Removal of Selected Dyes on Activated Carbons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sorbat
2.2. Sorbent
- -
- ROW 08 Supra—a granular and refined carbon that can be thermally regenerated. It is produced from peat by Dutch company NORIT,
- -
- WG-12—granulated coal, produced from hard coal by the Polish company GRYFSKAND sp. z o.o. from Hajnówka.
2.3. Methodology of Study
3. Results
Adsorption of Anilan Yellow Gold
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Qada, E.N.; Allen, S.J.; Walker, G.M. Adsorption of basic dyes from aqueous solution onto activated carbons. Chem. Eng. J. 2008, 135, 174–184. [Google Scholar] [CrossRef]
- Ghaly, A.; Ananthashankar, R.; Alhattab, M.; Ramakrishnan, V. Production, characterization and treatment of textile efuents: A critical review. J. Chem. Eng. Process Technol. 2014, 5, 1–18. [Google Scholar]
- Sivakumar, D.; Shankar, D.; Vijaya Prathima, A.J.; Valarmathi, M. Constructed wetlands treatment of textile industry wastewater using aquatic macrophytes. Int. J. Environ. Sci. 2013, 3, 1223–1232. [Google Scholar]
- Berradi, R.; Hsissou, R.; Khudhair, M.; Assouag, M.; Cherkaoui, O.; El Bachiri, A.; El Harfi, A. Textile finishing dyes and their impact on aquatic environs. Heliyon 2019, 5, e02711. [Google Scholar] [CrossRef] [PubMed]
- Choy, K.K.H.; McKay, G.; Porter, J.F. Sorption of acid dyes from effluents using activated carbon. Resour. Conserv. Recycl. 1999, 27, 57–71. [Google Scholar] [CrossRef]
- Manu, B.; Chaudhari, S. Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Bioresour. Technol. 2002, 82, 225–231. [Google Scholar] [CrossRef]
- Popli, S.; Patel, U.D. Destruction of azo dyes by anaerobic-aerobic sequential bi treatment: A review. Int. J. Environ. Sci. Technol. 2015, 12, 405–420. [Google Scholar] [CrossRef] [Green Version]
- Lellis, B.; ZaniFávaro-Polonio, C.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Imran, M.; Crowley, D.E.; Khalid, A.; Hussain, S.; Mumtaz, M.W.; Arshad, M. Microbial biotechnology for decolorization of textile wastewaters. Rev. Environ. Sci. Biotechnol. 2015, 14, 73–92. [Google Scholar] [CrossRef]
- Luo, X.; Liang, C.; Hu, Y. Comparison of different enhanced coagulation methods for azo dye removal from wastewater. Sustainability 2019, 11, 4760. [Google Scholar] [CrossRef] [Green Version]
- Aquino, J.M.; Rocha-Filho, R.C.; Ruotolo, L.A.M.; Bocchi, N.; Biaggio, S.R. Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes. Chem. Eng. J. 2014, 251, 138–145. [Google Scholar] [CrossRef]
- Orts, F.; del Río, A.I.; Molina, J.; Bonastre, J.; Cases, F. Electrochemical treatment of real textile wastewater: Trichromy Procion HEXL®. J. Electroanal. Chem. 2018, 808, 387–394. [Google Scholar] [CrossRef]
- Sahoo, P.R.; Prakash, K.; Kumar, S. Light controlled receptors for heavy metal ions. Coord. Chem. Rev. 2018, 357, 18–49. [Google Scholar] [CrossRef]
- Xiang-Rong, X.; Hua-Bin, L.; Wen-Hua, W.; Ji-Dong, G. Decolorization of dyes and textile wastewater by potassium permanganate. Chemosphere 2005, 59, 893–898. [Google Scholar]
- Hassan, M.M.; Carr, C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 2018, 209, 201–219. [Google Scholar] [CrossRef] [PubMed]
- Giannakoudakis, D.A.; Kyzas, G.Z.; Avranas, A.; Lazaridis, N.K. Multi-parametric adsorption effects of the reactive dye removal with commercial activated carbons. J. Mol. Liq. 2016, 213, 381–389. [Google Scholar] [CrossRef]
- Kubra, K.T.; Salman, M.S.; Hasan, M.N. Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J. Mol. Liq. 2021, 328, 328. [Google Scholar] [CrossRef]
- Ahila, K.G.; Ravindran, B.; Muthunarayanan, V.; Nguyen, D.D.; Nguyen, X.C.; Chang, S.W.; Nguyen, V.K.; Thamaraiselvi, C. Phytoremediation potential of freshwater macrophytes for treating dye-containing wastewater. Sustainability 2021, 13, 329. [Google Scholar] [CrossRef]
- McKay, G. Design models for adsorption systems in wastewater treatment. J. Chem. Technol. Biotechnol. 1981, 31, 717–731. [Google Scholar] [CrossRef]
- Walker, G.M.; Al Duri, B. Acid dye adsorption using fixed GAC columns. Proc. I Chem. E Res. Event Lond. 1994, 2, 109–110. [Google Scholar]
- Walker, G.M.; Wealtherley, L.R. Adsorption of acid dyes onto granular activated carbon in fixed beds. Water Res. 1997, 31, 2093–2101. [Google Scholar] [CrossRef]
- Demirbas, A. Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review. J. Hazard. Mater. 2009, 167, 1–9. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, X.; Qin, D.; Da, W.; Hou, B.; Hao, C.; Wu, J. Construction of magnetic lignin based adsorbent and its adsorption properties for dyes. J. Hazard. Mater. 2019, 369, 50–61. [Google Scholar] [CrossRef]
