 0.792 (0.340) | |
0.9 | 0.766 | 0.775 (0.324) | 0.763 (0.337) | 0.760 (0.340) | 0.788 | 0.797 (0.324) | 0.784 (0.336) | 0.781 (0.340) | |
1.0 | 0.777 | 0.786 (0.324) | 0.773 (0.337) | 0.770 (0.340) | 0.777 | 0.786 (0.324) | 0.773 (0.337) | 0.770 (0.340) |
Robot | α = 0.0 | α = 0.1 | α = 0.2 | α = 0.3 | α = 0.4 | α = 0.5 | α = 0.6 | α = 0.7 | α = 0.8 | α = 0.9 | α = 1.0 | Total | I | Rank | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | L | 0.857 | 0.863 | 0.879 | 0.885 | 0.896 | 0.913 | 0.925 | 0.931 | 0.943 | 0.955 | 0.967 | 0.7769 | 3 | |
(−0.143) | (−0.137) | (−0.121) | (−0.115) | (−0.104) | (−0.087) | (−0.075) | (−0.069) | (−0.057) | (−0.045) | (−0.033) | (−0.987) | ||||
U | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.997 | 0.992 | 0.988 | 0.983 | 0.979 | 0.967 | ||||
(0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.318) | (0.313) | (0.309) | (0.304) | (0.300) | (0.288) | (3.438) | ||||
2 | L | 0.837 | 0.848 | 0.859 | 0.870 | 0.881 | 0.892 | 0.903 | 0.915 | 0.926 | 0.938 | 0.950 | 0.7417 | 7 | |
(−0.163) | (−0.152) | (−0.141) | (−0.130) | (−0.119) | (−0.108) | (−0.097) | (−0.085) | (−0.074) | (−0.062) | (−0.050) | (−1.182) | ||||
U | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.997 | 0.992 | 0.986 | 0.975 | 0.962 | 0.950 | ||||
(0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.318) | (0.313) | (0.307) | (0.296) | (0.300) | (0.288) | (3.395) | ||||
3 | L | 0.848 | 0.859 | 0.870 | 0.882 | 0.894 | 0.905 | 0.917 | 0.930 | 0.942 | 0.954 | 0.967 | 0.7707 | 5 | |
(−0.152) | (−0.141) | (−0.130) | (−0.118) | (−0.106) | (−0.095) | (−0.083) | (−0.070) | (−0.058) | (−0.046) | (−0.033) | (−1.032) | ||||
U | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.997 | 0.990 | 0.980 | 0.967 | ||||
(0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.318) | (0.311) | (0.301) | (0.288) | (3.467) | ||||
4 | L | 0.845 | 0.857 | 0.869 | 0.882 | 0.895 | 0.908 | 0.921 | 0.934 | 0.947 | 0.961 | 0.975 | 0.7766 | 4 | |
(−0.155) | (−0.143) | (−0.131) | (−0.118) | (−0.105) | (−0.092) | (−0.079) | (−0.066 | (−0.053) | (−0.039) | (−0.025) | (−1.005) | ||||
U | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.988 | 0.975 | ||||
(0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.319) | (0.309) | (0.297) | (3.495) | ||||
5 | L | 0.889 | 0.902 | 0.910 | 0.919 | 0.928 | 0.938 | 0.947 | 0.957 | 0.967 | 0.977 | 0.986 | 0.8374 | 2 | |
(−0.111) | (−0.098) | (−0.090) | (−0.081) | (−0.072) | (−0.062) | (−0.053) | (−0.043) | (−0.033) | (−0.023) | (−0.014) | (−0.682) | ||||
U | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.993 | 0.986 | ||||
(0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.320) | (0.314) | (0.308) | (3.511) | ||||
6 | L | 0.839 | 0.850 | 0.862 | 0.874 | 0.886 | 0.899 | 0.911 | 0.925 | 0.939 | 0.953 | 0.967 | 0.7607 | 6 | |
(−0.161) | (−0.150) | (−0.138) | (−0.126) | (−0.114) | (−0.101) | (−0.089) | (−0.075) | (−0.061) | (−0.047) | (−0.033) | (−1.094) | ||||
U | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.995 | 0.982 | 0.967 | ||||
(0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.316) | (0.303) | (0.289) | (3.478) | ||||
7 | L | 0.887 | 0.900 | 0.912 | 0.926 | 0.939 | 0.948 | 0.957 | 0.967 | 0.976 | 0.986 | 0.995 | 0.8531 | 1 | |
