Improved Control Method for Voltage Regulation and Harmonic Mitigation Using Electric Spring
Abstract
:1. Introduction
2. ES Control Principles for Voltage Regulation and Harmonics Compensation
2.1. Voltage Regulation
2.2. Harmonics Compensation
3. Proposed Control System
3.1. Existing Control System
3.2. Improved Control System
4. Simulation Results
4.1. Undervoltage Condition
4.2. Overvoltage Condition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Owusu, P.; Asumadu Sarkodie, S. A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Affam, A.; Buswig, Y.m.Y.; Othman, A.-K.; Julai, N.; Qays, M.O. A review of multiple input DC-DC converter topologies linked with hybrid electric vehicles and renewable energy systems. Renew. Sustain. Energy Rev. 2021, 135, 110186. [Google Scholar] [CrossRef]
- Liang, X. Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources. IEEE Trans. Ind. Appl. 2016, 53, 855–866. [Google Scholar] [CrossRef]
- Wang, Q.; Deng, F.; Cheng, M.; Buja, G. The State of the Art of Topologies for Electric Springs. Energies 2018, 11, 1724. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; He, Y.; Xu, X.; Dong, Z.; Lei, Y. A Review of AC and DC Electric Springs. IEEE Access 2021, 9, 14398–14408. [Google Scholar] [CrossRef]
- Hui, S.Y.; Lee, C.K.; Wu, F. Electric Springs—A New Smart Grid Technology. Smart GridIEEE Trans. 2012, 3, 1552–1561. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.K.; Chaudhuri, B.; Hui, S.Y. Hardware and Control Implementation of Electric Springs for Stabilizing Future Smart Grid With Intermittent Renewable Energy Sources. Emerg. Sel. Top. Power Electron. IEEE J. 2013, 1, 18–27. [Google Scholar] [CrossRef]
- Chaudhuri, N.R.; Lee, C.K.; Chaudhuri, B.; Hui, S.Y. Dynamic Modeling of Electric Springs. Smart GridIEEE Trans. 2014, 5, 2450–2458. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, C.; Tong, R.; Gao, S. Identification and Control of Electric Elasticity Limit for Electric-Spring-Based Flexible Loads. IEEE Trans. Ind. Inform. 2019, 15, 6001–6010. [Google Scholar] [CrossRef]
- Lee, C.K.; Chaudhuri, N.R.; Chaudhuri, B.; Hui, S.Y. Droop Control of Distributed Electric Springs for Stabilizing Future Power Grid. Smart GridIEEE Trans. 2013, 4, 1558–1566. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Liu, H.; Lee, C.K.; Hui, S.Y. A Generalized Controller for Electric-Spring-Based Smart Load with Active and Reactive Power Compensation. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 1454–1465. [Google Scholar] [CrossRef]
- Tan, S.-C.; Lee, C.K.; Hui, S.Y. General Steady-State Analysis and Control Principle of Electric Springs With Active and Reactive Power Compensations. Power Electron. IEEE Trans. 2013, 28, 3958–3969. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, M.; Jiang, Y.; Wujian, Z.; Buja, G. A Simple Active and Reactive Power Control for Applications of Single-Phase Electric Springs. IEEE Trans. Ind. Electron. 2018, 65, 6291–6300. [Google Scholar] [CrossRef]
- Akhtar, Z.; Chaudhuri, B.; Hui, S. Smart Loads for Voltage Control in Distribution Networks. IEEE Trans. Smart Grid 2015, 8. [Google Scholar] [CrossRef] [Green Version]
- Shuo, Y.; Lee, C.-K.; Yang, T.-b.; Mok, K.-T.; Tan, S.-C.; Chaudhuri, B.; Hui, S. Extending the Operating Range of Electric Spring Using Back-To-Back Converter: Hardware Implementation and Control. IEEE Trans. Power Electron. 2016, 32, 5171–5179. [Google Scholar] [CrossRef]
- Pilehvar, M.S.; Shadmand, M.; Mirafzal, B. Analysis of Smart Loads in Nanogrids. IEEE Access 2018, 7, 548–562. [Google Scholar] [CrossRef]
- Mok, K.-T.; Tan, S.-C.; Hui, S.Y. Decoupled Power Angle and Voltage Control of Electric Springs. IEEE Trans. Power Electron. 2015, 31, 1216–1229. [Google Scholar] [CrossRef]