- Lee, C.K.; Low, K.S.; Chung, L.C. Removal of some organic dyes by hexane extracted spent bleaching earth. J. Chem. Technol. Biotechnol. 1997, 69, 93–99. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; He, D.; Yang, H.; Jin, D.; Qu, J.; Zhang, Y. Comparative study on the adsorption capacities of the three black phosphorus-based materials for methylene blue in water. Sustainability 2020, 12, 8335. [Google Scholar] [CrossRef]
- Ahmed, M.J. Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption: Review. J. Environ. Chem. Eng. 2016, 4, 89–99. [Google Scholar] [CrossRef]
- Czubaszek, M.; Choma, J. Badania adsorpcji wybranych barwników z roztworów wodnych na nanoporowatych materiałach węglowych w warunkach dynamicznych. Ochr. Sr. 2018, 40, 3–8. [Google Scholar]
- Li, W.; Yue, Q.; Tu, P.; Ma, Z.; Gao, B.; Li, J.; Xu, X. Adsorption characteristics of dyes in columns of activated carbon prepared from paper mill sewage sludge. Chem. Eng. J. 2011, 178, 197–203. [Google Scholar] [CrossRef]
- Li, J.; Du, Y.; Deng, B.; Zhu, K.; Zhang, H. Activated carbon adsorptive removal of azo dye and peroxydisulfate regeneration: From a batch study to continuous column operation. Environ. Sci. Pollut. Res. 2017, 24, 4932–4941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Jena, H.M. Removal of methylene blue and phenol onto prepared activated carbon from fox nutshell by chemical activation in batch and fi xed-bed column. J. Clean. Prod. 2016, 137, 1246–1259. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Hameed, B.H. Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. J. Hazard. Mater. 2010, 175, 298–303. [Google Scholar] [CrossRef] [PubMed]
Type of Dye | Name of Dye | Application | Structural Formula |
---|---|---|---|
CATIONIC | anilan yellow | Used in industry for dyeing acrylic fibers by extraction methods. (Basic Yellow 28) | |
ANIONIC | tartrazine | It is used in textile industry (dyeing of protein fibers—wool, natural silk), for dyeing wood, leather and household chemicals. This dye of light yellow color, with the trade symbol E 102, is also known as food yellow 5. It belongs to the group of food dyes. |
Indicator | Unit | Value | |
---|---|---|---|
ROW 08 Supra | WG-12 | ||
Specific surface area | m2/g | 796 | 1005 |
External surface | m2/m3 | 3208 | 2292 |
Bulk density | g/L | 380 | 420 |
Mechanical strength | % | 98 | 98 |
Granule diameter | mm | 0.8 | 1.2 |
Water absorption | mL/g | 0.97 | 0.82 |
Ash content | % | 5.94 | 11.00 |
pH of aqueous extract | - | 8.6 | 10.1 |
Methylene number, LM | mL | 30 | 30 |
Iodine adsorption, LJ | mg/g | 1096 | 1050 |
Type of Carbon | Flow Velocity | Time to Adsorption Capacity Breakthrough | Time to Adsorption Capacity Depletion | Mass Exchange Zone Sliding Velocity | Dynamic Adsorption | |||
---|---|---|---|---|---|---|---|---|
m/h | h | min | h | min | cm/h | g/L | mg/g | |
ROW 08 Supra | 3 | 8.50 | 510.00 | 76.5 | 4590 | 0.37 | 10.20 | 27.40 |
6 | 4.33 | 260.00 | 39 | 2340 | 0.72 | 5.20 | 13.70 | |
9 | 1.67 | 100.00 | 15 | 900 | 1.88 | 2.00 | 5.30 | |
WG-12 | 3 | 5.94 | 356.67 | 53.5 | 3210 | 0.53 | 7.13 | 17.00 |
6 | 3.22 | 193.33 | 29 | 1740 | 0.97 | 3.87 | 9.20 | |
9 | 1.17 | 70.00 | 10.5 | 630 | 2.68 | 1.40 | 3.30 |
Type of Carbon | Flow Velocity | Time to Adsorption Capacity Breakthrough | Time to Adsorption Capacity Depletion | Mass Exchange Zone Sliding Velocity | Dynamic Adsorption | |||
---|---|---|---|---|---|---|---|---|
m/h | h | min | h | min | cm/h | g/L | mg/g | |
ROW 08 Supra | 3 | 9.56 | 573.33 | 86 | 5160 | 0.33 | 11.47 | 30.18 |
6 | 5.11 | 306.67 | 46 | 2760 | 0.61 | 6.13 | 16.13 | |
9 | 2.17 | 130.00 | 19.5 | 1170 | 1.44 | 2.60 | 6.84 | |
WG-12 | 3 | 6.89 | 413.33 | 62 | 3720 | 0.45 | 8.27 | 19.69 |
6 | 3.78 | 226.67 | 34 | 2040 | 0.83 | 4.53 | 10.79 | |
9 | 1.17 | 70.00 | 10.5 | 630 | 2.68 | 1.40 | 3.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okoniewska, E. Removal of Selected Dyes on Activated Carbons. Sustainability 2021, 13, 4300. https://doi.org/10.3390/su13084300
Okoniewska E. Removal of Selected Dyes on Activated Carbons. Sustainability. 2021; 13(8):4300. https://doi.org/10.3390/su13084300
Chicago/Turabian StyleOkoniewska, Ewa. 2021. "Removal of Selected Dyes on Activated Carbons" Sustainability 13, no. 8: 4300. https://doi.org/10.3390/su13084300
APA StyleOkoniewska, E. (2021). Removal of Selected Dyes on Activated Carbons. Sustainability, 13(8), 4300. https://doi.org/10.3390/su13084300