(−0.113) | (−0.100) | (−0.088) | (−0.074) | (−0.061) | (−0.052) | (−0.043) | (−0.033) | (−0.024) | (−0.014) | (−0.005) | (−0.607) | ||||
U | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.995 | ||||
(0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.316) | (3.529) | ||||
8 | L | 0.825 | 0.836 | 0.848 | 0.859 | 0.870 | 0.882 | 0.893 | 0.906 | 0.917 | 0.929 | 0.941 | 0.7225 | 8 | |
(−0.175) | (−0.164) | (−0.152) | (−0.141) | (−0.130) | (−0.118) | (−0.107) | (−0.094) | (−0.083) | (−0.071) | (−0.059) | (−1.294) | ||||
U | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.992 | 0.980 | 0.967 | 0.954 | 0.941 | ||||
(0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.321) | (0.314) | (0.301) | (0.288) | (0.275) | (0.263) | (3.368) | ||||
9 | L | 0.719 | 0.730 | 0.741 | 0.752 | 0.764 | 0.776 | 0.789 | 0.800 | 0.812 | 0.824 | 0.837 | 0.5013 | 10 | |
(−0.281) | (−0.270) | (−0.259) | (−0.248) | (−0.236) | (−0.224) | (−0.211) | (−0.200) | (−0.188) | (−0.176) | (−0.163) | (−2.456) | ||||
U | 0.972 | 0.958 | 0.944 | 0.930 | 0.916 | 0.902 | 0.889 | 0.876 | 0.862 | 0.850 | 0.837 | ||||
(0.294) | (0.279) | (0.265) | (0.251) | (0.237) | (0.223) | (0.210) | (0.197) | (0.184) | (0.171) | (0.158) | (2.469) | ||||
10 | L | 0.714 | 0.724 | 0.735 | 0.745 | 0.756 | 0.767 | 0.778 | 0.789 | 0.801 | 0.812 | 0.824 | 0.4707 | 11 | |
(−0.286) | (−0.276) | (−0.265) | (−0.255) | (−0.244) | (−0.233) | (−0.222) | (−0.211) | (−0.199) | (−0.188) | (−0.176) | (−2.556) | ||||
U | 0.950 | 0.936 | 0.923 | 0.910 | 0.897 | 0.885 | 0.872 | 0.860 | 0.848 | 0.836 | 0.824 | ||||
(0.271) | (0.257) | (0.244) | (0.231) | (0.218) | (0.206) | (0.193) | (0.181) | (0.169) | (0.157) | (0.145) | (2.273) | ||||
11 | L | 0.821 | 0.832 | 0.842 | 0.853 | 0.864 | 0.874 | 0.885 | 0.897 | 0.908 | 0.919 | 0.931 | 0.7058 | 9 | |
(−0.178) | (−0.168) | (−0.158) | (−0.147) | (−0.136) | (−0.126) | (−0.115) | (−0.103) | (−0.092) | (−0.081) | (−0.069) | (−1.374) | ||||
U | 1.000 | 1.000 | 1.000 | 1.000 | 0.995 | 0.991 | 0.980 | 0.967 | 0.955 | 0.943 | 0.931 | ||||
(0.321) | (0.321) | (0.321) | (0.321) | (0.317) | (0.312) | (0.301) | (0.288) | (0.276) | (0.264) | (0.252) | (3.295) | ||||
12 | L | 0.679 | 0.688 | 0.697 | 0.706 | 0.715 | 0.724 | 0.738 | 0.745 | 0.755 | 0.766 | 0.777 | 0.3625 | 12 | |
(−0.321) | (−0.312) | (−0.303) | (−0.294) | (−0.285) | (−0.276) | (−0.262) | (−0.255) | (−0.245) | (−0.234) | (−223) | (−3.012) | ||||
U | 0.896 | 0.883 | 0.870 | 0.858 | 0.845 | 0.833 | 0.822 | 0.810 | 0.799 | 0.787 | 0.777 | ||||
(0.217) | (0.204) | (0.191) | (0.179) | (0.167) | (0.154) | (0.143) | (0.131) | (0.120) | (0.109) | (0.098) | (1.713) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, T. A Fuzzy Network DEA Approach to the Selection of Advanced Manufacturing Technology. Sustainability 2021, 13, 4236. https://doi.org/10.3390/su13084236
Lu T. A Fuzzy Network DEA Approach to the Selection of Advanced Manufacturing Technology. Sustainability. 2021; 13(8):4236. https://doi.org/10.3390/su13084236
Chicago/Turabian StyleLu, Tim. 2021. "A Fuzzy Network DEA Approach to the Selection of Advanced Manufacturing Technology" Sustainability 13, no. 8: 4236. https://doi.org/10.3390/su13084236
APA StyleLu, T. (2021). A Fuzzy Network DEA Approach to the Selection of Advanced Manufacturing Technology. Sustainability, 13(8), 4236. https://doi.org/10.3390/su13084236