- Soni, J.; Panda, S. Electric Spring for Voltage and Power Stability and Power Factor Correction. IEEE Trans. Ind. Appl. 2017, 53, 3871–3879. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, M.; Chen, Z.; Wang, Z. Steady-State Analysis of Electric Springs With a Novel δ Control. IEEE Trans. Power Electron. 2015, 30, 7159–7169. [Google Scholar] [CrossRef]
- Mok, K.-T.; Wang, M.-H.; Tan, S.-C.; Hui, S.Y. DC Electric Springs—A New Technology for Stabilizing DC Power Distribution Systems. IEEE Trans. Power Electron. 2016, 32, 1088–1105. [Google Scholar] [CrossRef]
- Wang, M.-H.; Mok, K.-T.; Tan, S.-C.; Hui, S.Y. Multifunctional DC Electric Springs for Improving Voltage Quality of DC Grids. IEEE Trans. Smart Grid 2016, 9, 2248–2258. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, Y.; Tan, S.-C.; Hui, S.Y. Reducing Distribution Power Loss of Islanded AC Microgrids Using Distributed Electric Springs With Predictive Control. IEEE Trans. Ind. Electron. 2020, 67, 9001–9011. [Google Scholar] [CrossRef]
- Yang, Y.; Tan, S.-C.; Hui, S.Y. Mitigating Distribution Power Loss of DC Microgrids With DC Electric Springs. IEEE Trans. Smart Grid 2017, 9, 5897–5906. [Google Scholar] [CrossRef]
- Shuo, Y.; Tan, S.-C.; Lee, C.-K.; Chaudhuri, B.; Hui, S.Y. Electric Springs for Reducing Power Imbalance in Three-Phase Power Systems. IEEE Trans. Power Electron. 2014, 30, 3601–3609. [Google Scholar] [CrossRef]
- Mok, K.-T.; Ho, S.S.; Tan, S.-C.; Hui, S.Y. A Comprehensive Analysis and Control Strategy for Nullifying Negative– and Zero–Sequence Currents in an Unbalanced Three–Phase Power System Using Electric Springs. IEEE Trans. Power Electron. 2016, 32, 7635–7650. [Google Scholar] [CrossRef] [Green Version]
- Shuo, Y.; Wang, M.-H.; Yang, T.-b.; Tan, S.-C.; Chaudhuri, B.; Hui, S.Y. Achieving Multiple Functions of 3-Phase Electric Springs in Unbalanced 3-Phase Power Systems Using the Instantaneous Power Theory. IEEE Trans. Power Electron. 2017, 33, 5784–5795. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Cheng, M.; Jiang, Y. Harmonics Suppression for Critical Loads Using Electric Springs With Current-Source Inverters. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1362–1369. [Google Scholar] [CrossRef]
- Shuo, Y.; Tan, S.-C.; Lee, C.K.; Chaudhuri, B.; Hui, S.Y. Use of Smart Loads for Power Quality Improvement. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 5, 504–512. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, Y.; Cao, S. Model Predictive Control of Electric Spring for Voltage Regulation and Harmonics Suppression. Math. Probl. Eng. 2019, 2019, 7973591. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.-H.; Shuo, Y.; Tan, S.-C.; Hui, S.Y. Hybrid-DC Electric Springs for DC Voltage Regulation and Harmonic Cancellation in DC Microgrids. IEEE Trans. Power Electron. 2017, 33, 1167–1177. [Google Scholar] [CrossRef]
- Soni, J.; Sen, B.; Kanakesh, V.K.; Panda, S. Performance analysis and evaluation of reactive power compensating electric spring with linear loads. Int. J. Electr. Power Energy Syst. 2018, 101, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Hosseinipour, A.; Hojabri, H. Small-Signal Stability Analysis and Active Damping Control of DC Microgrids Integrated With Distributed Electric Springs. IEEE Trans. Smart Grid 2020, 11, 3737–3747. [Google Scholar] [CrossRef]
- Chakravorty, D.; Guo, J.; Chaudhuri, B.; Hui, R. Small Signal Stability Analysis of Distribution Networks With Electric Springs. IEEE Trans. Smart Grid 2017, 10, 1543–1552. [Google Scholar] [CrossRef]
- Liang, L.; Hou, Y.; Hill, D. An Interconnected Microgrids-Based Transactive Energy System With Multiple Electric Springs. IEEE Trans. Smart Grid 2019, 11, 184–193. [Google Scholar] [CrossRef]
- IEEE Recommended Practice for Monitoring Electric Power Quality. IEEE Std. 2019, 1159–2019. [CrossRef]
- Harmonic Measurement in Electrical Networks. Available online: www.electrical-installation.org/enw/index.php?title=Harmonic_measurement_in_electrical_networks&oldid=26850 (accessed on 3 March 2021).
Circuit Characteristics of the System | |
Nominal Voltage | 230 V |
Nominal Frequency | 50 Hz |
Line Impedance | Rg = 0.1 Ω Lg = 2.5 mH |
CL Impedance | Rc = 11 Ω Lc = 35 mH |
NCL Impedance | Rnc = 6.11 Ω Lnc = 1.4 mH |
Electric Spring Characteristics | |
Inverter Topology | H-Bridge |
Switching Frequency | 20 kHz |
DC Bus Voltage | 400 V |
Low-Pass Filter Inductance | 1.92 mH |
Low-Pass Filter Capacitance | 13.2 μF |
Harmonics | 1 | 3 | 5 | 7 | 9 | THD | |
---|---|---|---|---|---|---|---|
Mains voltage harmonics (V) (%) | UV | 325 | 75 23% | 50 15% | 25 8% | 5 1.5% | 28.82% |
OV | 352 | 75 21% | 50 14% | 25 7% | 5 1.4% | 26.61% |
Case 1 | Existing Control System | Improved Control System | ||
---|---|---|---|---|
Undervoltage | Overvoltage | Undervoltage | Overvoltage | |
THD Vg% | 28.82 | 26.61 | 28.82 | 26.61 |
THD Vs% | 22.26 | 22.26 | 1.65 | 1.69 |
THD Vnc% | 20.82 | 21.38 | 72.59 | 60.83 |
THD Ig% | 18.59 | 16.6 | 60.23 | 45.27 |
HARMONICS | 1 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 25 | THD (%) |
---|---|---|---|---|---|---|---|---|---|---|
UV | 325 | 19.5 6% | 16.2 5% | 11.4 3.5% | 9.7 3% | 6.5 2% | 4.9 1.5% | 4.9 1.5% | 4.9 1.5% | 9.64 |
OV | 358 | 21.5 6% | 17.9 5% | 12.5 3.5% | 10.7 3% | 7.2 2% | 5.4 1.5% | 5.4 1.5% | 5.4 1.5% | 9.64 |
Case 2 | Existing Control System | Improved Control System | ||
---|---|---|---|---|
Undervoltage | Overvoltage | Undervoltage | Overvoltage | |
THD Vg% | 9.64 | 9.64 | 9.64 | 9.64 |
THD Vs% | 7.24 | 8.09 | 0.43 | 0.5 |
THD Vnc% | 5.73 | 5.67 | 14 | 13.49 |
THD Ig% | 4.52 | 3.75 | 10.76 | 8.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shademan, M.; Jalilian, A.; Savaghebi, M. Improved Control Method for Voltage Regulation and Harmonic Mitigation Using Electric Spring. Sustainability 2021, 13, 4523. https://doi.org/10.3390/su13084523
Shademan M, Jalilian A, Savaghebi M. Improved Control Method for Voltage Regulation and Harmonic Mitigation Using Electric Spring. Sustainability. 2021; 13(8):4523. https://doi.org/10.3390/su13084523
Chicago/Turabian StyleShademan, Mahdi, Alireza Jalilian, and Mehdi Savaghebi. 2021. "Improved Control Method for Voltage Regulation and Harmonic Mitigation Using Electric Spring" Sustainability 13, no. 8: 4523. https://doi.org/10.3390/su13084523
APA StyleShademan, M., Jalilian, A., & Savaghebi, M. (2021). Improved Control Method for Voltage Regulation and Harmonic Mitigation Using Electric Spring. Sustainability, 13(8), 4523. https://doi.org/10.3390/su13084523